

Information Systems

Education Journal

Volume 18, No. 4

August 2020
ISSN: 1545-679X

In this issue:

4. Using Goal Setting Assignments to Promote a Growth Mindset in IT Students

David M. Wood, Miami University Regionals

12. Liberating Legacy System Data with Rails, Intelligent Use of Conflict Data

with Automated Class Scheduling Tools

Stuart L. Wolthuis, Brigham Young University – Hawaii

Christopher Slade, Brigham Young University - Hawaii

22. Undergraduate Business Analytics and the overlap with Information

Systems Programs

Wendy Ceccucci, Quinnipiac University

Kiku Jones, Quinnipiac University

Katarzyna Toskin, Quinnipiac University

Lori Leonard, The University of Tulsa

33. Lizards in the Street! Introducing Cybersecurity Awareness in a Digital

Literacy Context
Mark Frydenberg, Bentley University

Birgy Lorenz, Tallinn University of Technology

46. Academic Entitlement Beliefs of Information Systems Students: A

Comparison with Other Business Majors and An Exploration of Key

Demographic Variables and Outcomes

Scott J. Seipel, Middle Tennessee State University

Nita G. Brooks, Middle Tennessee State university

59. An Assignment a Day Scaffolded Learning Approach for Teaching

Introductory Computer Programming

Deepak Dawar, Miami University

Marianne Murphy, Miami University

74. Learning How to Teach: The Case for Faculty Learning Communities

 David Gomillion, Texas A&M University

 Aaron Becker, Texas A&M University

 Jordana George, Texas A&M University

 Michael Scialdone, Texas A&M University

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://isedj.org/; http://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed

academic journal published by ISCAP (Information Systems and Computing Academic

Professionals). Publishing frequency is six times per year. The first year of publication was

2003.

ISEDJ is published online (http://isedj.org). Our sister publication, the Proceedings of

EDSIGCON (http://www.edsigcon.org) features all papers, panels, workshops, and

presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

EDSIGCON conference. At that point papers are divided into award papers (top 15%), other

journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers

are subjected to a second round of blind peer review to establish whether they will be

accepted to the journal or not. Those papers that are deemed of sufficient quality are

accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the

journal is under 40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of

Publishing Opportunities in Educational Technology and Library Science, in both the

electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org. Special thanks to members of

EDSIG who perform the editorial and review processes for ISEDJ.

2020 Education Special Interest Group (EDSIG) Board of Directors

Jeffry Babb
West Texas A&M

President

Eric Breimer
Siena College
Vice President

Leslie J Waguespack Jr.
Bentley University

Past President

Jeffrey Cummings

Univ of NC Wilmington
Director

Melinda Korzaan
Middle Tennessee State Univ

Director

Lisa Kovalchick
California Univ of PA

Director

Niki Kunene
Eastern Connecticut St Univ

Treasurer

Li-Jen Lester
Sam Houston State University

Director

Michelle Louch
Carlow University

Director

Rachida Parks
Quinnipiac University

Membership

Michael Smith
Georgia Institute of Technology

Secretary

Lee Freeman
Univ. of Michigan - Dearborn

JISE Editor

Copyright © 2020 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full
citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or
commercial use. Permission requests should be sent to Jeffry Babb, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://isedj.org/; http://iscap.info

Information Systems

Education Journal

Editors

Jeffry Babb
Senior Editor

West Texas A&M
University

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Donald Colton
Emeritus Editor Brigham

Young University
Hawaii

Anthony Serapiglia
Associate Editor

St. Vincent College

Jason Sharp
Associate Editor

Tarleton State University

Ira Goldstein

Teaching Cases Co-Editor
Siena College

Paul Witman
Teaching Cases Co-Editor

California Lutheran
University

2020 ISEDJ Editorial Board

Joni Adkins
Northwest Missouri St Univ

Wendy Ceccucci
Quinnipiac University

Ulku Clark
U of North Carolina Wilmington

Amy Connolly
James Madison University

Christopher Davis
U of South Florida St Petersburg

Gerald DeHondt II
Ball State University

Mark Frydenberg
Bentley University

Scott Hunsinger
Appalachian State University

Melinda Korzaan
Middle Tennessee St Univ

James Lawler
Pace University

Li-Jen Lester
Sam Houston State University

Michelle Louch
Duquesne University

Jim Marquardson
Northern Michigan Univ

Richard McCarthy
Quinnipiac University

Muhammed Miah
Tennessee State Univ

RJ Podeschi
Millikin University

James Pomykalski
Susquehanna University

Bruce Saulnier
Quinnipiac University

Dana Schwieger
Southeast Missouri St Univ

Karthikeyan Umapathy
University of North Florida

Christopher Taylor
Appalachian St University

Karthikeyan Umapathy
University of North Florida

Peter Y. Wu
Robert Morris University

Jason Xiong
Appalachian St University

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 59

https://isedj.org/; http://iscap.info

An Assignment a Day Scaffolded

Learning Approach for Teaching Introductory
Computer Programming

Deepak Dawar
daward@miamioh.edu

Marianne Murphy
murph103@miamioh.edu

Miami University

Hamilton, Ohio

Abstract

Teaching introductory programming courses to university students who come from a varied set of
academic and non-academic backgrounds is challenging. Students who are learning programming for
the first time can become easily discouraged leading to procrastination that subsequently can have an
unfavorable effect on their learning outcomes, and overall final grade. This work proposes An
Assignment A Day (AAAD) Scaffolded Learning approach, and presents our experiences with this
pedagogical approach. According to neuroscience research, when subjects are engaged continuously
with a task, there is improvement in the brain’s neuroplasticity. Based on this research and our own

experiences with entry level programming students, we pursued the research question: “Can a
targeted continuous engagement with course material, and problem solving assignments improve
learning outcomes?” The students, instead of writing an assignment and a lab for each module, were
asked to complete one assignment a day, not exceeding four assignments a week. The limited areas
of impact that we targeted were student procrastination in submitting assignments, student failure to
submit assignments, and student engagement. The overall acceptance of this technique by students
has been quite positive, and we report an improvement in assignment submission rates, and final

exam scores, apart from improved student engagement. Students found the approach extremely
effective in spite of having to spend considerable amount of time on assignments almost everyday.

Keywords: Introductory level programming, pedagogy, student engagement, neuroplasticity, student
procrastination, learned helplessness.

1. INTRODUCTION

Introductory programming is an arduous process
for many students especially those who have
little or no prior experience. Low course
completion rates are consistently reported

(Bennedsen & Caspersen, 2007; Newman,
Gatward, & Poppleton, 1970; Allan & Kolesar,
1997; (Sheard, & Hagan, 1998; Beaubouef &
Mason, 2005; Kinnunen & Malmi 2006; Howles,
2009; Mendes et al., 2012; Watson & Li, 2014).
Apart from learning and recognizing the syntax

and semantics of the programming language,
one also has to create a mental model of the

solution (Sorva, 2013). The novice programmer
has to grapple with multiple domains of learning
as suggested in the literature (Rogalski &
Samurçay, 1990; Kim & Lerch, 1997; Robins,

Rountree, & Rountree, 2003; Davies, 1993).
It has also been suggested that the most difficult
aspect faced by novice programmers may not be
related to the specifics of the language at all.
According to Lahtinen, Ala-Mutka, & Järvinen,
2005, understanding how to design a program,

mailto:daward@miamioh.edu
mailto:murph103@miamioh.edu

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 60

https://isedj.org/; http://iscap.info

and dividing functionality into procedures are the

primary problems faced by entry level
programming students. Further, even after
successful course completion, student learning in

these introductory programming courses is not
always retained (McCracken et al., 2001; Utting
et al., 2013). Does that mean that programming
as a course is more difficult than other similar
level courses? There is no consensus on this
theory, but there is a large body of data to
suggest that this might be the case (Luxton-

Reilly, 2016). In-fact, when computing courses
were studied under the framework of two
prominent taxonomies i.e. SOLO (Brabrand &
Dahl, 2009), and BLOOM (Oliver et al., 2004)
these courses were found to be more
challenging than other courses. A recent study

by Margulieux, Catrambone & Schaeff er.,2018,
compared the domain difficulty of three courses
– computer programming, chemistry, and
statistics, and found computer programming to
be the most difficult of three due to the
complexity of the content to be learned and
handled at a given time.

The authors of this paper have faced similar
challenges in their classrooms while teaching
introductory programming classes. From less
than desirable passing rates, to inability of
students to apply the learned concepts in
subsequent programming classes led us to

investigate the reasons more closely as relevant
to our classroom setup, and provide possible

interventions and remedies. This work is the
result of one such intervention. The authors
observed that one of the primary reasons for
learning outcome failures in the class was

student’s procrastination and lack of motivation
to finish the assignment(s) on time. Motivation
is a vast subject in its own right, and can take
myriad forms.

We suspect that the lack of motivation and
procrastination may just be symptoms of an

abnormal cognitive load that programming
assignments, and related tasks carry for many
students. Cognitive load theory (Sweller, 1988,
1994; Paas, Renal, & Sweller, 2003; Plass,

Moreno, & Brünken, 2010) deals with the
aspects of load placed on working memory while
a task is being executed. The amount and

nature of this load depends upon the interactive
nature of elements involved in the tasks.
Computer programming requires balancing
numerous interactive tasks. For example, writing
a computer program involves juggling numerous
details like problem domain, current state of

program, language syntax, strategies etc.
(Winslow, 1996).

The landscape of the potential problems faced

by novice programmers is vast, and is quite
formidable. Instead of dealing with the
motivational aspect of programming directly, we

turned to an approach that couples program
scaffolding with the generally accepted notion
that constant practice improves the learning
outcomes, and as shown by psychological
studies (Brown & Bennett, 2002; Moors & De
Houwer, 2006; Glover, Ronning, & Bruning,
1990) done on variable student populations.

Constant practice can also make students want
to learn more (Kalchman, Moss, & Case, 2001).
Constant practice and improved problem solving
skills have shown to be mutually dependent and
shown to be in a complex relationship as shown
by Eckerdal, 2009. There is a plethora of studies

confirming the important role practice and
experience play in developing problem solving
strategies by novice programmers. In a series of
studies conducted by Rist (1986, 1989, 1995,
2004), and reviewed by Sorva (2012) confirm
that one of the main differentiator of students
into novice and expert programmers is their

constant engagement and experience with
learned schemata.

Keeping these factors in mind, we designed An
Assignment A Day (AAAD) Scaffolded Learning
approach wherein students were given a
programming assignment a day, and no more

than four assignments a week. Every
assignment built on the previous assignment(s),

and the final assignment was to be a mini-
project testing students on all the concepts
learned so far in previous assignments. We are
faced with a few dilemmas though. First, it has

been shown that constant testing of students
leads to high levels of anxiety that may lead to
sub-optimal performance (Kaplan et. al, 2005).
Second, solving hard problems can easily bring
down the morale of the novice programmers,
and may send them into the spiral of learned
helplessness, leading to poor performance

(Crego et. al, 2016). To mitigate these effects,
and at the same time make the students
practice as much as possible, we made sure that
the opening assignment tests very basic

concepts, and then subsequent assignments
gradually increase in complexity. We opined that
having assignments designed in increasing order

of complexity will reduce cognitive load on
students thereby possibly resulting in better
learning outcomes.
This opinion was based, in part, on classroom
observations, and a study conducted by
Alexandron et al. (2014). This study

demonstrated the effectiveness of aligning tasks
in increasing order of complexity on cognitive

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 61

https://isedj.org/; http://iscap.info

load, though the mandate of the study was

much wider than studying this correlation.

2. METHODOLOGY

We created An Assignment A Day (AAAD)
Scaffolded programming approach for
introductory programming courses for our
student population. The main driver of this
intervention was the observation that in the
orthodox model (one assignment a module that
we followed), many students tend to

procrastinate, and delay working on the
assignments as late as possible. When the
submission deadline approaches, they jump into
action. It is evidenced from our experience that
quite a high number of questions from students

are received in last three hours prior to

submission deadline. They are then faced with
multiple complexities of the assignment leading
to increased cognitive load. This increased load
may give rise to student frustration,
unwillingness to continue to work on the
assignment, and eventually may lead to
unfavorable learning outcomes. The purpose of

this intervention was to make students
constantly practice the material thereby
potentially improving their chances of learning
the material. We opined that this approach will
assert a slight positive stress on students to
submit the assignment at the end of the day. We
also realized that the possible success of this

scheme will significantly depend upon rendering

the cognitive load asserted by the assignments,
germane or manageable. AAAD was designed
keeping all these possibilities in mind.

Our method is quite simple – make the students

practice constantly and assert just the optimum
stress on them in terms of deadlines and
materials, so as to avoid student
disenchantment and frustration with the course,
while simultaneously improving learning gains.
Being run for the first time, and due to small
sample size, we are not in a position to define as

to what constitutes the optimal load, as of now.

We tried to keep the AAAD approach as

straightforward as possible with a few
exceptions in between. The approach can be
summarized as:

1. Students will ideally do one assignment

per day
2. Opening assignments of the chapter will

test students on very basic skills like
writing a method stub. Subsequent
assignments will gradually increase in
complexity keeping in mind the cognitive

load asserted by the assignment

3. There will not be more than four

assignments per week
4. The final assignment should test

students on all the previously learned

chapter concepts
5. As an exception, and depending upon

the cognitive load, an assignment may
be completed in two or more days rather
than a single day. This should mainly
apply to the last assignment of the
chapter that tests students on multiple

concepts, but can also extend to
assignments that variably test single but
difficult concepts, and are not the last
assignment of the chapter.

6. All other factors like quizzes, projects
etc. remain the same for experimental

and the control group.

The study was conducted over two semesters.
The control group data was collected in the first
semester. This group worked with the orthodox
approach followed at our institution for
introductory programming classes i.e. on an

average, one assignment and one lab per week,
with quizzes at the end of the module/chapter.

In the next semester, the experimental group
was administered the AAAD approach, and data
collected at the end of semester. A total of 37
assignments were given to the experimental

group over a course of 13 weeks of which 1
week was spring break. Rest of the 12 weeks

meant 84 days of which weekends accounted for
24 days. 10 days were meant for quizzes and
exams. Hence, the students had to complete 37
assignments in about 50 days i.e. about 0.75

assignments a day. An additional end of course
survey was conducted with the experimental
group to measure how well this approach was
received by the students.

Student Population
The student population of our department

consists of both traditional and non-traditional
students, though the terms are not well defined
in literature. For the purposes of this work, we
define traditional as students who are full time,

and are recent high school graduates. Non-
traditional students are those who have full-time
jobs, are part-time students, and/or are older,

and seeking a new career for a variety of
reasons.
The number of students in the control and the
experimental group were 20 and 22
respectively. One student from the control group
declined to have their data included in the study.

The course is mandatory for Computer Science
(CSE) students but can be used as an elective

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 62

https://isedj.org/; http://iscap.info

for Information Technology (IT) majors. The

control group had 12 IT/CSE majors and 8 non
IT/CSE students. The experimental group had 13
IT/CSE, and 9 non IT/CSE majors. So the class

composition of both groups is fairly similar, with
the control group and experimental group
having about 40% and 41% non IT/CSE majors
respectively. This relatively similar class
composition gives us some confidence about the
experimental set up. It could have been quite
difficult to compare results, had the IT/CSE and

non IT/CSE major ratios varied widely.

Sample Load
To describe the procedure effectively, a sample
load is presented here. The chapter/module to
be presented is “method writing” in JAVA. This

was to be delivered as an eight-day module with
classroom practice labs (non-graded), five
assignments, and a quiz at the end. Here is brief
a description of assignments. Detailed
descriptions of these assignments are included
in Appendix B. As can be seen from Table 1 (see
Appendix A), even a slight modification of

problem statement can quickly increase the
number of concepts that the student has to deal
with, thereby increasing the cognitive load. This
issue, in our opinion has to be dealt with
effectively, if we are to improve upon the
chances of student learning.

Comparison
Since the experimental group had to do many

more assignments (at least 4 more assignments
per module), an equitable comparison between
the groups was a challenge. We decided that the
comparison of the last summative assignment

given to the experimental group with the usual
assignment given to the control group would
make a fair comparison. Both these assignments
were similar in terms of concepts they tested but
there were also some differences. For example,
they differed in cognitive load and total points in
many cases. The experimental group students

have had more exposure to the concepts since
they would have submitted a series of
assignments by now. Our intervention assessed
the following metrics for both groups, and for

each assignment compared.
• Late submissions
• No submissions

To measure the impact of our technique on
overall grades, if any, we administered the exact
same module quizzes, and final exam to both
groups and compared the following data points
for both groups:

• Module wise quiz scores
• Final exam scores

Apart from this inter group comparison; we also

performed an intra-group comparison for the
experimental group to track student
performance within the module, and the course

as a whole. Observations and results are listed,
and analyzed in next section.

3. RESULTS

We divided our analyses into two parts - inter
and intra group. Inter group analyses compared
the control with the experimental group, and
intra group analyzed just the experimental

group.

Inter Group Analyses
The control group did only one assignment per
week whereas the experimental group did

several leading up to the last assignment of the

module. We compared the statistics of the last
module assignment with the usual assignment of
the control group. As an example, for
assignments listed in Table 1, in the control
group, an assignment similar to 5 was given to
the students. In the experimental group,
however, the same assignment 5 was given as

the last assignment, after students have had
some exposure to the relevant concepts in the
previous assignments vis-à-vis assignments 1,
2, 3, and 4.

Table 2, 3 and 4 summarize the data points
collected for comparison. The number of possible

submissions per module in the control and

experimental groups were 20 and 22
respectively.

No Submissions

Module Control (20) Experimental (22)

1 1 0

2 0 0

3 0 0

4 2 0

5 2 1

6 5 3

7 4 3

Total 14 7
Table 1: Assignments not submitted per

module

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 63

https://isedj.org/; http://iscap.info

Late Submissions

Module Control (20) Experimental (22)

1 0 1

2 1 2

3 1 3

4 1 2

5 1 5

6 4 5

7 2 4

Total 10 22
Table 2: Late assignments submitted per
module

Mean Grade Point

Modul
e Control Experimental

1 71%(3.72) 75%(2.05)

2 79% (2.08) 71%(2.33)

3 73%(3.19) 73%(2.55)

4 62%(3.72) 66%(2.49)

5 74%(4.26) 75%(2.44)

6 67%(3.41) 67%(1.78)

7 56%(3.48) 65%(2.50)
Table 3: Mean grade points (with standard
deviations) scored on the quiz by both
groups

The data collected lays out some interesting
points. The experimental group, at an anecdotal
level, showed a greater inclination to submit the
final assignment as compared to control group.
Bear in mind that the experimental group
students - by the time they submit the final
assignment - have already submitted multiple

assignments on the topic. A non-submission
rate, that is almost half of the control group,
may hint at the student’s proclivity and
willingness at submitting the final assignment.
We believe that a better non-submission rate for
the experimental group, even after doing
multiple rounds of assignments is a healthy

indicator of voluntary student engagement with
the course.

Even though the non-submission rate is lower in
the experimental group, the late submission rate
is higher by over 100%. Late submissions in

both group were allowed to see that if given the
time, would students be motivated enough to
work on the assignments? We found that
students were more willing to work on the
assignments in the experimental group even if
that meant submitting it late. This is evident

from the fact that there are more late

submissions in experimental group than no
submissions. The trend is reverse in the control
group. This is to reiterate that the data

presented here for experimental group is for the
last cumulative assignment. By this time, for the
same module, students would have submitted
many incrementally difficult assignments, and a
general student fatigue is expected which may
speak for the higher number of late submissions.

Table 4 presents the end of module quiz grades
for both groups. The groups were administered
the exact same quizzes. There seems to no
significant difference in the quiz performance for
the groups, though the standard deviation in the
experimental group seems to be on the lower

side than that of the control group. Does that
mean that constant practice, even though
unable to improve overall group performance on
quizzes, can help stem high variability of
individual performance in the group? Could it be
because weak students were able to improve
their performance gradually? We cannot say

anything for sure given such small sample size
but the data does provide directions for potential
explorations.
The groups were administered the exact same
final exam. The two part exam consisted of
writing a JAVA program and a multiple choice
quiz that covered all seven modules. The JAVA

program was worth two-third of the total points,
and the quiz, one-third. Table 5 illustrates the

data.

Group Average

Final
Quiz
Score

Average

JAVA
Program
Score

Cumulative

Average

Control 66% 51% 56%

Experi-

mental

74% 71% 72%

Table 4: Final exam score for both groups

It is quite interesting to note that while there
was no significant difference between module

quiz scores, the experimental group performed
much better in the final exam. Even though the

gains in the final quiz are marginal, the
experimental group outperformed the control
group by 20% in JAVA program writing. The
overall cumulative improvement in final exam
mean score was 16%. These numbers may

insinuate that–for the experimental group–the
increased practice led to an improvement in final
exam score, though it is too early to say
anything with high degree of confidence due to
such a small sample size. Nevertheless, the final
exam numbers are encouraging.

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 64

https://isedj.org/; http://iscap.info

No Submissions

Module 1 2 3 4 5 6 7 Total

1 0 0 0 0 - - - 0

2 0 0 0 0 0 0 - 0

3 0 0 0 0 - - - 0

4 0 1 0 1 0 0 - 2

5 0 0 0 0 1 - - 1

6 0 0 1 0 1 1 3 6

7 0 2 1 1 3 - - 7
Table 5: Assignments not submitted

Intra Group Analyses
Table 6 and 7 present detailed assignment

submission data for the experimental group. The

first column represents the module/chapter that
was covered, and the numbered columns
represent the assignment number in that
particular module. Some modules had four,
some five, and some had seven assignments.
The instances of no submissions are relatively

very low as compared to late submissions.
Similar trend was missing in the control group.

Late Submissions

Module 1 2 3 4 5 6 7 Total

1 0 1 2 1 - - - 4

2 2 1 2 2 0 2 - 9

3 0 0 1 3 - - - 4

4 2 1 3 2 1 2 - 11

5 2 2 3 4 5 - - 16

6 2 1 4 4 2 1 5 19

7 2 5 6 5 4 - - 22
Table 6: Assignments submitted late

Table 8 presents a cumulative summary of the
assignments. Cumulatively, only about 2% of

the total assignments were not submitted. This
could mean many things; one of the possible
explanations might be that given the right
conditions, the students were willing to engage
more. Late submissions were allowed with
reduced credit, and cumulative late submission

rate stands at about 10.5%.

The instances of both late and no submissions
increase as the course progresses, even though
the rate of increase of no submissions is low as
compared to late submissions. This may be
explained by the fact that the concepts to be

learned become complex as the course
progresses, and some students might have
given up on some of the assignments.

Module

No

Maximum

Possible
Sub-
missions

Not Sub-

mitted

Late Sub-

missions

1 88 0 4

2 132 0 9

3 88 0 4

4 132 2 11

5 110 1 16

6 154 6 19

7 110 7 22

Total 814 16(1.9%) 85(10.5%)

Table 7: Assignment Summary

End of Course Survey
With the experimental group, we also conducted
an end of the course survey to gauge how AAAD
was received by our students. Participation was

100%. The questions were primarily centered
around the potential impact of high number of
assignments on their motivation, stress levels,
and their choice between AAAD and the usual
method of single assignment per module used at
our department. The full survey is listed in

appendix C. A few questions are discussed in the
following paragraph.

Effectiveness of AAAD
One of the questions asked the students about

how they felt about the utility and effectiveness
of AAAD in completing the course satisfactorily.

A surprising 90% of the students answered that
they felt positive/better about using this
technique while 10% reported in negative, and
answered that they felt slightly worse.

Another question asked the students about the
utility of doing a daily assignment in learning

computer programming. A whopping 100% of
the students felt that it is useful. This gives us
some confidence that given the right cognitive
load and environment, students do see potential
value in constant practice for learning
programming.

AAAD vs Normal Course Delivery
Another important question asked the students
about their choice between AAAD and the
normal course delivery mechanism of doing one
assignment per week. 95% of the students said
that they would prefer AAAD. Hence, the

students overwhelmingly choose AAAD as a
mode of course delivery over our normal
delivery method. This, we believe, is a very
important piece of feedback for us.

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 65

https://isedj.org/; http://iscap.info

Impact of AAAD on Student Stress Levels

Another very important question on the survey
asked the students about their perception of
stress levels about doing so many assignments.

Half of the students answered that AAAD made
it easy for them to manage stress, 32% said it
increased their stress levels, and 18% choose
that it made no difference. We were initially
concerned that a high percentage of students
might report increased stress levels. Just 18%
students choosing higher stress levels came as

quite a surprise. If this indeed is the case, it is
one of the big incentives for us to continue to
utilize, and improve this technique further.

4. DISCUSSION

With such a small sample size, it is quite early to

generalize the utility of this technique, but the
initial results do reveal some interesting
insights. Most of the students seem to find AAAD
beneficial, even if it means spending more time
than usual to work on so many assignments.

Potential Strengths

According to the assignment data collected and
student responses on the survey, it is clear that
most students show an inclination towards
practicing more as long as the cognitive load is
manageable. This becomes clear from the
minimal no-submission and late-submission
instances during module 1 to 5 that cover basic

JAVA concepts. Module 6 and 7 cover complex

concepts such as 2D arrays and file operations.
The instances of no-submission and late-
submission rise during these modules. For future
research, we contemplate breaking down the
assignments further in module 5 and 6, to see if

that would reduce the instances of late and no
submissions. Overall, this technique, appears to
successfully increase student engagement in the
course.

Another strength is the high degree of
acceptance students showed towards this

technique. It seems that students engaged in
the course not just because they were pushed
by daily deadlines; they seemed to have

embraced the method, and found value in it.
Even if they had to spend more time consistently
doing assignments, they argued that it helped
them learn programming, and positively pushed

them to engage themselves with the course.

Potential Limitations
It is no doubt that the workload of this technique
may be perceived as higher when compared to
orthodox course delivery. The pressure of

completing an assignment every day can still

lead to student frustration, and may even

exacerbate the very factor the technique was
designed to mitigate. Results and responses,
however, show that the technique successfully

navigated these roadblocks. It remains to be
seen, if these results can be replicated in future
courses.

Another significant potential limitation of this
technique is its resource intensiveness. Since
students have do so many assignments, they

tend to ask many more questions about the
concepts, as well as clarifications on
assignments. Providing timely feedback is
challenging even when the instructor has a
course grader. Grading so many assignments, in
our experience, was one of the major concerns,

as this may inadvertently lead to grading
fatigue. Future research will investigate
simulated software and automatic grading
systems to reduce this grading workload.

Another important aspect of employing this
technique was the continual and immediate

presence of instructor and tutor support.
Without this perennial support, this technique
may be rendered less effective. Our experience
in a more traditional approach is that about
50%-60% of the class asked questions on
assignments on the day the assignments were
due. Since students have a due date almost

every day of the week, AAAD requires
continuous tutor support due to sheer volume of

the queries. If these questions remain
unaddressed at the outset, it may cause learning
gaps for the students. Since the subsequent
assignments build on previous assignments, it

may have a snowball effect, which is highly
undesirable.

Another very important point of concern is that
many of our students work full time. For them,
as evidenced by comments in the survey, it is
difficult to schedule time every day to finish the

assignments. The peculiar observation, however,
is that even the full time working students
appreciated AAAD technique; it is just that they
find it difficult to schedule assignment time

every day.

5. CONCLUSION AND FUTURE WORK

Students in our introductory programming
course agree that an assignment a day
technique added value to their process of
learning computer programming.
AAAD helped them practice consistently, thereby
improving their enthusiasm about the course.

Though there was no significant differences in

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 66

https://isedj.org/; http://iscap.info

the individual chapter quiz scores between the

groups, the experimental group performed much
better in the final exam.

Even though the students reported that they
spent more time on the assignments, and had
mixed reactions towards it, they overwhelmingly
appreciated the value it brought to the table,
and were convinced of its efficacy. The survey
responses indicate that though the technique
was very well received, it was not without its

challenges. Firstly, grading a large number of
assignments, and providing high volume of
feedback is resource intensive. Continuous tutor
support is also required to help stem student
frustration, and to give them the feeling that
help is always available.

Our future work includes finding ways to
mitigate the load on the instructor, tutor/grader
and students while maintaining the integrity of
the technique, which is, continual practice and
feedback. One aspect is the use of automatic
grading systems to reduce the grading load. We

also envisage coupling an automatic grading
system with an artificial tutor bot capable of
answering basic questions about the course,
assignments, and programming simple concepts.
Finally, we want to review the structure and
design of the assignments to determine if there
is a way to minimize questions. We are

encouraged with this initial study and the
promise of future research. We are

contemplating using the same technique in our
online programming course to see the
technique’s applicability in an online
environment.

6. REFERENCES

Alexandron, G., Armoni, M., Gordon, M. & Harel,

D. (2014). Scenario–based programming:
Reducing the cognitive load, fostering
abstract thinking. In Companion Proceedings

of the 36th International Conference on
Software Engineering (pp. 311–320). New
York, NY: ACM.

Allan, V. H. & Kolesar, M. V. (1997). Teaching

computer science: a problem solving
approach that works. ACM SIGCUE Outlook,
25(1–2), 2–10.

Antonio Crego, María Carrillo-Diaz, Jason M.

Armfield and Martín Romero Stress and
Academic Performance in Dental Students:
The Role of Coping Strategies and
Examination-Related Self-Efficacy Journal of

Dental Education February 2016, 80 (2)

165-172.

Beaubouef, T. B. & J. Mason (2005). Why the
High Attrition Rate for Computer Science
Students: Some Thoughts and Observations.

Inroads – The SIGCSE Bulletin, 37(2), 103–
106.

Bennedsen, J. & Caspersen, M. E. (2007).
Failure rates in introductory programming.
ACM SIGCSE Bulletin, 39(2), 32–36.

Brabrand, C. & Dahl, B. (2009). Using the SOLO
Taxonomy to Analyze Competence
Progression of University Science Curricula.

Higher Education, 58(4), 531–549.

Brown, S. W., & Bennett, E. D. (2002). The role
of practice and automaticity in temporal and
nontemporal dual-task performance.
Psychological Research, 66, 80–89.

Eckerdal, A. (2009). Novice Programming
Students' Learning of Concepts and Practice.
Doctoral dissertation, Acta Universitatis

Upsaliensis.

Glover, J.A., Ronning, R.R. and Bruning, R.H.:
1990, Cognitive Psychology for Teachers,
Macmillan, New York.

Howles, T. (2009). A study of attrition and the
use of student learning communities in the

computer science introductory programming
sequence. Computer Science Education,

19(1), 1–13.

Kalchman, M., Moss, J., & Case, R. (2001).
Psychological models for the development of
mathematical understanding: Rational
numbers and functions. In S. M. Carver & D.
Klahr (Eds.), Cognition and instruction:
Twenty-five years of progress (pp. 1-38).

Mahwah, NJ, US: Lawrence Erlbaum
Associates Publishers.

Kaplan, D. S., Liu, R. X., & Kaplan, H. B (2005).
School related stress in early adolescence
and academic performance three years

later: The conditional influence of self-
expectations. Social Psychology of
Education, 8, 3-17.

Kim, J. & Lerch, F. J. (1997). Why is
programming (sometimes) so difficult?
Programming as scientific discovery in
multiple problem spaces. Information
Systems Research, 8(1), 25–50.

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 67

https://isedj.org/; http://iscap.info

Kinnunen, P. & Malmi, L. (2006). Why students

drop out CS1 course?. In Proceedings of the
Second International Workshop on
Computing Education Research (pp. 97–

108). New York, NY: ACM.

Lahtinen, E., Ala–Mutka, K. & Järvinen, H. M.
(2005). A study of the difficulties of novice
programmers. ACM SIGCSE Bulletin, 37(3),
14–18).

Luxton-Reilly, A. (2016). Learning to program is
easy. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in

Computer Science Education (pp. 284–289).
New York, NY: ACM.

Margulieux, L. E., Catrambone, R. & Schaeffer,
L. M. (2018). Varying effects of subgoal
labeled expository text in programming,
chemistry, and statistics. Instructional
Science, 10.1007/s11251-018-9451-7.

McCracken, M., Almstrum, V., Diaz, D., Guzdial,

M., Hagan, D., Kolikant, Y. B., Laxer, C.,
Thomas, L., Utting, I. &, Wilusz, T. (2001). A
Multi–national, Multi–institutional Study of
Assessment of Programming Skills of First–
year CS Students. ACM SIGCSE Bulletin, 33,
125–180.

Mendes, A. J., Paquete, L., Cardoso, A. &

Gomes, A. (2012). Increasing student
commitment in introductory programming

learning. In Frontiers in Education
Conference (FIE) (pp. 1–6). New York, NY:
IEEE.

Newman, R., Gatward, R. & Poppleton, M.
(1970). Paradigms for teaching computer
programming in higher education. WIT

Transactions on Information and
Communication Technologies, 7, 299–305.

Oliver, D., Dobele, T., Greber, M. &Roberts, T.
(2004). This Course has a Bloom Rating of
3.9. In Proceedings of the Sixth Australasian
Conference on Computing Education (ACE
’04) (pp. 227–231). Darlinghurst, Australia:

Australian Computer Society.

Rist, R. S. (1986). Plans in Programming:
Definition, Demonstration, and
Development. In Soloway, E. & Iyengar, S.,
eds., Empirical Studies of Programmers.
Norwood, NJ: Ablex Publishing, pp. 28–47.

Rist, R. S. (1989). Schema Creation in
Programming. Cognitive Science, 13, 389–

414.

Rist, R. S. (1995). Program Structure and

Design. Cognitive Science, 19, 507–562.

Rist, R. S. (2004). Learning to Program: Schema

Creation, Application, and Evaluation. In
Fincher, S. & Petre, M., eds., Computer
Science Education Research. London, UK:
Taylor & Francis, pp. 175–195.

Robins, A. V., Rountree, J. & Rountree, N.

(2003). Learning and teaching

programming: A review and discussion.
Computer Science Education, 13(2), 137–
172.

Rogalski J. & Samurçay R. (1990). Acquisition of

programming knowledge and skills. In J. M.

Hoc, T. R. G. Green, R. Samurçay & D. J.
Gillmore, eds., Psychology of Programming.
London: Academic Press, pp. 157–174.

Sheard, J. & Hagan, D. (1998). Our failing

students: a study of a repeat group. ACM
SIGCSE Bulletin, 30(3), 223–227.

Sorva, J. (2013). Notional machines and

introductory programming education. ACM
Transactions on Computing Education
(TOCE), 13(2), Article 8 (31 pages).

Sweller, J. (1988). Cognitive load during

problem solving: Effects on learning.
Cognitive Science, 12(2), 257–285.

Sweller, J. (1994). Cognitive load theory,

learning difficulty, and instructional design.
Learning and Instruction, 4(4), 295–312.

Utting, I., Tew, A. E., McCracken, M., Thomas,

L., Bouvier, D., Frye, R., Paterson, J.,
Caspersen, M., Kolikant, Y., Sorva, J. &
Wilusz, T. (2013). A fresh look at novice
programmers' performance and their
teachers' expectations. In Proceedings of the

ITICSE Working Group Reports Conference
on Innovation and Technology in Computer
Science Education (pp. 15–32). New York,
NY: ACM.

Watson, C. & Li, F. W. (2014). Failure rates in

introductory programming revisited. In

Proceedings of the 2014 Conference on
Innovation & Technology in Computer
Science Education (pp. 39–44). New York,
NY: ACM.

Winslow L E (1996) Programming pedagogy – A

psychological overview. ACM SIGCSE
Bulletin, 28(3), 17–22.

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 68

https://isedj.org/; http://iscap.info

APPENDIX A

Table 8: Increment in congnitive load with time

Assignment

No.

Description Concepts Tested Cognitive Load

1 Write a method printS that

takes a string as an input and
prints it to the console.

Rudimentary method

writing.

Low

2 Modify the above method
printS and enable it to take
another argument, an integer,
n. The method then prints the
string n times in a line.

Method writing, method
calling, method
modification.

Low

3 Reuse printS to print a user
entered string n×n times i.e a
square with each element as
the string

User input, loops, method
writing, method calling

Medium

4 Reuse printS method to print a
right angle triangle in terms of
user entered string

User input, loops, method
writing, method calling,
Problem solving

Medium

5 Reuse printS to print a
pyramid in terms of user
entered string

User input, loops, method
writing, method calling,
Problem solving

High

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 69

https://isedj.org/; http://iscap.info

APPENDIX B

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 70

https://isedj.org/; http://iscap.info

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 71

https://isedj.org/; http://iscap.info

APPENDIX C

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 72

https://isedj.org/; http://iscap.info

Information Systems Education Journal (ISEDJ) 18 (4)
ISSN: 1545-679X August 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 73

https://isedj.org/; http://iscap.info

	Top3.pdf
	ISEDJv18n4p59-4942.pdf

