

JOURNAL OF

INFORMATION SYSTEMS

APPLIED RESEARCH

Volume 13, Issue. 1

March 2020

ISSN: 1946-1836

In this issue:

4. An Empirical Study of Post-Production Software Code Quality When

Employing the Agile Rapid Delivery Methodology

Laura Poe, Longwood University

Elaine Seeman, East Carolina University

12. Conceptualization of Blockchain-Based Applications: Technical Background

and Social Perspective

Jason Xiong, Appalachian State University

Yong Tang, University of Electronic Science and Technology of China

Dawn Medlin, Appalachian State University

21. Addressing issues with EMR resulting in workarounds: An exploratory study

Sushma Mishra, Robert Morris University

Kevin Slonka, University of Pittsburgh

Peter Draus, Robert Morris University

Natalya Bromall, Robert Morris University

Kelli Slonka, Conemaugh Memorial Medical Center

32. Literary Analysis Tool: Text Analytics for Creative Writers

Austin Grimsman, University of North Carolina Wilmington

Douglas M. Kline, University of North Carolina Wilmington

Ron Vetter, University of North Carolina Wilmington

Curry Guinn, University of North Carolina Wilmington

40. Privacy Considerations Throughout the Data Life Cycle

James Pomykalski, Susquehanna University

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://jisar.org/; http://iscap.info

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer

reviewed academic journal published by ISCAP, Information Systems and Computing

Academic Professionals. Publishing frequency is three issues a year. The first date of

publication was December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on

Information Systems Applied Research, which is also double-blind peer reviewed. Our sister

publication, the Proceedings of CONISAR, features all papers, panels, workshops, and

presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

conference. At that point papers are divided into award papers (top 15%), other journal

papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are

subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the JISAR journal. Currently the target acceptance rate for the journal is about

40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at

publisher@jisar.org. Special thanks to members of EDSIG who perform the editorial and

review processes for JISAR.

2020 Education Special Interest Group (EDSIG) Board of Directors

Jeffry Babb
West Texas A&M

President

Eric Breimer
Siena College
Vice President

Leslie J Waguespack Jr.
Bentley University

Past President

Jeffrey Cummings

Univ of NC Wilmington
Director

Melinda Korzaan
Middle Tennessee State Univ

Director

Lisa Kovalchick
California Univ of PA

Director

Niki Kunene
Eastern Connecticut St Univ

Treasurer

Li-Jen Lester
Sam Houston State University

Director

Michelle Louch
Carlow University

Director

Rachida Parks
Quinnipiac University

Membership

Michael Smith
Georgia Institute of Technology

Secretary

Lee Freeman
Univ. of Michigan - Dearborn

JISE Editor

Copyright © 2020 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.

Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

http://conisar.org/

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://jisar.org/; http://iscap.info

Journal of

Information Systems Applied research

Editors

Scott Hunsinger

Senior Editor
Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

2020 JISAR Editorial Board

Wendy Ceccucci

Quinnipiac University

James Pomykalski

Susquehanna University

Ulku Clark

University of North Carolina Wilmington

Christopher Davis

Univ of South Florida, St. Petersburg

Gerald DeHondt

Ball State University

Christopher Taylor

Appalachian State University

Karthikeyan Umapathy

University of North Florida

Peter Wu

Robert Morris University

Ed Hassler

Appalachian State University

Jason Xiong

Appalachian State University

Muhammed Miah

Tennessee State University

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 4

https://jisar.org/; http://iscap.info

An Empirical Study of Post-Production

Software Code Quality When Employing
the Agile Rapid Delivery Methodology

Laura F. Poe
laurapoe@verizon.net

Longwood University
Farmville, VA

Elaine Seeman

seemane@ecu.edu

East Carolina University
Greenville, NC

Abstract

In response to the business need to adopt a faster delivery model to enable them to stay ahead in the
marketplace, organizations implementing Agile practices expect to deliver projects faster and with
higher quality. Widespread assumptions of increased code quality for software implementations using
Agile require empirical investigation. The purpose of this paper is to evaluate software delivery with an
emphasis on the quality of the software code. The outcome of this research will assist business leaders

with making informed decisions on selecting a successful project methodology. While numerous factors
can impact project delivery, this case study of DigiTek LLC evaluates their software development project
teams’ software delivery hours to the number of defects encountered during development and after
implementation to production. Teams using the traditional Waterfall methodology had slightly higher
production code quality when compared to teams using the Agile methodology across similar software
development products. Companies planning to adopt Agile should evaluate the impacts to code quality
and consider other factors as part of the decision to transition.

Keywords: Software engineering; case study; Agile; code quality; rapid delivery; Waterfall

1. INTRODUCTION

This paper compares Agile and Waterfall project
methodologies and the quality of software code
based on the number of production defects

relative to software development hours. The
adoption of the Agile methodology in software
development projects has been considered a
means to stay ahead of technology trends that

are sweeping the industry. Agile is a
methodological response to the rigid
requirements and design processes of earlier
methodologies that often lead to fixed project
scope, significant modifications to design late in
the software development life cycle, and

customer dissatisfaction. Success has been
primarily determined by the delivery speed and

the ability to change design and scope based on
customer input. Additionally, the quality of the
software code should be analyzed to determine

its software reliability in conjunction with rapid
delivery. A quantitative, empirical analysis is
necessary to determine the effect of Agile
practices on the quality of code being

implemented. This study was performed to
evaluate Agile’s impact on code quality by directly
comparing the Waterfall defect rate to the defect
rate using Agile. The benefit of the case study is
the ability to obtain valid project results in a live
industrial setting.

mailto:laurapoe@verizon.net

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 5

https://jisar.org/; http://iscap.info

The emergent Agile methodology professed as

delivering higher quality products demands a
comparative research study to evaluate the
accuracy of the claims and to classify

characteristics leading to higher quality software
code. While numerous factors can determine
team performance, such as team diversity of skill
set as described in Lee and Xia’s study on
Software development agility (2010),
methodological success and team performance
can be measured based on the quality of the

product delivered. This paper discusses the
process of conducting a quantitative study with
eight teams employed at DigiTek LLC in order to
obtain actual measurements of production code
quality after release by teams using both
Waterfall and Agile methodologies. The

advantage of an empirical study is the delivery of
reliable results that can be used to compare and
contrast industry averages. At this juncture, few
empirical studies have been performed that
provide a side-by-side analysis between Waterfall
and Agile projects for code quality impacts using
a multidimensional construct. The metrics used

provide consistent and equal factors for statistical
comparisons.

We intend to provide the following contributions
on agile literature. The results of the study will
be helpful to practitioners, who are seeking faster
software delivery releases, to choose the

appropriate project methodology for their
organization dependent upon complexity of

software development team structures.

The sections of this paper are divided as follows:
the fundamental differences between Waterfall

and Agile and highlights the main reasons
organizations choose the Agile methodology;
issues related to Agile and software testing; the
scope of the case study and research questions;
and the results of the case study with
recommendations.

2. THEORETICAL BACKGROUND

Waterfall and Agile Approaches
The emergence of the Agile methodology in the

1990’s went largely undetected by the software
development industry. Few companies pursued
the methodology to deliver new functionality or

code enhancements. The shift towards rapid
delivery methodologies over the last decade
demanded that the software development
community question the efficiency of traditional
software processes and models (Sampaio,
Vasconcelos, & Sampaio, 2004).

Competition in the technology sector was a

distinct motivator for companies and led to
market driven changes in methodology to
accommodate the delivery of technological

advancements at near record paces. Agile
organizations have the ability to react swiftly and
decisively to sudden shifts in overall market
conditions, such as the emergence of new
competitors and new technologies (Holbeche,
2015). In an effort to deliver products more
quickly, organizations evaluate optimizations to

internal processes, and as a result, shift from the
traditional Waterfall project methodology to Agile.
The shift to Agile requires changes to project
team member roles and transitions software
development from the step by step approach to
the combined step of design, development, and

testing. Typically correlated with IT and software
development, Agile is being implemented as a
model across organizations as a means for
tracking and delivering work.

The Waterfall method associated with the
Software Development Life Cycle had been

uncontested for years until the rise of Agile. IT
projects using Waterfall operated in a backwards
scheduling approach by selecting a go-live,
implementation date, before the project began.
Once the date was determined, the project
manager and team would identify the tasks
required to implement the project, allocating time

for each of the activities. The Waterfall
methodology requires that each phase of the

project reach a stage of completion before the
next phase begins. Agile practices allow the team
to decide how much work can be accomplished
per iteration before beginning the work. These

distinctly differing models of delivery
management maintain the same end goal of
releasing a quality product.

IT managers often cite the reduction of time spent
in initial planning, leading to an evolving and
more efficient process as an advantage of Agile

(Dyba et al. 2008). Evidence suggests that the
rigid development processes of the Waterfall
methodology results in rework, customer
dissatisfaction (Dybe et al. 2008), and missed

implementation dates. Moreover, project team
members often endure increased working hours
necessary in order to meet the go-live dates. In

addition, date-driven projects tend to go over
budget due to increased resources and project
hours for a successful implementation.

Methodological Distinctions
Simple, key methodological distinctions between

the Agile and Waterfall methodologies (Table 1)
can be summarized in the overall management of

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 6

https://jisar.org/; http://iscap.info

the project. Practitioners utilizing the Waterfall

methodology are accustomed to intense up-front
project planning. With the Agile methodology,
the focus moves to a more independent model

with self-managing teams. A hybrid approach is
usually appropriate for project planning to
incorporate the known factors, such as the size of
the project and known future requirements
(Serrador et al. 2015).

Agile Components

In the traditional waterfall methodology, each
phase of the project is distinctly separate. The
System Development Life Cycle, i.e.
requirements, design, development, testing, and
deployment, requires that each phase is
completed individually before moving on to the

next phase. The software must pass a number of
quality checks after completing a phase and
before moving on to the next phase. Each phase
of the waterfall method has a specific deliverable,
and the project has a predetermined go-live date.
However, a major disadvantage is the difficulty
returning to a previous phase and making

significant changes. For instance, if a new
requirement is found during testing, the
requirement could impact the earlier design
phase deliverables, causing changes that result in
project delivery delays. Additionally, software
products are not delivered incrementally, and the
final product is implemented as a single release.

Waterfall methodologies are well suited for
predictable environments, i.e. heavily regulated,

but are cumbersome, bureaucratic, and lack the
capability to succeed in environments comprised
of high uncertainty and change (Beck 1999).
Traditional measurements of project success

focused on the time, budget, and product quality
(Atikinson 1999).

The Agile approach to software development
originated to overcome the disadvantages of the
waterfall methodology, primarily to shorten the
development time for software and get the

product to the customer / market as quickly as
possible. Work is broken down into small,
iterative cycles, known as sprints, with code
releases built into the iterations. Each increment

builds upon the previous until the total software
product is complete. Agile is comprised of
repeated practices that enable teams to work in a

faster paced environment, such as behavior
driven development, test automation, continuous
integration, and continuous deployment. Each
code release contains small portions of
development necessary to build the larger
framework. The measurement of a successful

project is the overall end product delivered the
customer and the subjective variable of the

customer’s satisfaction of the product’s quality

(Jugdev et al. 2005).

According to Serrador and Pinto (2015), projects

utilizing the Agile methodology’s iterative
approach, report consistently higher project
success. However, Agile software development
emphasizes that teams should be self-managed
and without direction on the implementation of
leadership (Moe et al. 2009). A further challenge
is the lack of synchronization of

interdependencies among multiple Agile teams
working on the same overall project (Melo et al.
2013). Teams with multiple autonomous
members tend to find difficulty with the principle
of the Agile manifesto, “the most efficient and
effective method of conveying information to and

within a development team is face-to-face
conversation” (Beck 2001).

Planning Ceremonies
Agile claims vast reductions in delivery based on
the ability to adjust to changing business
demands by operating in iteration cycles.

However, the upfront planning is crucial to the
team’s success and is a process that cannot be
eliminated from the development cycle. Planning
ceremonies are used to determine the software
release schedule and identify the chunks of work
that fill the team’s backlog. Each backlog item
must be fully refined for the team’s consumption

and execution. The Agile terminology labels
traditional project requirements as stories, which

are groomed by working with the business
stakeholder representing the team to fully convey
the expected behaviors of the system. The depth
of the groomed stories can be a determining

factor in the success of the software code and
can, also, contribute to the number of defects
found in pre-production. Rigorous empirical
analysis of the impact of story grooming is a key
measurement of the effectiveness of agile
software development.

Quality Impacts
From a practical perspective, using Test-Driven
Development (TDD) and Behavior-Driven
Development (BDD) approaches require that

testing is performed simultaneously with
development. TDD necessitates the creation of
automated test scripts while developers are

building the product. The test scripts become the
requirements documents. BDD operates similarly
to TDD; however, the language of the test scripts
are basic programmable statements that can be
automated using special software. BDD was
designed to eliminate the complexity of building

automated testing scripts. Specific phases of
testing, such as full integration and user

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 7

https://jisar.org/; http://iscap.info

acceptance testing, are not formally used. The

product is accepted by the product owner, a
business stakeholder, who typically previews a
demo of the final version of the product before

the code is released to production.

Along with the iterative development and testing,
eXtreme Programming (XP) is frequently used in
software development projects. The goal of XP is
to accomplish significantly faster development
through the collaboration of developers

programming the same functionality
simultaneously. During XP, stakeholders are
present to review the product and provide
immediate feedback. Favorable results have
been reported in studies using XP as part of the
Agile methodology, although few case studies

have been performed providing documented,
empirical evidence (Layman et al. 2006).

3. WATERFALL STRUCTURAL COMPONENTS

In contrast, waterfall projects follow several
phases of testing to include a minimum of the

following: unit/system, integration, regression,
and user acceptance testing. Testing is a formal
part of the project life cycle with documentation
and traceability to the business requirements.
While Agile appears to have a gap in the lack of
full integration and traditional user acceptance
testing, the prevailing industry argument

maintains that smaller increments require less
integration and software can be validated through

repeatable automation tests. The Agile version of
acceptance testing is achieved through the
business’ acceptance of the product at the end of
the sprint demo.

Formalized Business Requirements
Testing is a validation that the system works
according to the business requirements.
Waterfall business requirements documents
created traceability between test cases and
specific requirements. Rather than producing

business requirements documents, Agile creates
stories that are recorded and serve as the
business requirements. Many Agile tools, such as
VersionOne, JIRA, GitHub, etc. provide linkages

from test scripts to stories, thus solving for the
traceability of requirements to testing. Due to the
rapid timeline, acceptance tests are often

foregone as too timely and requiring business
resources that may not be readily available.
When acceptance tests are performed, they are
process driven and tend to be end-to-end.
External systems are typically required to be fully
functional and require considerable work to set up

the environment properly before test execution
(Rogers 2004).

Quality of software code is primarily measured by

evaluating the number and criticality of
production defects. To produce high software
quality and reduce the number of defects, testing

is seen as the solution for employing higher levels
of code quality. Thus, the focus in Agile has
shifted from scrum principles to ensuring test-
driven development (TDD) and behavior-driven
development (BDD) practices. The use of the
Agile methodology affects perceived software
quality through its impacts on internal

performance (Kong 2007). When complemented
with pair programming, an eXtreme Programming
method wherein developers work side by side,
teams are more productive and produce fewer
defects (Rico et al. 2009). Test-driven
development is posited to be “100 times more

efficient than traditional methods when combined
with continuous integration” (Rico et al. 2009).
Rico provides return on investment (ROI) values
to validate the claim, but does so without an
empirical side by side comparison of the number
of defects to software development hours.

4. CASE STUDY SCOPE AND RESEARCH
OBJECTIVES

Research performed in previous studies of Agile
has found that performance is linked with the
effectiveness of teamwork coordination in
software development teams (Moe 2009). The

quality of the software code is of critical
importance to organizations seeking to maintain

a competitive advantage in the marketplace.
This research seeks to provide an analysis of the
defect rate of the Agile methodology and compare
it to the defect rate using the Agile methodology

across eight separate projects.

DigiTek LLC is a consulting firm that works with
public and private sector companies. Data used
for this study was gathered during consulting
activities for two different clients, an insurance
company and financial institution, and a total of

eight project teams. This resulted in eight
separate project teams from which to evaluate.
The analysis was performed using three Waterfall
and five Agile project teams of similar size. Each

of the teams worked within the same line of
business, each with separate functionality being
developed and implemented.

The following research questions were raised:

1. Is the Agile Methodology able to complete
a comparable number of software
development hours while achieving
higher levels of software code quality

when compared to similar efforts using
the Waterfall Methodology?

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 8

https://jisar.org/; http://iscap.info

2. How is the criticality of defects impacted

by Agile versus Waterfall?

Research Method

To establish comparable measurements between
the Waterfall and Agile projects, software
development hours were recorded along with
production and pre-production defects. Agile
projects operated in two-week sprint cycles for a
total of twelve weeks, and Waterfall projects
operated for a total of twelve weeks. Included in

the study were two Agile project teams and two
Waterfall project teams.

The following assumptions were made for the
Agile teams participating in the study: Extreme
Programming (XP) was used; stories were

created and properly groomed; level of skill sets
of developers, testers, and supporting team
members were not a determinant in the study;
and equal skill set was assumed across all
participating teams.

Limitations to the study were recognized, as each

of the teams worked on different software
platforms and functionality. Due to the nature of
rapid delivery methodologies, pre-production
defects are not normally recorded. Agile teams
work closely together to develop, test, develop,
and test in eXtreme Programming sessions, fixing
defects immediately. The ability to fix the defects

and gain stakeholder approval real-time propels
the team for faster turnaround of the final

product. As a result, Agile teams have reduced
reliance on pre-production metrics for
determining quality. The focus becomes on the
successful completion of iterative product

releases and production code quality. For the
purposes of this study, pre-production defects
were recorded and used for the quantitative
analysis. However, criticality was not recorded
for pre-production defects regardless of
methodology.

Case Study Procedure
Results from both a large financial institution as
well as an international insurance company
operating with Agile software development teams

as well as Waterfall teams were used to evaluate
the choice of project methodology’s impact on
code quality. Quality measurements were based

on the number and criticality of production
defects relative to the number of software
development hours. Level of Agile maturity was
measured for each team based on the following:
grooming ceremonies were performed, software
was released at the end of each iteration/sprint,

each team had an assigned product owner, each

team had an assigned scrum master, and daily

scrums were held.

Participants included eight project teams, three of

which utilized Waterfall and five that utilized
Agile. Software development hours and defects
were measured across the teams for a twelve-
week period. With differing numbers of
developers per project team, the ratio of software
development hours to code quality allowed for an
equivalent measurement. By employing a direct

comparison of Agile and Waterfall projects, the
analysis avoids the subjectivity and relativity of
industry defect averages. Each of the project
teams tracked their pre-production and
production defects for code release during the
twelve-week period. Additional measurements

were performed to determine the impact of the
level of agile maturity on the number of
production defects. Product owners provided a
level of acceptance of the product prior to each
release to production by giving a go or no-go
decision to release.

5. RESULTS AND ANALYSIS

Raw Defect Analysis
Pre-production defects, which were recorded for
all teams during the twelve-week cycle, were
much higher for Waterfall teams than for Agile
teams, 43 to 13 respectively, with double the

percentage of defects per software development
hours, 1.37% to 0.63%, as shown in Table 2.

This indicates a higher level of testing prior to
implementation in order to prevent production
defects. The amount of testing automation
utilization was not considered in the quantitative

analysis.

Table 2
Defect analysis for Waterfall and Agile projects
based on software development hours

Likewise, production defects were recorded for all

teams during the twelve-week cycle. The total
number of production defects for Waterfall
compared to Agile were relatively the same, 19 to
21. However, when factoring in the number of

software development hours for each project
methodology, the percentage of production
defects relative to software development hours
for the Waterfall teams was nearly half the
percentage of defects found in the projects using
Agile. Waterfall projects had 0.61% of product

Project

Methodology

Total Combined

Development

Hours

Total Number

Prod Defects

Total Number Pre-

Prod Defects

Percentage of

Prod Defects

to Dev Hours

Percentage of

Pre-Prod Defects

to Dev Hours

Waterfall 3140 19 43 0.61% 1.37%

Agile 2076 21 13 1.01% 0.63%

Full project cycle of 12 weeks

Defects by Project Methodology

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 9

https://jisar.org/; http://iscap.info

defects to development hours whereas Agile

suffered 1.01%. The analysis indicates that the
Waterfall methodology yields higher software
development quality due to the time spent testing

in pre-production regions.

Defects by Criticality
Total production defects recorded by all teams
were further broken down by criticality. The
criticality of defects was recorded as high,
medium, or low, and criticalities were determined

by the project managers. A general definition of
high criticality represented defects that inhibited
major functionality or contained significant user
experience impacts. Medium criticality is
assigned to defects with impacts to core
functionality where alternative solutions exist.

Low criticality defects do not prevent users from
performing any intended functionality, such as
font sizes on graphical user interfaces.

When reviewing the criticality by project
methodology, fewer Waterfall defects were
considered high criticality (Figure 1 and Figure 2).

The results for Agile had the most difference when
considering the high criticality defects, which
made up 33% of their production defects
compared to 26% for Waterfall. The high plus
medium combined group signify defects that
must be fixed prior to going to production. In
considering the high plus medium criticality, the

Agile projects yielded the same percentage of
defects with 52%.

Figure 1
Defect analysis by criticality for Agile

Methodology

Figure 2
Defect analysis by criticality for Waterfall
Methodology

The analysis between the two methodologies

indicates that projects using the Waterfall
methodology are more likely to spend more time

testing, resulting in higher numbers of pre-
production defects found and remediated prior to
implementation. Agile’s rapid delivery
methodology finds fewer defects in pre-
production but has double the production defects
as a percentage of software development hours
after implementation. The cause of the disparity

can be related to numerous factors, such as the
longer period of time spent testing in Waterfall
projects contrasted with the targeted test cases
performed during the Agile sprint cycle.

Agile project teams rely more heavily on
automated test cases and spend less time on user

acceptance testing. User acceptance testing, as
well as manual testing, can allow the user/tester
to focus efforts on attempts to break the
application. Automated test scripts tend to focus
on the simple, ‘happy path’, test cases rather
than creating test scenarios for multiple

permutations of the functionality. Automated
test cases can be more accurate than manually
running a test, because they are less subject to
error. However, automated test cases sacrifice
the depth of the testing.

6. CONCLUSIONS AND RECOMMENDATIONS

The overall results of this study suggest that
Waterfall projects spend more time during the

testing cycle and identify more defects prior to
production. Agile projects have smaller pieces of
functionality being delivered and focus on the
speed of delivery, thereby shortening the volume

of testing. Practitioners making selections
between the two methodologies should consider
the depth of pre-production testing. The Agile
methodology can increase the software
development quality through more expansive
testing measures prior to releasing the software

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 10

https://jisar.org/; http://iscap.info

code to production. The use of automation

simplifies and shortens the testing cycle but
should not be relied upon solely for testing all
permutations of the changed functionality.

Future studies of automation could determine the
impact of automated testing and behavior driven
development on the code quality measurement.
Additionally, this study did not review customer
satisfaction of the products delivered but merely
the defects.

7. REFERENCES

Atikinson, R. (1999). Project management: cost,

time, and quality, two best guesses and a
phenomenon, it's time to accept other

success criteria. International Journal of
Project Management, 17, 337-342.

Beck, K. (1999). Extreme Programming

Explained. Boston: Addison-Wesley.

Beck, K. (2001, February 11). Principles Behind

the Agile Manifesto. Retrieved October 25,
2017, from Manifesto for Agile Software
Development:
http://agilemanifesto.org/principles.html

Dyba, T., & Dingsoyr, T. (2008). Empirical studies

of agile software development: a systematic

review. Information Software Technology,
50(9), 833-859.

Holbeche, L. (2015). The Agile Organization: How

to Build an Innovative, Sustainable and
Resilient Business. London: Kogan Page

Limited.

Jugdev, K., & Muller, R. (2005). A retrospective

look at our evolving understanding of project
success. Project Management Journal, 36(4),
19-31.

Kong, S. (2007). Agile Software Development

Methodology: Effects on Perceived Software

Quality and the Cultural Context for

Organizational Adoption. Ann Arbor:
ProQuest Information and Learning
Company.

Layman, L., Williams, L., & Cunningham, L.

(2006). Motivations and measurements in an
agile case study. Journal of Systems
Architecture, 52, 654-667.

Melo, C. d., Cruzes, D. S., Kon, F., & Conradi, R.

(2013). Interpretative case studies on agile
team productivity and management.
Information and Software Technology, 55,
412-427.

Moe, N. B., Dingsoyr, T., & Dyba, T. (2009,

November 20). A teamwork model for
understanding an agile team: A case study of
a Scrum project. Information and Software
Technology, 52, pp. 480-491.

Rico, D. F., & Sayani, H. H. (2009). The Business

Value of Agile Softare Methods: Maximizing

ROI with Just-in-Time Process and
Documentation. Fort Lauderdale: J. Ross
Publishing.

Rogers, R. O. (2004). Acceptance Testing vs. Unit

Testing: A developer's perspective. LNCS
(3134), 22-31.

Sampaio, A., Vasconcelos, A., & Sampaio, P. F.

(2004, November). Assessing Agile Methods:
An empirical study. Journal of the Brazilian
Computer Society, 10(3).

Serrador, P., & Pinto, J. K. (2015). Does Agile
work? - A quantitative analysis of agile
project success. International Journal of
Project Management, 33, 1040-1051.

Journal of Information Systems Applied Research 13 (1)
ISSN: 1946-1836 March 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 11

https://jisar.org/; http://iscap.info

Appendix

Table 1
Methodological distinctions between Waterfall and Agile project methodologies

Waterfall methodology Agile methodology

Core delivery process

Follows the system development life cycle with

requirements analysis, design, development, testing,

implementation, and support pre-defined cycles with a

fixed end date

Iterative requirements, design, and development

with continuous integration and deployment

activities and iterative release cycles

Stakeholder Involvement

Fixed project scope with stakeholder approver before

design and development can begin; stakeholder review of

final product

Changing scope per sprint iteration with stakeholder

input on requirements and prioritization;

stakeholder review of final product

Development

Based on fixed requirements and overall architectural

design

Performed while determining requirements and test-

driven

Testing

Largely manual execution, tied directly to business

requirements, performed as several phases (unit,

integration, user acceptance, performance)

Automated, behavior-driven, performed as part of

development

Documentation

Business and system requirements are written and

approved by stakeholders; testing scenarios and results

are documented with traceability to requirements

Requirements are loosely documented as sprint

stories; testing scripts are sometimes tied to stories

