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Abstract  
 
Data analytics and machine learning have the potential to modify and improve many old school 
businesses.  Among the oldest businesses for the human race is managing the waste we generate. In 
this paper we show how data science can be applied to help derive increased value from a byproduct 
of that waste, landfill gas.  Gas produced from the decomposition of waste in landfills can be captured 
and transformed into a resource that benefits the local community, environment, and economy. We 
use analytics to better understand how weather conditions impact the methane content of landfill gas 

in ways significant enough to interfere with its use as a source of energy. We model methane 
concentrations in landfill gas and use machine learning techniques to predict future changes in 
methane concentration using a database of weather, water composition, and landfill gas collection 
performance metrics. A multilayer predictive model of methane concentration is developed that will 
aid in the transformation of day-to-day operations of landfill gas collection to maximize the utilization 
of gas extracted from the landfill, while minimizing the cost of pollution mitigation. This can help 

transform the industry while mitigating some environmental concerns. 
 
Keywords: Sustainability, Landfill Gas, Analytics, Machine Learning, Methane Prediction 

 
 

1. INTRODUCTION 
 

Current global municipal solid waste generation 
levels are approximately 1.3 billion tonnes per 
year and are expected to increase to 
approximately 2.2 billion tonnes per year by 
2025 (Hoornweg & Bhada-Tata, 2012). Waste 
that is not recycled or incinerated is placed into 

landfills where its decomposition releases 
methane gas and carbon dioxide into the 

atmosphere accounting for an estimated 17.6% 
of human-related methane gas emissions in the 
United States (EPA, 2017). 
 
In addition to climate change impacts, methane 
and other gases created in a landfill pose risks to 
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air quality as well as human health and safety. 

To limit these impacts, emissions from landfills 
are controlled by installing gas collection 
systems and either burning the landfill gas (LFG) 

in a flare or utilizing it as an energy source to 
produce electricity, steam, or even vehicle fuel. 
Using LFG as an energy source transforms post-
closure management of landfills from a cost 
center into a profit center and has the potential 
to transform foundational thinking in the waste 
management industry from viewing trash as 

waste into viewing trash as a resource—after all, 
it’s only waste if it’s not used. 
 
In order to make the gaseous byproducts of our 
waste more useful, there are several analytics 
techniques that have the potential to help.  

These include 
 
• Modeling – In order to apply analytic 

techniques to help convert this waste to 
useful energy, we must first model and 
understand the drivers of gaseous levels and 
concentration.  This requires discovery and 

weighting of key drivers. 
 

• Prediction – Next, as the relationships are 
better understood though discovery, we can 
apply that understanding by building 
predictive models based on key variables to 
forecast what is likely to happen next.  This 

is critical to building a useful solution. 
  

• Automation – Finally, as the relationships 
are understood and can be reliably 
predicted, these can be incorporated into an 
automatic solution using information and 

robotics technologies. 
 
These stages of data analytics to model a 
current relationship, predict a future one and 
automate a solution are critical to the use of 
data science for building usable solutions with 
real impact.  

 
For example, regulations requiring the monitor 
and control of LFG emissions specify a minimum 
frequency of monthly visits (Monitoring of 

Operations, 2000), and  these requirements 
mean a technician must physically visit each of 
hundreds of gas wells to take measurements 

using handheld instruments and make manual 
adjustments for decades after the landfill closes. 
This infrequent, labor-intensive, and time-
consuming manual process is not only an 
imprecise, potentially arbitrary, approach to 
managing LFG collection for the control of 

emissions, but it also produces an LFG supply 
that is highly variable in both gas flow and 

methane concentration that limits the value of 

using this energy-rich gas as fuel.  Automation 
can add real value here, but first it must be 
modeled and predicted reliably. 

 
In terms of modeling there is a considerable 
body of research on the production and diffusion 
of methane gas in a landfill (Rachor et al. 2013, 
Alexander 1971, Spokas et al. 2006, Farquhar & 
Rovers 1973, Bade Shrestha & Narayanan 2008, 
Toerien & Hattingh 1969, among others); an 

expanding literature on approaches and 
strategies to maximize LFG generation, 
extraction, and use as fuel (Reinhart 2002, 
Reinhart 1996, Townsend 2018, Ozkaya 2007, 
Warith 2003, Buivid 1981, Kinman 1987); and a 
long line of research into the internal dynamics 

of landfills that influence methane generation 
emissions, migration, and extraction such as 
pressure, cover permeability, depth, moisture 
content, waste composition, temperature, etc. 
(Arigala et al. 1995, Chen et al. 2003, Xi & Xiong 
2013, Hashemi et al. 2002, Sanchez et al. 
2006).  

On example of a useful model using the fuzzy 
logic algorithm was derived by Garg et al. 
(2006) where they built a useful model based on 
average climate and waste site characteristics.  
 
While these studies and others of a related 
nature contribute to increased knowledge of 

methane-related processes inside a landfill, the 
few that even address time do so on scales of 

months, years, or decades. 
 
We need prediction however, when using LFG 
as fuel, particularly in a continuous process such 

as generation of electricity or steam, where 
changes in the performance of the collection 
system over periods of months or years are 
significantly less important than changes in 
collection system performance over time 
intervals of minutes or hours. Significant 
changes in methane concentration and, to a 

lesser extent, changes in gas flow rate will 
adversely impact the operation, efficiency, and 
output of LFG-fueled energy conversion devices 
(e.g. boilers or electricity generators) and at 

times even cause shutdown events. There exists 
a limited body of research examining the causes 
and nature of variability in LFG emissions or gas 

collection system performance over short time 
intervals (e.g. hourly or sub-hourly) and few, if 
any, efforts that attempt to forecast the near-
term performance of a landfill gas collection 
system on an hourly or sub-hourly basis as we 
have done here. 
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Absent external influences, landfill gas pressure 

will stabilize at a landfill-specific level, and once 
steady-state conditions are attained then gas 
emission or migration out of the landfill occurs at 

the rate of gas generation. Lu and Kunz (1981) 
demonstrated that extracting LFG lowers the gas 
pressure during the time the vacuum is applied, 
but when the vacuum is removed the internal 
gas pressure quickly returns to its steady-state 
level, implying that gas extraction functions as a 
substitute for gas emissions and that factors 

impacting gas emissions will also impact gas 
extraction. 
 
Young (1990) described the inverse relationship 
between changes atmospheric pressure and the 
volume of LFG emissions concluding that the 

amount by which emissions change over a sub-
hourly time interval is proportional to rate of 
change in atmospheric pressure rather than the 
actual value of atmospheric pressure. In a 
further study, Young (1992) explained several 
factors that cause carbon dioxide and methane – 
the two largest constituents of LFG – to respond 

differently to changes in atmospheric pressure. 
In particular, he demonstrates, in stepped time 
intervals of less than one-half hour, methane 
concentrations rising from 50% to 55% over a 
period of hours and then rapidly and consistently 
falling to about 40% over the next day or two in 
response to changing atmospheric pressure. 

 
Aghdam, Scheutz, and Kjeldsen (2019) 

summarize the conflicting state of conclusions 
reached in some of the limited number of 
empirical studies examining the influence of 
meteorological factors on LFG emissions or 

collection system performance. Among those 
factors, absolute level of barometric pressure, 
rate of change in barometric pressure, solar 
radiation, wind speed, soil moisture, air 
temperature, and soil temperature have been 
found to both have a significant influence and 
also not to have a significant influence on gas 

volume and composition.  
 
The inconsistency of results among empirical 
studies coupled with the complexity resulting 

from the multitude of interrelated factors that 
may influence LFG flow and composition over 
short time intervals provides an opportunity to 

apply modern data science techniques to 
improve the performance of LFG energy 
systems. By carefully analyzing the application 
and data characteristics, researchers and 
practitioners can then adopt or develop the 
appropriate analytical techniques to derive the 

intended impact (Chen et al. 2012).  
 

Machine learning and applied analytics have the 

potential to transform the way in which this one-
time pollutant is transformed into both a 
valuable energy source benefiting local 

economies and a new source of value for the 
waste management industry, while also 
mitigating its environmental impact. Analytics 
also has the potential to automate the current 
costly process of collection system tuning, 
identify equipment failures and needed repairs 
much more rapidly, and greatly improve safety 

at and around the landfill site by remotely 
identifying the presence of hazardous gases 
such as methane and hydrogen sulfide at the 
landfill surface. 
 
As the economic and environmental benefits of 

LFG use are increasingly recognized, data 
analytics and machine learning can aid in the 
optimization of LFG collection and spur a 
transformation in the waste management 
industry. By maximizing the amount of LFG 
collected and selling the recaptured gas, energy, 
or carbon credit, a landfill can literally turn trash 

into treasure.  
 
Research Objective 
As gas is extracted from the landfill, methane 
concentration of the gas fluctuates drastically. If 
methane concentration drops too low, the gas 
becomes unusable as an energy source, induces 

stress on the generating engine and can lead to 
damage or failure of the engine. 

 
By using data analysis techniques, this project 
specifically aims to model methane 
concentration in near-real-time and thus enable 

landfill operators to predict future changes in 
methane concentration and gas flow to 
preemptively respond to methane concentration 
changes by taking the necessary actions to 
protect the engine, keep LFG composition 
optimal, and maximize profit while minimizing 
the negative effects on the environment. 

 
The remainder of this paper is organized as 
follows. Section 2 provides background on the 
business case, environmental impacts and 

foundational knowledge of LFG production. 
Section 3 describes the methodology of the 
study including the dataset development and 

model construction. In Section 4, the results of 
the modeling process are presented followed by 
discussion in Section 5. Section 6 concludes the 
paper and notes possible future directions for 
research.  
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2. BACKGROUND 

 
Business Case 
The high concentration of methane gas in LFG 

incentivizes landfill operators to capture the 
methane gas diffusing out of the landfill for 
reuse or sale. A study based on 8,196,000 
tonnes municipal solid waste generated in 
Peninsular Malaysia in 2010 estimated that the 
collection and sale of landfill gas generated 1.9 
billion kWh of electricity per year, worth over 

US$190 million (Johari et al., 2012). Another 
study found that capturing the methane 
emissions in Oman from 2016–2030 will attract 
a total revenue of approximately US$333 million 
from carbon reduction, and approximately 
US$291 million from electricity generation 

(Abushammala et al. 2016). With such money at 
stake, the importance of understanding more 
about LFG production and composition in a 
landfill is heightened. 
 
Currently, the Environmental Protection 
Agency’s Landfill Methane Outreach Program has 

identified 634 operational landfill gas collection 
projects in the United States. Combined, these 
projects generate 291 mmscfd (million standard 
cubic feet per day)—enough energy to supply 
the state of Maine’s annual natural gas 
consumption. If sold at $3.50/1000 scf, it would 
generate US$1,018,500 in revenue every day 

solely from the sale of the collected gas.  
 

Landfill gas is also a cheap source of energy. 
Local businesses realize cost savings associated 
with using LFG as a replacement for more 
expensive fossil fuels. Some companies could 

save millions of dollars over the life of their LFG 
energy projects (LMOP 2017). General Motors 
has leveraged this cheap energy source into 
massive savings for the company. A statement 
from General Motors Green on 13 March 2016 
reads, “A decades-long approach to sourcing 
renewable energy has produced lessons learned 

that helped GM further reduce its environmental 
footprint and save $80 million along the way.” 
This testimonial serves as a pilot-study of sorts 
as to how much the utilization of landfill gas as 

an energy source can benefit a company. 
 
While the energy savings and environmental 

benefits of using LFG are potentially substantial, 
maximizing the value of these benefits requires 
effective management of the LFG collection 
system as even short-duration system 
shutdowns can result in significant financial 
losses. For example, a landfill selling 2 mmscfd 

at a price of $3.50/1000 scf loses $7,000 in 

revenue for every day the system is not 

operating. 
 
Environmental Impacts 

As stated previously, landfill gas is a byproduct 
of society. It is important to note this paper is 
not suggesting that collecting and combusting 
LFG eliminates the need to decrease waste 
production. It is simply pointing out that 
capturing and combusting LFG will always be 
more environmentally friendly than allowing the 

gas to escape into the atmosphere. 
 
Methane gas (CH4), has a molar mass of 16.04 
g/mol. Carbon Dioxide (CO2), has a molar mass 
of 44.01 g/mol. The combustion of methane gas 
converts 1 mole of methane gas to 1 mole of 

carbon dioxide gas. Thus, combusting 1 ton of 
methane gas leads to the release of 2.74 tonnes 
of carbon dioxide gas.  
 
Previous studies have shown that methane gas 
has a 20-year global warming potential of 86 
when considering carbon-climate feedback 

(Myhre et al. 2013). Carbon dioxide is used as a 
baseline for global warming potential values, 
giving it a value of 1.  
 
Using these global warming potentials, we assert 
that each ton of methane gas combusted 
reduces the 20-year global warming potential of 

the gas by 83.26. Essentially, 1 ton of methane 
gas released to the atmosphere carries a global 

warming potential of 86. By converting 1 ton of 
methane gas to 2.74 tonnes of carbon dioxide, 
the resultant gas carries a global warming 
potential of 2.74, a ~97% reduction in global 

warming potential. 
 
Landfill Gas Collection Systems 
Landfill gas collection systems are remarkably 
complex systems, featuring anywhere from 
dozens to hundreds of interconnected gas wells 
located throughout the landfill, all applying a 

vacuum to extract the gas produced by myriad 
chemical and biological processes underway 
within the landfill. 
 

These components all interact with external 
factors, such as weather, and the resulting gas 
extracted at a given moment varies significantly 

in volume and composition. Yet, despite this 
complexity, LFG collection systems are typically 
managed by a technician who takes 
measurements using handheld instruments and 
adjusts the collection system by turning valves 
on a largely ad hoc basis.  
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Using applied analytics techniques to understand 

and predict the underlying biochemical 
processes and physical factors that impact LFG 
quality will enable a far more efficient, cost-

effective, and profitable use of LFG as an energy 
source, while simultaneously increasing 
environmental and operational benefits. 
 
Processes Within the Landfill 
When municipal solid waste is first deposited in 
a landfill, it undergoes an aerobic (with oxygen) 

decomposition stage where little methane is 
generated. Then, typically within less than one 
year, anaerobic (without oxygen) conditions are 
established and methane-producing bacteria 
begin to decompose the waste and generate 
methane. Thus, landfill gas production can be 

broken down into two major stages, the non-
methanogenic stage and the methanogenic 
stage (See Figure 1). 
 
The optimum temperature range for aerobic 
decomposition is 54 to 71ºC, while the optimum 
temperature range for anaerobic bacteria is 30 

to 41ºC. A dramatic drop in activity of anaerobic 
bacteria has been noted at temperatures below 
10ºC (USACE 2013). 
 

 
Figure 1. Landfill gas composition over time 
(EPA, 1997). Phase duration time varies 
with landfill conditions. 

Precipitation dramatically affects the LFG 
generation process by supplying water to the 
process and by carrying dissolved oxygen into 
the waste with the water. High rates of 

precipitation may also flood sections of the 
landfill, which will obstruct LFG flow. The amount 

of precipitation that reaches the waste is highly 

dependent on the type of landfill cover system 
(USACE 2013). 
 

Molecular diffusion occurs in a system when a 
concentration difference exists between two 
different locations. The concentration of a 
volatile constituent in the LFG will almost always 
be higher than that of the surrounding 
atmosphere, so the constituent will tend to 
migrate to the atmosphere. Wind often serves to 

keep the surface concentration at or near zero, 
which renews the concentration gradient 
between the surface and the interior of the 
landfill, thus promoting the migration of vapors 
to the surface. Geomembranes in landfill covers 
significantly reduce diffusion as the 

geomembrane prevents LFG from diffusing to 
the atmosphere (USACE 2013). 
 
Advective flow occurs where a pressure gradient 
exists. The rate of LFG movement is generally 
orders of magnitude faster for advection than for 
diffusion. LFG will flow from higher pressure to 

lower pressure regions. In a landfill, advective 
forces result from the production of vapors from 
biodegradation processes, chemical reactions, 
compaction, or an active LFG extraction system. 
Variations in water table elevations can create 
small pressure gradients that either push gases 
out (rising tide) or draw gases in (falling tide). 

Changes in barometric pressure at the surface 
can also have an impact on the advective flow of 

LFG (USACE 2013). 
 

3. METHODS 
 

Data for this project was collected from a 
midsize rural landfill in the Southeastern United 
States. 
 
Landfill Monitoring System 
Landfill gas flow and methane content are 
continuously recorded by an Eurotherm 6180A 

Paperless Chart Recorder. A Thermal Instrument 
Model 9500 flow meter was used to correct for 
temperature and pressure at 60 degrees 
Fahrenheit at 1 atmosphere of pressure. Gas 

was analyzed using the Landtec FAU-TDL gas 
analyzer.  
 

Field check calibration for all equipment was 
performed. The project was verified to the 
Climate Action Reserve’s Landfill Project Protocol 
Version 3.0. All data was collected prior to the 
beginning of this research. 
 

Having these systems in place should allow for 
an automated system to be implemented with 
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little changes to the current setup, which should 

ease the deployment of the model. 
 
Dataset Description 

Observations were recorded every 20 minutes 
from midnight 14 June 2012 to 5:00 pm 31 
August 2013. The initial dataset contained 
27,962 observations and 38 variables. Of the 38 
variables, 12 describe weather conditions. The 
weather data was collected from a nearby rural 
airport weather station.  

 
The 12 weather variables measure six different 
weather metrics. Each observation recorded the 
six metrics at the local airport and provided a 
regional analysis. The dataset also included 25 
landfill gas collection system performance 

metrics. A timestamp of each observation was 
also included.  
 
There are periods of missing data, half of which 
occur within a 30-day period in 2012 and during 
a couple weeks in Feb 2013. The missing time 
periods for the landfill gas collection system 

performance metrics are as follows: 
 

• 7/10/2012 - 8/18/2012  
• 10/09/2012: 6 hours 
• 10/10/2012: 6 hours 
• 10/22/2012: 7 hours 
• 02/13/2013 - 02/19/2013 

• 07/09/2013 - 07/17/2013 
 

There were periods of missing values for the 
weather data as well. Exploratory analysis of 
these missing values showed that if one variable 
was missing, then all values were missing. The 

time periods never lasted longer than two hours. 
The short timeframe of missing values for the 
weather data allowed for the values to be 
imputed using the following equation: 
 

𝑦𝑖 =  
(𝑦𝑖−1

∗  +  𝑦𝑖+1
∗ )

2
 (2) 

 

where 𝑦𝑖 is the missing value, 𝑦𝑖−1
∗  is the 

previous recorded instance of that variable, and 
𝑦𝑖+1

∗  is the next recorded instance of that 

variable. 
 
Feature Construction 
Precipitation was not included in the initial 
weather dataset. Knowing that moisture plays a 
large role in landfill gas production, precipitation 

information was acquired through Climate Data 
Online. Daily precipitation values were joined to 
the existing dataset by the date of the 
observation. 
 

Water quality information was obtained from a 

dataset made available by the United States 
Geological Survey for a river approximately 50 
miles southeast of the county landfill. While not 

an optimal indicator of conditions on the site, it 
is included to provide, at a minimum, a regional 
indication of water quality due to lack of 
instrumented reading at the facility. 
Observations were recorded every 15 minutes. 
The primary variables of interest in this dataset 
were water elevation, dissolved oxygen in the 

water, and pH of the water. Prior to joining the 
datasets, the water quality data was grouped by 
date and hour of day. Following this step, 
average elevation, dissolved oxygen, and pH 
was calculated. The two datasets were then 
joined by date and hour of the day. 

 
One common thread between all landfill gas 
models is the importance of landfill moisture. 
Access to weather data will allow for more 
information on moisture. The three and five-day 
cumulative precipitation values were calculated 
from the daily precipitation values. 

 

3 𝑑𝑎𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑟𝑜𝑤 𝑖 =   ∑ 𝑃𝑖 – 𝑗

3

𝑗 = 1

 (3) 

5 𝑑𝑎𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑟𝑜𝑤 𝑖 =  ∑ 𝑃𝑖 − 𝑗

4

𝑗 = 1

 (4) 

 
Oxygen content in the landfill is yet another 

obvious driver of methane gas production. As 
mentioned previously, the primary methane-
producing reaction in a landfill is anaerobic. The 
dissolved oxygen content of a nearby river 
serves as a proxy for dissolved oxygen in the 
water present in the landfill. The problem with 
this variable is that dissolved oxygen can be 

high, but if no precipitation occurs while it is 
high, no new oxygen is introduced to the 
system. To account for this scenario, two 
variables were created. 
 
First, dissolved oxygen of the river water was 
multiplied by daily precipitation. The justification 

of this variable is that it provides a means of 
measuring total oxygen introduced into the 

system. Next, a three-day cumulative value of 
this variable was created using the following 
equation: 
 

𝟑 𝒅𝒂𝒚 𝒔𝒖𝒎𝒎𝒆𝒅 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒇𝒐𝒓 𝒓𝒐𝒘 𝒊 

=  ∑ 𝑭𝒊 – 𝒋

𝟑

𝒋 = 𝟏

  
(5) 
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Preliminary modeling shows that wind direction 

is relatively important, but that wind speed may 
not be significant. Intuitively, we know that 
these two variables are related and that the 

combination of the two variables gives us more 
information than each variable separately, e.g. a 
10 mph wind from the west may affect methane 
gas concentration more than a 1 mph wind from 
the west. These variables were combined using 
the following equation: 
 

𝑾𝒊𝒏𝒅 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 
= 𝑾𝒊𝒏𝒅 𝑺𝒑𝒆𝒆𝒅 

∗ 𝐬𝐢𝐧 (
𝟐𝝅[𝑾𝒊𝒏𝒅 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 –  𝟓𝟓]

𝟑𝟔𝟎
) 

(6) 

 
Equation 1 shows that the changes in gaseous 

concentration over time depends on gas 
velocity, gas dispersivity, and the molecular gas 
diffusion coefficient in the soil gas phase. 
Solving this equation does not fit within the 

scope of a data-driven approach to methane gas 
modeling; however, it does provide insights into 
useful variables. The molecular gas diffusion 
coefficient in the soil gas phase is proportional to 
T^1.5/p, where T represents temperature of the 
system and p represents pressure of the 

gaseous components of the system. This value 
was computed in the dataset by dividing 
recorded temperature, raised to the 3/2 by 
barometric pressure. 
 

The final variables added to the dataset are 
lagged performance variables. Preliminary 

modeling attempts showed that it is not 
sufficient to simply use weather and water 
composition variables to predict methane 
concentration. By adding in lagged variables, we 
gain more insight into the activite components of 
the system. For this study, the closest lagged 
variables were four hours. 

 
Initial Analysis 
This project has two major components: 
 
• Develop a regression model that accurately 

predicts the methane concentration of the 

landfill gas. 

• Develop a classification model to predict if 
methane concentration will fall below 40% 
(1 = methane concentration <= 40%, 0 = 
methane concentration > 40%) 

 
To develop a regression model for methane 

concentration, we must account for the drastic 
impact that extracting gas from the landfill has 
on methane concentration. Figure 2 illustrates 
this relationship. When the header valve is open, 
meaning that LFG is being extracted, we observe 

methane concentration of the LFG fluctuates 

drastically over the course of a day. When the 
header valve is closed, we observe methane 
concentration generally increases with time with 

much smaller fluctuations in the general path. 
Although this presents some challenges with the 
regression model, it opens another path of 
study.  
 
By creating two regression models, one for each 
header valve scenario, we can develop a further 

understanding of the system. The regression 
model focused on the case when the header 
valve is closed has the potential to establish a 
baseline methane concentration growth rate. 
This baseline prediction may also have relevance 
in the regression model, focusing on the 

scenario in which the header valve is open and 
gas is being extracted. 
 

 
Figure 2. Displays LFG methane 
concentration at Rockingham County 
Landfill from 1 Oct 2012 to 31 Nov 2012. 

According to the design specifications of the 

collection system engine used by the landfill, the 
engine is designed to utilize gas composed of 
50% methane by volume. As concentration 
decreases, more stress is placed on the engine. 
Once methane concentration falls below 40%, 
the engine possesses a high risk of failure. 

Although the engine needs 40% methane 

concentration, the flare can likely operate with 
lower concentrations. Figure 3 shows the counts 
of each scenario for the binary variable created 
for the classification model. 
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Figure 3. Displays the count of each scenario regarding 

LFG methane concentration. 

We were unable to find any statistically 
significant relationship between the weather 
variables and methane concentration. 
 
Model Construction 

Prior to using any machine learning algorithm to 
develop a model, a baseline prediction was 
made. For regression models, this involved 
simply assuming the average methane 

concentration for every point in time. For 
classification, this involved assuming the 
methane concentration was always greater than 

or equal to 40%. This assumption was made due 
to the imbalanced structure of the dataset. This 
analysis was done in order to assess the 
effectiveness of each machine learning 
algorithm.  
 

Multilinear regression and logistic regression 
were then used to provide a first attempt at the 
model. Both models utilize the same underlying 
math; however, logistic regression is used to 
predict the probability of an event occurring 
(methane concentration falling below 40%) 
while multilinear regression predicts a value 

(methane concentration). This is represented by 
Equation 7. 
 

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏𝒙𝒊𝟏 + 𝜷𝟐𝒙𝒊𝟐 + ⋯ + 𝜷𝒑𝒙𝒊𝒑 + 𝜺𝒊 𝒇𝒐𝒓 𝒊 

=  𝟏, 𝟐, . . . 𝒏 
(7) 

 
The final model utilized in the study is known as 
a multilayer machine learning algorithm. This 
technique utilizes a variety of algorithms and 
passes predictions from those algorithms to one 

or multiple higher-level algorithms. If multiple 

higher-level algorithms are used, the predictions 
from each algorithm are typically blended 
together to create an ensemble. 

 
All models were developed using Python 3.6. On 
each model, a 4-fold cross validation was used. 

 
4. RESULTS 

 
Model Overview 

To assess each classification model, sensitivity 
was used as the evaluation metric. Sensitivity is 
a measure of the model’s ability to predict the 
positive case. This metric was selected because 
we want the model to detect an event which 
does not happen frequently. The regression 

model was assessed using mean absolute error 
(Equation 8). Mean absolute error was chosen 
because it shows, on average, how far off the 
estimate is from the true value. Table 1 shows 
the mean absolute error and sensitivity for each 
model. 
 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =  
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖 = 1

𝑛
 (8) 

 

 Model 0 
Simple 
Average 

Model 1 
Multilinear/ 

Logistic 
Regression 

Model 2 
Multilayer 
Machine 
Learning 

Mean 
Absolute 
Error 

5.6% 3.1% 1.3% 

Sensitivity 0% 0% 81.3% 

Table 1. Mean absolute error and classification sensitivity 

for each of the three models used in this study. 

 
Model 2 - Multilayered Machine Learning 
Model 2, which was a multilayered machine 

learning model, clearly outperformed all other 
models used in this study. The basic structure of 
this model was as follows: 
 
• The base level contained a combination of 

Multilinear/Logistic regression, Random 
Forests, Extremely Randomized Trees, 

Gradient Boosted Trees, Extreme Gradient 
Boosted Trees, K-Nearest Neighbors, and 
Neural Networks 

• The intermediate level utilized two Gradient 
Boosted Tree structures from the LightGBM 
and XGBoost libraries. 

• The final level was a weighted average 
between the two intermediate levels.  
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The mean absolute error of the predicted 

methane concentration and the actual methane 
concentration was 1.30% with a sensitivity of 
81.3% (see Table 1).  

 
The model had a classification accuracy of 
95.0% (see Table 2). R2=0.9032 when 
comparing the predicted methane concentration 
to actual methane concentration (see Figure 4). 
 

 Predict 
Above 40% 

Predict 
Below 40% 

Actual 
Above 40% 

23,935 808 

Actual 
Below 40% 

601 2,606 

Table 2. Confusion matrix for classification model 2. 

 

 
Figure 4. Predicted methane concentration of the LFG vs 

the actual methane concentration. R2=0.9032. 

 
5. DISCUSSION 

 
The purpose of this project is to serve as an aid 
in the decision-making process for landfill 
operations. Our results show that through 

adequate data collection, variable manipulation, 
and proper predictive modeling techniques, LFG 
methane concentration can be predicted within a 
time horizon useful for operations.  

 
By incorporating data science techniques into 
the day-to-day operations of a landfill gas 

collection system, the value and quantity of gas 
extracted from the landfill for generation 
purposes can be maximized. This predictive 
capability offers the potential for development of 
strategies guiding intervention and alteration of 
collection system operations prior to methane 
levels dropping below minimal useful thresholds, 

thus ensuring higher reliability and quality from 

landfill gas systems. 
  
The classification model laid out in this paper 

has a sensitivity of 81.3%. If properly 
implemented, this model could prevent four out 
of five stress events from occurring. This result 
is quite impactful, as preventing engine stress 
and, in turn, preventing engine damage, can 
improve revenue and decrease the 
environmental impact of methane gas released 

by the landfill. This model also provides use to a 
fully automated system, as it can feed inputs 
into the system, changing its course of action. 
 
With the ability to accurately predict engine 
stress events four hours in advance of the event 

occurring, landfill operators can alter their 
actions to alleviate the stress event. With the 
collection system database growing every day, 
we can improve the decision-making process, 
and modeling of events, by fully utilizing this 
data. 
 

6. CONCLUSIONS 
 
Landfill gas is a significant contributor to climate 
change, but its capture and use both reduces 
greenhouse gas emissions and provides a low-
cost source of local renewable energy that can 
stimulate local economies. With the potential to 

benefit the local community, environment, and 
economy, the decomposition of solid waste 

should be seen as a potential resource. In fact, it 
should only be considered waste if it is not used.  
 
This research provides a foundation for a new 

data-driven LFG model. By expanding data 
traditionally recorded during operations with 
secondary data that can serve as an appropriate 
proxy, it is possible to construct sub-hourly 
models of LFG flows using analytics techniques. 
 
Additionally, this paper shows clearly how data 

analytics, combined with domain knowledge, can 
model a current relationship, predict a future 
one and eventually automate the process to 
transform industry. 

 
Future research should investigate additional 
modeling techniques. Regression techniques 

were suboptimal in this case; however the Multi-
layered machine learning model results suggest 
that Random Forests, Extreme Randomization, 
Gradient Boosting, Clustering techniques, and 
Neural Networks may improve predictions. 
 

By moving forward with this research, we can 
assist waste management organizations with 
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automation and better utilize data to maximize 

their resources through the incorporation of 
predictive analytics, ultimately converting more 
trash to treasure, while reducing the 

environmental impact of methane escaping from 
landfills. 
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