

Information Systems

Education Journal

Volume 19, No. 2

April 2021
ISSN: 1545-679X

In this issue:

4. “BILT for Success”: An Alternative Education Strategy to Reskill the

Business and Technology Professionals for a Sustainable Future
Xiang Michelle Liu, Marymount University

Diane Murphy, Marymount University

15. Using Student Choice in Assignments to Create a Learner-Centered

Environment for Online Courses

Jamie Pinchot, Robert Morris University

Karen Paullet, Robert Morris University

25. Plugin-based Tool for Teaching Secure Mobile Application Development

A B M Kamrul Riad, Kennesaw State University

Md Saiful Islam, Kennesaw State University

Hossain Shahriar, Kennesaw State University

Chi Zhang, Kennesaw State University

Maria Valero, Kennesaw State University

Sweta Sneha, Kennesaw State University

Sheikh Ahamed, Marquette University

35. Building a Cybersecurity Apprenticeship Program: Early-Stage Success and

Some Lessons Learned

Geoff Stoker, University of North Carolina Wilmington

Ulku Clark, University of North Carolina Wilmington

Manoj Vanajakumari, University of North Carolina Wilmington

William Wetherill, University of North Carolina Wilmington

45. Effects of Teaching and Practice of Time Management Skills on Academic

Performance in Computer Information Systems Courses

Sean Humpherys, West Texas A&M University

Ibrahim Lazrig, West Texas A&M University

52. Development of a Flexible Point-based Tenure and Promotion Document in

the Age of Societal Uncertainty

Kevin Dickson, Southeast Missouri State University

Nick Johnston, Southeast Missouri State University

Heather McMillian, Southeast Missouri State University

Dana Schwieger, Southeast Missouri State University

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://isedj.org/; https://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed

academic journal published by ISCAP (Information Systems and Computing Academic

Professionals). Publishing frequency is six times per year. The first year of publication was

2003.

ISEDJ is published online (https://isedj.org). Our sister publication, the Proceedings of

EDSIGCON (http://www.edsigcon.org) features all papers, panels, workshops, and

presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

EDSIGCON conference. At that point papers are divided into award papers (top 15%), other

journal papers (top 25%), unsettled papers, and non-journal papers. The unsettled papers

are subjected to a second round of blind peer review to establish whether they will be

accepted to the journal or not. Those papers that are deemed of sufficient quality are

accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the

journal is under 40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of

Publishing Opportunities in Educational Technology and Library Science, in both the

electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org. Special thanks to members of

ISCAP/EDSIG who perform the editorial and review processes for ISEDJ.

2021 ISCAP Board of Directors

Eric Breimer
Siena College

President

James Pomykalski

Susquehanna University
Vice President

Jeffry Babb
West Texas A&M
Past President/

Curriculum Chair

Jeffrey Cummings

Univ of NC Wilmington
Director

Melinda Korzaan

Middle Tennessee State Univ
Director

Niki Kunene

Eastern CT St Univ
Director/Treasurer

Michelle Louch

Carlow University
Director

Michael Smith
Georgia Institute of Technology

Director/Secretary

Lee Freeman
Univ. of Michigan - Dearborn

Director/JISE Editor

Tom Janicki
Univ of NC Wilmington

Director/Meeting Facilitator

Anthony Serapiglia
St. Vincent College

Director/2021 Conf Chair

Copyright © 2021 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full
citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or
commercial use. Permission requests should be sent to Paul Witman, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://isedj.org/; https://iscap.info

Information Systems

Education Journal

Editors

Jeffry Babb

Co-Editor
West Texas A&M

University

Paul Witman
Co-Editor

California Lutheran
University

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Ira Goldman

Teaching Cases
Co-Editor

Siena College

Paul Witman
Teaching Cases

Co-Editor California
Lutheran University

Donald Colton
Emeritus Editor Brigham

Young University
Hawaii

Anthony Serapiglia
Associate Editor

 St. Vincent’s College

Jason H. Sharp
Associate Editor

Tarleton State University

2021 ISEDJ Editorial Board

Wendy Ceccucci
Quinnipiac University

Ulku Clark
U of North Carolina Wilmington

Amy Connolly
James Madison University

Jeffrey Cummings
U of North Carolina Wilmington

Christopher Davis
U of South Florida St Petersburg

Mark Frydenberg
Bentley University

Nathan Garrett
Woodbury University

Biswadip Ghosh
Metropolitan St U of Denver

Ranida Harris
Indiana University Southeast

Scott Hunsinger
Appalachian State University

Melinda Korzaan
Middle Tennessee St Univ

James Lawler
Pace University

Li-Jen Lester
Sam Houston State University

Michelle Louch
Carlow College

Jim Marquardson
Northern Michigan Univ

Mary McCarthy
Central CT State Univ

Richard McCarthy
Quinnipiac University

Muhammed Miah
Tennessee State Univ

RJ Podeschi
Millikin University

James Pomykalski
Susquehanna University

Renee Pratt
Univ of North Georgia

Dana Schwieger
Southeast Missouri St Univ

Cindi Smatt
Univ of North Georgia

Karthikeyan Umapathy
University of North Florida

Thomas Wedel
California St Univ Northridge

Peter Y. Wu
Robert Morris University

Jason Xiong
Appalachian St University

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 25

https://isedj.org/; https://iscap.info

Plugin-based Tool for Teaching
Secure Mobile Application Development

A B M Kamrul Riad

aislamri@students.kennesaw.edu

Md Saiful Islam
Mislam16@students.kennesaw.edu

Hossain Shahriar

hshahria@kennesaw.edu

Chi Zhang

czhang4@kennesaw.edu

Maria Valero
mvalero2@kennesaw.edu

Sweta Sneha

ssneha@kennesaw.edu

Kennesaw State University
Kennesaw, GA

Sheikh Ahamed

Sheikh.ahamed@marquette.edu

Marquette University

Milwaukee, WI

Abstract

Mobile device security has become increasingly important in mobile computing. Since the mobile
devices and applications are growing rapidly, the security threats are intensified due to mobile app

flaws and lack of security consideration in early stages of software development. The unsecure
software development process creates a serious weak path that causes potential malicious attacks in
mobile devices. To mitigate the mobile threats, it is essential for application developers to follow

secure code development processes to alleviate data leakage or access control vulnerabilities. Secure
Mobile Software Development needs to be emphasized and adopted for reducing security
vulnerabilities. In this paper we present a development tool of secure code analysis for mobile
application development. The tool is designed to find the security leakage of static code and

implementation of plugins such as Droid Patrol. The proposed code analysis and design procedure in
the early stage of application development can eliminate the weak security path in coding. Our
experience of running the plugin in classrooms are discussed and student feedback are provided.

Keywords: Android, Secure software Development, SQL injection, IoT, Static analysis, data flow,
secure coding.

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 26

https://isedj.org/; https://iscap.info

1. INTRODUCTION

As mobile devices become ubiquitous,

numerous major cyber-attacks, stolen sensitive
information, unauthorized credit card
transactions and security concerns have been
reported (Meng et al., 2018). Android application
is in the most vulnerable position in malware
collection, where two or more malicious apps
associate together for target attacking. With the

conventional attack detection, each individual
app may use the flexible inter-app
communication infrastructural support, so called
Inter-Component Communication (ICC).
However, potential leak may not be able to be
tracked by ICC detection. (Elish et al, 2018; Tian

et al., 2018). Android devices has a big share of
the global smart devices market. There are
about 2.2 million apps in Google Play Store and
around 1.5 million apps are free. These free
applications may have a dark side because the
application codes may not be built with
consideration of security that may lead to the

potential malicious data flows (Tian et al.,
2018).

Therefore severe data breach are found
in mobile devices including health monitors and

trackers when these health devices
communicate with the databases. The data
security and privacy are serious concerns. The
vulnerabilities are due to poor security code,

firmware system in the software, and malicious
code injected while devices are connected to the
apps (Zhang et al., 2020). In 2017, a popular

virtual keyboard app leaks 31 million user’s
personal data because its database was not
protected with a password, and Android users
around the world were affected (Whitaker,
2020). Also, the analysis of the recent cyber-
attacks in financial and healthcare organizations
indicates that secure software development is

important to protect the widespread cyber-
attacks.

There are not many security
measurements and tools that application

developers use to ensure the essential data

protection. Various apps for keeping Coronavirus
test and diagnoses have been available to be
downloaded since COVID-19 pandemic started.
EFF (Electronic Frontier Foundation) warns
COVID-19 tracing apps pose security and
privacy risks. Despite that Google and Apple

have transparent security and privacy policies,
industries stakeholders along with security
scientists warn the potential security threats that
developer must take higher technical measures

and tools while developing software applications.
Currently smart devices are unable to verify any
Proximity Tracking System (PTS) that checks a

public database of keys against Rolling Proximity
Identifiers (RPIDs) on a user device (Davis,
2020).

Most mobile security vulnerability should

be addressed and fixed in the software
development phase. In general, the security
threat and vulnerability can be reduced during
the application development phase. But such an
effort to develop secure code requires ground
support and tools from both educational
institutions and training communities (Shahriar

et al., 2019). Four most prominent Integrated

Development Environments (IDE): Eclipse,
IntelliJ IDEA, Visual Studio and Netbeans, help
developers check for security flaws and
determine input-validation-related vulnerabilities
in code. Android Studio provides
FindSecurityBugs plugin which analyzes the

static byte code to look for bugs in java code
from within IntelliJ IDEA and Findbugs, a
security detect detection tool for java code, is
used for static analysis to look for more than
200 bugs patterns such as recursive loops, null
pointer differences, bad uses of java libraries

and deadlocks. Android Studio plugin specializes
in finding the static code bugs and inconsistency
of code structure to ensure the code quality from
the application development stage (Baset &

Denning, 2017; Pfeiler, 2020).

However, there is not a code analysis
tool that can automatically identify all the
security flaws in the source code for developers
to analyze vulnerabilities and security bugs in
the initial phase of the mobile software
development. In this paper, we design and

implement the DroidPatrol which is an integrated
plugin with the Android Studio to perform
tainted data flow-based static analysis.
DroidPatrol is the build in plugin in Android
Studio for Intellij IDEA that allows code
developers to identify a list of source code and
sinks so developers can see the possible leak

path within the source code and manipulate the

related bugs to fix (Talukder et al., 2019).

We organize our paper as follows. In Section 2,
we provide background and relevant work, in
Section 3, we analyze the mobile application

architecture and threat, in Section 4 we provide
DroidPatrol tools model overview that including
DroidPatrol architecture, features, Data leak
detection test and analysis result, Section 5, we
provide conclusion and future work.

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 27

https://isedj.org/; https://iscap.info

2. BACKGROUND AND RELATED WORK

In recent years, several research for Android
app analysis technologies have been proposed.

In this section we consider background code
analysis into two parts: i) static code analysis
and ii) dynamic code analysis. Static code
analysis generally conforms to coding standards
without executing the program and dynamic
code analysis provides a real or simulated
environment where apps can be installed

virtually (Talukder et al., 2019; Ashfaq et al.,
2019).

Static code analysis generally conforms to
coding standards without executing the
program. The main advantage of the static

analysis is the control-flow and data-flow

analysis. Control flow helps identify the possible
execution path of the target app and data flow
analysis can specify the possible predicted
values of variables at the location of execution of
the target app (Fan et al., 2020). For example,
StubDroid (Arzt & Bodden, 2016), is a method
for automatically generating correct and precise

models for android applications using precise
and extendable inheritance capabilities.
StubDroid approaches the inferring library
specification from binary distribution that can
handle callbacks, a library method invokes client
code. FlowDroid is an open source Java based
static analysis tool that can detect the potential

data leakage in source code of an Android

application. While FlowDroid tool can detect and
analyze data flow in the full lifecycle of the
application development phase, it is not a highly
potential data security tool that can detect the
common security bugs in Android applications

such as intent leakage, SQL injection, output
encoding for secure communication (Shahriar et
al., 2019; Talukder et al., 2019).

DroidSafe (Mumtaz, & El-Alfy, 2017) detects
Android capability leaks to uncover the malicious
code using Control Flow Graph (CFG) and static
taint analysis. CFG can track data flows from

source to sink and helps security analysts to
assess the effectiveness of information leakage.

Compared to other tools such as FlowDroid and
IccTA, DroidSafe can detect the significant
number of malicious information flaws
approximately 69 malicious whereas FlowDroid
and IccTA can detect only six malicious flows.

DroidSafe still suffers from imprecision due to
unacceptable numbers, false positive alarm and
silent mode that may leave errors uncovered.

TrustDroid (Zhao, & Osono, 2012) is a taint

tracking static code analyzer that statically
performs semantic analysis of a compiled
Android application (APK file). It can determine

the leakage of sensitive information in two
modes: i) off-line mode while analysis of the
static resources and the performance indicates
no such problem ii) real-time mode, it is reliable
in considering the performance of the algorithm
in terms of speed and battery/resource
consumption. TrustDroid analyzes the byte code

by searching the entries that manipulate
sensitive data information source code marked
as tainted with taint tag so the data is
manipulated by bytecode when this tag
propagates. If tainted data flows out through a
predefined taint sinks such as network interface,

the flag is created and a function is called for the
process of copying one variable to another
variable or to another memory location.

TaintDroid (Enck et al., 2010) is an
implementation of dynamic taint analysis for
Android applications, an extension of Dalvik
virtual machine (DVM) to optimize efficient

storage and memory-mappable execution
memory, battery life and performance. It also
protects sensitive user information from
untrusted code that shares the limitation of
dynamic taint analysis. TaintDroid uses the
concepts of taint sources from which sensitive
information e.g, text message, IMEI, GPS data

or picture and contact information from mobile

devices are obtained. TaintDroid issues a
potential warning to the users when tainted data
reaches a taint sink. On the other hand,
TaintDorid’s performance overhead occurs due
to application wait state and heavyweight

operations (Beal 2020; Babil et al., 2013). To
minimize the overhead performance, TaintDroid
only tracks explicit data flow but does not
control flaws (e.g., implicit flaws). Full traffic
control flaw requires static analysis, a challenge
for third-party applications. Only direct control
flaws can be tracked dynamically if taint scope is

determined. In addition, TaintDroid creates
significant false positives if the tracked
information contains configure identifiers.

Although static analysis is faster than dynamic
analysis for comprehensive code coverage in
analyzing the apps for exploring different
execution paths, it is not effective on dynamic

loading where dynamic analysis is useful for
runtime behavior of java code. As TaintDroid
cannot handle dynamic payloads to run the
native code level, DroidTrace (Zheng et al.,
2014) can monitor and detect the behaviors of
dynamic payloads. In addition, DroidTrace can

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 28

https://isedj.org/; https://iscap.info

use Process Trace (Ptrace) to monitor the

system calls of the target process while running
the dynamic payloads. DroidTace is also
compatible with different hardware platforms

without restoring emulation.

Cuckoo Sandbox (Jamalpur et al., 2018), a
widely used malware analysis tool based on
dynamic analysis, runs applications under test in
a control emulator, such as virtual platforms
Virtual box, VM ware and KVM on Windows,
Linux, and Mac. Cuckoo sandbox provides a

flexible solution for malware detection while
writing code in notepad and executing files in a
virtual platform where the cuckoo agent acts as
a communication medium between the cuckoo
host (actual network) and cuckoo guest

(operating system). It chooses the guest and

uploads code samples when the host launches a
new analysis and generates a complete report
based on a series of tests made during execution
of the malicious code sample.

In Secure Mobile Software development, many
Android plugin tools emerge in recent years. For
the Application Security IDE (ASIDE), Eclipse

IDE extension and plugin help warn developers
of potential vulnerabilities and helps detect
potential bugs and fix the code quality issue
during development. SonarLint (Vermeer, 2019)
is an Eclipse IDE plugin that provides instant
feedback for the most commonly used languages

including Python, JavaScript and Java. The Snyk

(Vermeer, 2019) plugin for Eclipse can scan the
code dependencies with dependency trees and
can check vulnerabilities with suggesting
possible fixes. The most significant feature is an
integrated view that provides the origin of
vulnerabilities and how many layers deep. The

plugin also provides the link to Snyk website
when vulnerability is found and its severity that
helps developers to make secure code for apps
developing. However, Eclipse plugin tools do not
support Android Development Studio.

3. ANALYSIS OF MOBILE APPLICATION

THREATS

The main concern of mobile applications is
vulnerability. Most of these applications have a
client server architecture. The server side
component is a web application that interacts
with mobile clients through Application

Programming Interface (API). Although the
mobile OS has various security mechanisms,
errors made by developers in designing and
writing code for the mobile application caused
loopholes in user data protection which may be

exploited by attackers. The common attack

scenario is malware infection that escalates the
administrator privilege (root or jailbreak) when
malware requests permission to access user

data and sends data to the attackers if granted.
Figure 1 shows how the client server interacts
with app distribution platforms through mobile
devices (Positive Technology, 2019).

The maximum risk level of vulnerabilities occurs
in both client and server. 60% of vulnerabilities
occur from client server; 89% of vulnerabilities
are the exploited without physical access, and
56% of vulnerabilities are exploited without
administrative privileges such jailbreak or root

access (Positive Technology, 2019). In general,
android applications contain more vulnerabilities
than those applications are written for iOS (43%
vs 38%) but the difference is not significant and
the overall apps security level for both are
roughly the same (Figure 2).

Figure 3 shows the statistical trends of the
percentage of web applications that contain high
risk vulnerability from 2015 to 2019. It shows
the high risk vulnerabilities fall significantly by
20% compared to that in 2015 (Positive
Technology, 2019).

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 29

https://isedj.org/; https://iscap.info

Figure 3. Website by maximum severity of
vulnerabilities

This indicates that the percentage of sites

containing server vulnerabilities gradually
reduces, showing the consistency of
improvement of web application security in the
last five years.

The security threat is approached on a regular
basis in web applications that cause severe
financial losses at various levels of Financial
Institutes, IT, manufacturing, Telecom and
Government. Many organizations from private to
the government rely on web apps for their
regular business transactions and customers’

access of the relevant information. Such
communication and payment activities are the
target for cyber- attacks and many attempts to
access the application server due to the poor

code security patches configured in the
application development phase. Figures 4 and 5
(extracted from (Statista, 2019) show the

vulnerabilities in organizations and the most
common causes of security threats and
malicious attacks.

Figure 4 shows the vulnerability risk levels faced
by organizations. For example, financial
institutes are at high risk for cyber-attack at

above 80%, and government institutes are in
high-risk vulnerability too (70%). Figure 5
shows the web application vulnerabilities in
which SQL injection is the major security threat
globally. 42% of the threats are carried out
through SQL injection, 19% are caused by

cross-site scripting, and 16% by PHP

vulnerabilities (Statista, 2019). Since Android
has a complex system in both inter and intra
application for sending and sharing data, the

static analysis usually is limited to detect the
malicious application due to build in application
(e.g., Intent object broadcast which can be
intercepted by malware running on the same
device). Informed by the prior studies, we
propose an Android Application tool, DroidPatrol,
which offers more features to analyze static code

for detecting the known Android security bugs
based on OWASP guidelines.

4. DESIGN OF DROIDPATROL

We divide the DroidPatrol model into four parts:

i) design of DroidPatrols, ii) features of the

plugin iii) test Data leak detection: SQL
injection, and iv) results from analysis. The basic
code analyses focus on the possible malicious
injection. The main idea is that DroidPatrol first
uses static analysis to discover functions of
dynamic loading behavior. For user apps and
detection technique, there exist four steps:

DroidPatrol is an open source plugin for Android
applications which can detect resource leakage
during the application development phase. It
analyzes two apk bases: source and sinks by the
developer. It generates a call graph between the
source and sinks that produces the output of

leakage data. Since the Android application is

based on Java, we use the static analysis library
APIS which basically is Soot as a static analyzer
for java-based applications. DroidPatrol requires
two dependency libraries for jar files i) an
android jar ii) an analysis-jar.

Figure 6 shows the basic architecture of Droid
patrol that depicts the workflow on an apk file.
The input apk is basically app-debug.apk file.
DroidPatrol decomposes the apk and Code
Analysis Libraries (DroidPatrol _Aanlyzer.jar and
DroidPatrol_Android.jar) files, source and sink

API declarations in text files. Then DroidPatrol
decompiles the apk and generates a call graph
and path. Finally, it generates a list of tainted
data leakage output for users.

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 30

https://isedj.org/; https://iscap.info

DroidPlatrol plugin applies tainted data flow

analysis of android application with Tainted data
flow analyzer. It intends to identify Android
application security bugs based on Open Web

Application Security Project (OWASP) to allow
developers and security teams to use the
resources they need for developing secure
mobile applications. The application developers
need to understand the security risks faced by
the mobile apps globally. OWASP provides ten
guidelines for developers to build secure

applications and incorporates essential coding
practices (Android Studio, 2020; Basatwar
2020). Figure 7 highlights the top 10 security
risks that needs to practice by developers for
application development phase.

The DroidPatrol plugin minimizes the mobile

application security risks for SQL injection,
unintended data leakage, and insecure data
storage vulnerability. Diagram 1 shows how the

data flow leakage from the source and sinks for
extraneous functionality, improper platform
usage, extraneous functionality, insecure data
storage, insecure authorization and insecure

communication.

DroidPatrol can manage the SQL injection and

data leakage vulnerability in mobile applications
that are under security threat from cyber
criminals who pass the potential malicious
injection. DroidPatrol can create the flag warning

to the developers in the code line. Application

developers can maintain the secure code for the
development by following OWASP guidelines. A
build package can also be loaded into the

Android Studio IDE, which results in parsing
Android java source code to identify specific API
calls and guide the code to replace what causes
the potential vulnerability in the application
development phase. A build package can also be
tested into the Android Studio IDE, which will
result in parsing Android java source code with

notifying the potential code vulnerabilities,
identifying the specific API call and suggesting
the secure code replacement.

5. EXAMPLE MODULE USING DROIDPATROL

In this section we analyze the web application

vulnerabilities worldwide in 2019. It shows that

the SQL injection is the major security
vulnerability that leads to many data leakage
from the user end. SQL injection is a code
insertion technique in which is used to attack
data driven applications. The malicious code is
inserted by cyber-hacker to normal SQL
statements to dump content from the database.

The SQL injection exploits security vulnerabilities
of the mobile application such as taking use of
user input to embed to malicious code to a hard
code SQL statement. The method of SQL
injection takes into many forms that consists of
i) Incorrectly filtered escape characters, ii)
Incorrect type handling. The DroidPatrol tools

that we developed can be found at:

1.https://sites.google.com/site/droidpatrolprojec
t/sql-injection/pre-lab?authuser=0
2. https://github.com/saiful-
sdsl/ResearchProjects/tree/master/DroidPatrol

Incorrectly filtered escape character form occurs
if user input is passed to a SQL statement
without filtering escape character. The following
is the example showing how this type of SQL
injection takes place.

This type of SQL statement is passed to a

function which in turn sends the string to the
connect data where it is parsed, executed and
returns the results:

https://sites.google.com/site/droidpatrolproject/sql-injection/pre-lab?authuser=0
https://sites.google.com/site/droidpatrolproject/sql-injection/pre-lab?authuser=0
https://github.com/saiful-sdsl/ResearchProjects/tree/master/DroidPatrol
https://github.com/saiful-sdsl/ResearchProjects/tree/master/DroidPatrol

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 31

https://isedj.org/; https://iscap.info

If input is not sanitized properly but the

application, the attacker can easily insert crafted
value as input as following SQL statement
possible to be injected:

The attacker input contains two parts:

1. OR ‘1’ = ‘1’ is a condition which will be
always true and it is accepted as a valid
input by application

2. “- -“ (Double hyphen) instructs the SQL
parser that the rest of the line is a
comment and it should be executed.

When the query is executed, the SQL injection
removes the password verification, so the
injection bypasses user authentication resulting
in the whole database returning as the invalid
input always returns true. In this way, the
consequence becomes a successful SQL injection
attack (Choudary, 2020; Droidpatrol, 2020).

Incorrect type handling injection is the same
type of implementation of incorrectly filtered
escape character, but injection takes place
without appropriate type checking. There are
many other forms of SQL injection, in which an

injection is executed by prematurely terminating
a text string and appending a new command.

The DroidPatroltool we developed tests data flow
analyses to determine the tainted data flow from
every possible point of access. As we defined the
sources and sinks respectively where source

means the location to get the data from external
input such as user database query. Obtaining
data from source can be transferred to a third
party via SMS messaging. Figure 8 shows the
sources as database Cursor object which allows
to retrieve data. SmsManager is used to require
SEND_SMS permission which is the sink list.

Figure 8 shows the Source and sink process.

The DroidPatrol tool provides a data flows list
where information flows between source and
sinks. We ran the analysis to build the apk first
from the menu in the top right corner where it
shows the plugin named Droid Patrol. Under the

DroidPatrol the button is a command called Eye

which is the code vulnerabilities analyzer.

We prebuilt DroidPatrol “source” and “sink” files
that require the process of code analyzer. The
following steps are executed in the analysis
process when the Eye analyzer starts in

DroidPatrol. The pop-up window asks the Drive
name for analyzer and android jar files. It then
asks for the files that contains pre-build
SourcesAndSinks txt file which creates the
Android project folder. The text files are:

<android.app.Activity: android.view.View
findViewById(int)> -> _SOURCE_

<android.database.sqlite.SQLiteDatabase:
android.database.Cursor
rawQuery(java.lang.String,java.lang.String[])> ->
SINK

After analyzing the files, the DroidPatrol shows
the result with 0 leaks. Therefore at the next
step, we change the code in the source and sink
files and the test run shows the following
output: the application one data leak from input
field to SQLite database query. Figure 10 shows

the process of analysis by DroidPatrol.

The next screenshot contains one data leak from
the input field in the SQLite database query.

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 32

https://isedj.org/; https://iscap.info

6. STUDENT FEEDBACK

We integrated the DroidPatrol hands-on module
in three courses in the summer 2020 term: IT

6513 (Electronic Health Record and App
Development), IT 6843 (Ethical Hacking &
Networking Security), and IT 3503 (Foundations
of Health IT). To assess the effectiveness of the
DroidPatrol materials and hands-on exercises,
we collected student feedback. The key
questions driving the survey are: What are

students’ knowledge levels of the specific
technologies? Did the materials help students
learn about the topics/technologies for analyzing
application security? Did each new exercise
help?

The survey was created in the University’s

Qualtrics system. Students were provided the
link to the survey and they completed the
survey online. Five questions to assess students’
learning are included and the responses were
collected using the Likert scale that uses a 5-
point scale, 1 (Highly disagree) to 5 (Highly
agree).

Q1. I like working with this hands-on labware.

Q2. The hands-on labware helped me
understand SQL injection attack in mobile
application and sources/sinks for SQL injection.

Q3. The real-world mobile security threats and
attacks provided in the labs help me understand

better the importance of static analysis.

Q4. The hands-on labs help me gain authentic
learning experience to detect data flow via SQL
injection and preventing it.

Q5. The online lab helped me set up the needed
environment for monitoring mobile security
detection.

The sample size of the survey was 65 for the
three course sections. The results show that
most students agreed that the DroidPatrol-based
hands-on labware enabled them to learn SQL
injection and detection by using statics analysis.
The plugin tool also helped them prevent the

data flow through SQL injection.

Figure 11: Survey results of Q1

Figure 12: Survey results of Q2

Figure 13: Survey results of Q3

Figure 14: Survey results of Q4

Students also provided comments on their
experience of using static analysis plugin tool in

the hands-on labware.

• That is a great start for software developer

who can take care of security issues while

developing code.

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 33

https://isedj.org/; https://iscap.info

• The lab is great. We need more like this in

the future.

• Lab is very good with all the necessary

instructions.

• I am taking training on SQL this summer.

This lab helped me in gaining more

knowledge of it.

• Hands on is the best learning tool.

• I really liked doing this hands-on lab. I

think it is easier to learn this way compared

to by reading about how to set up an

environment or prevent an SQL attack.

• I liked the variety of attacks in this lab.

The survey shows that students are interested in
learning by doing, and the plugin-based tool
helps student learn developing secure mobile

applications.

7. CONCLUSIONS

Currently, there is no available plugins for
Android Development Studio that can be
integrated for static data flow analysis. In this

paper, we analyzed mobile application threats
and applied a test method to find the data
leakage through the DroidPatrol plugin that we
developed, based on OWASP security risk
analysis and guidelines. We plan to make the
DroidPatrol as an open source plugin tool for

application developers. The tool can perform

tainted data flow analysis of applications that
would help developers to detect various security
bugs in static code currently leading to a number
of privacy and data leaks. In addition,
DroidPatrol helps developers to flag the code
alarm that would be vulnerable for application.

ACKNOWLEDGEMENT

Our thanks to Affordable Learning Georgia
Textbook Transformation Grants (Round 15,
#484) and SunTrust Summer Faculty Fellowship
for supporting the development of the lab

materials.

8. REFERENCES

Ashfaq, Q., Khan, R., & Farooq, S. (2019). A
Comparative Analysis of Static Code Analysis
Tools that check Java Code Adherence to
Java Coding Standards, Proc. of 2nd
International Conference on Communication,

Computing and Digital systems (C-CODE),

pp. 98-103, doi: 10.1109/C-
CODE.2019.8681007.

Arzt, S. & Bodden, E. (2016). StubDroid:

Automatic Inference of Precise Data-Flow
Summaries for the Android Framework,
Proc. of 38th IEEE/ACM International
Conference on Software Engineering (ICSE),
Austin, TX, pp. 725-735, doi:
10.1145/2884781.2884816.

Babil, G., Mehani, O., Boreli, R. & Kaafar, M.

(2013). On the effectiveness of dynamic
taint analysis for protecting against private
information leaks on Android-based devices,
Proc. of International Conference on Security
and Cryptography (SECRYPT), Reykjavik,

Iceland, pp. 1-8.

Baset, A. & Denning, T. (2017). IDE Plugins for
Detecting Input-Validation Vulnerabilities,
2017 IEEE Security and Privacy Workshops
(SPW), San Jose, CA, pp. 143-146, doi:
10.1109/SPW.2017.37.

Basatwar, G. (2020). OWASP Mobile Top 10: A
Comprehensive Guide For Mobile Developers

To Counter Risks,
https://www.appsealing.com/owasp-mobile-
top-10-a-comprehensive-guide-for-mobile-
developers-to-counter-risks/.

Beal, V. (2020). Dalvik, Available:
https://www.webopedia.com/TERM/D/Dalvik

.html.

Choudary, A. (2020). What Are SQL Injection
Attacks And How To Prevent Them?,
Available: https://www.edureka.co/blog/sql-
injection-attack.

DroidPatrol. (2020).
https://sites.google.com/site/droidpatrolproj

ect/sql-injection/pre-lab?authuser=0.

Davis, J. (2020). EFF Warns COVID-19 Tracing
Apps Pose Cybersecurity, Privacy
Risks,Available:https://healthitsecurity.com/
news/eff-warns-covid-19-tracing-apps-pose-
cybersecurity-privacy-risks.

Elish, K., Cai, H., Barton, D., Yao, D., & Ryder,

B. (2020). Identifying Mobile Inter-App
Communication Risks, IEEE Transactions on
Mobile Computing, vol. 19, no. 1, pp. 90-
102.

Enck, W., Peter, G., Byung-Gon, C., Cox, L., &
Jaeyeon, J., McDaniel, P., & Sheth, A.
(2010). TaintDroid: An Information-Flow

Tracking System for Realtime Privacy
Monitoring on Smartphones.

Information Systems Education Journal (ISEDJ) 19 (2)
ISSN: 1545-679X April 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 34

https://isedj.org/; https://iscap.info

Communications of the ACM. 57. 393-407.

10.1145/2494522.

Fan, W., Zhang, D., Chen, Y., Wu, F., & Liu, Y.
(2020). EstiDroid: Estimate API Calls of

Android Applications Using Static Analysis
Technology, IEEE Access, Vol. 8, pp.
105384-105398,
10.1109/ACCESS.2020.3000523.

Jamalpur, S., Navya, Y., Raja, P., Tagore, G., &
Rao, G. (2018). Dynamic Malware Analysis
Using Cuckoo Sandbox, Proc. of 2nd

International Conference on Inventive
Communication and Computational
Technologies, Coimbatore, pp. 1056-1060,
doi: 10.1109/ICICCT.2018.8473346.

Meng, X., Qian, K., Lo, D., Bhattacharya, P., &
Wu, F. (2018). Secure Mobile Software

Development with Vulnerability Detectors in
Static Code Analysis, International
Symposium on Networks, Computers and
Communications (ISNCC), pp. 1-4.

Mumtaz, H. & El-Alfy, E. (2017). Critical review
of static taint analysis of android applications
for detecting information leakages, Proc. of

8th International Conference on Information
Technology (ICIT), Amman, pp. 446-454,
doi: 10.1109/ICITECH.2017.8080041.

Pfeiler, A. (2020). FindBugs-IDEA,
Available:https://plugins.jetbrains.com/plugi
n/3847-findbugs-idea/

Shahriar, H., Riad, A., Talukder, A., Zhang, H., &

Li, Z. (2019). Automatic Security Bug
Detection with FindSecurityBugs Plugin.
Conference on Cybersecurity Education,
Research and Practice.
http://par.nsf.gov/biblio/10156137

Statista. (2019). Global web application

vulnerability taxonomy, Available:
https://www.statista.com/statistics/806081/
worldwide-application-vulnerability-
taxonomy/.

Studio, Android. (2020). Report a bug,
https://developer.android.com/studio/report
-bugs.

Talukder, A., Shahriar, H., Qian, K., Lo, D.,
Ahamed, S., & Rahman, M. (2019).

DroidPatrol: A Static Analysis Plugin For

Secure Mobile Software Development, Proc.
of 43rd IEEE Annual Computer Software and
Applications Conference (COMPSAC),

Milwaukee, WI, USA, pp. 565-569, doi:
10.1109/COMPSAC.2019.00087.

Technologies, Positive. (2019). Vulnerabilities
and threats in mobile applications, 2019,
Available:https://www.ptsecurity.com/ww-
en/analytics/mobile-application-security-
threats-and-vulnerabilities-2019/

Tian, C., Xia, C., Duan, Z. (2018). Android Inter-
Component Communication Analysis with
Intent Revision, IEEE/ACM 40th
International Conference on Software
Engineering: Companion (ICSE-Companion),

Gothenburg, pp. 254-255.

Vermeer, B. (2019). 10 Eclipse plugins you
shouldn’t code without, Available:
https://snyk.io/blog/10-eclipse-plugins-you-
shouldnt-code-without/

Whittaker, Z. (2020). A popular virtual keyboard
app leaks 31 million user's personal data,
ZDNet. [Online]. Available at

https://www.zdnet.com/article/popular-
virtual-keyboard-leaks-31-million-user-data/

Zhang, C., Shahriar, H., & Riad, A. (2020).
Security and Privacy Analysis of Wearable
Health Device, Proc. of 44th IEEE Annual
Computers, Software, and Applications

Conference (COMPSAC), Madrid, Spain, pp.

1767-1772.

Zhao, Z. & Osono, F. (2012). TrustDroid:
Preventing the use of SmartPhones for
information leaking in corporate networks
through the used of static analysis taint
tracking, Proc. of 7th International

Conference on Malicious and Unwanted
Software, pp. 135-143, doi:
10.1109/MALWARE.2012.6461017.

Zheng, M., Sun, M., & Lui, J. (2014).
DroidTrace: A ptrace based Android dynamic
analysis system with forward execution
capability, International Wireless

Communications and Mobile Computing

Conference (IWCMC), Nicosia, pp. 128-133,
doi: 10.1109/IWCMC.2014.6906344.

Editor’s Note:

This paper was selected for inclusion in the journal as an EDSIGCON 2020 Meritorious Paper. The
acceptance rate is typically 15% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2020.

