

Information Systems

Education Journal

Volume 19, No. 6

December 2021
ISSN: 1545-679X

In this issue:

4. Pandemic Shift: Impact of Covid-19 on IS/Microsoft Office Specialist Excel

Certification Exam Classes: Remote Testing and Lessons Learned

Carl M Rebman, Jr., University of San Diego

Gwendolyn White, Xavier University

Hayden Wimmer, Georgia Southern University

Loreen Marie Powell, Bloomsburg University

Queen E Booker, Metropolitan State University

13. An Investigation on Student Perceptions of Self-Regulated Learning in an

Introductory Computer Programming Course.

Pratibha Menon, California University of Pennsylvania

27. Aligning the Technical and Soft Skills of Management Information Systems

and Business Analytics Curricula to Supplement Accounting Education

Benjamin E. Larson, Troy University

Matthew A. Sanders, Troy University

Jeffrey A. Bohler, Troy University

40. IoT Education using Learning Kits of IoT Devices

Biju Bajarcharya, Ball State University

Vamsi Gondi, Ball State University

David Hua, Ball State University

45. Investigating Student Behavior in an Interdisciplinary Computing Capstone

Course

Jason Watson, University of North Alabama

Andrew Besmer, Winthrop University

M.Shane Banks, University of North Alabama

Daniel Ray, University of North Alabama

Gerry Derksen, Winthrop University

55. Moving to Business Analytics: Re-Designing a Traditional Systems Analysis

and Design Course

James J. Pomykalski, Susquehanna University

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://isedj.org/; https://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed

academic journal published by ISCAP (Information Systems and Computing Academic

Professionals). Publishing frequency is six times per year. The first year of publication was

2003.

ISEDJ is published online (https://isedj.org). Our sister publication, the Proceedings of

EDSIGCON (https://proc.iscap.info) features all papers, panels, workshops, and presentations

from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

EDSIGCON conference. At that point papers are divided into award papers (top 15%), other

journal papers (top 25%), unsettled papers, and non-journal papers. The unsettled papers

are subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under

40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of

Publishing Opportunities in Educational Technology and Library Science, in both the electronic

and printed editions. Questions should be addressed to the editor at editor@isedj.org or the

publisher at publisher@isedj.org. Special thanks to members of ISCAP/EDSIG who perform

the editorial and review processes for ISEDJ.

2021 ISCAP Board of Directors

Eric Breimer
Siena College

President

James Pomykalski

Susquehanna University
Vice President

Jeffry Babb
West Texas A&M
Past President/

Curriculum Chair

Jeffrey Cummings

Univ of NC Wilmington
Director

Melinda Korzaan

Middle Tennessee State Univ
Director

Niki Kunene

Eastern CT St Univ
Director/Treasurer

Michelle Louch

Carlow University
Director

Michael Smith
Georgia Institute of Technology

Director/Secretary

Lee Freeman
Univ. of Michigan - Dearborn

Director/JISE Editor

Tom Janicki
Univ of NC Wilmington

Director/Meeting Facilitator

Anthony Serapiglia
St. Vincent College

Director/2021 Conf Chair

Copyright © 2021 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Paul Witman, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://isedj.org/; https://iscap.info

Information Systems

Education Journal

Editors

Jeffry Babb

Co-Editor
West Texas A&M

University

Paul Witman
Co-Editor

California Lutheran
University

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Ira Goldman

Teaching Cases
Co-Editor

Siena College

Paul Witman
Teaching Cases

Co-Editor California
Lutheran University

Donald Colton
Emeritus Editor Brigham

Young University
Hawaii

Anthony Serapiglia
Associate Editor

 St. Vincent’s College

Jason H. Sharp
Associate Editor
Tarleton State

University

2021 ISEDJ Editorial Board

Wendy Ceccucci
Quinnipiac University

Ulku Clark
U of North Carolina Wilmington

Amy Connolly
James Madison University

Jeffrey Cummings
U of North Carolina Wilmington

Christopher Davis
U of South Florida St Petersburg

Mark Frydenberg
Bentley University

Nathan Garrett
Woodbury University

Biswadip Ghosh
Metropolitan St U of Denver

Ranida Harris
Indiana University Southeast

Scott Hunsinger
Appalachian State University

Melinda Korzaan
Middle Tennessee St Univ

James Lawler
Pace University

Li-Jen Lester
Sam Houston State University

Michelle Louch
Carlow College

Jim Marquardson
Northern Michigan Univ

Mary McCarthy
Central CT State Univ

Richard McCarthy
Quinnipiac University

Muhammed Miah
Tennessee State Univ

RJ Podeschi
Millikin University

James Pomykalski
Susquehanna University

Renee Pratt
Univ of North Georgia

Dana Schwieger
Southeast Missouri St Univ

Cindi Smatt
Univ of North Georgia

Karthikeyan Umapathy
University of North Florida

Thomas Wedel
California St Univ Northridge

Peter Y. Wu
Robert Morris University

Jason Xiong
Appalachian St University

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://isedj.org/; https://iscap.info

An Investigation on Student Perceptions of Self-
Regulated Learning in an Introductory Computer

Programming Course.

Pratibha Menon

menon@calu.edu

Department of Computer Science,
Information Systems and Electrical Technology

California University of Pennsylvania
California, PA, 15419

Abstract

Learning how to become a self-regulated learner could benefit students in introductory undergraduate
courses, such as computer programming. This study explores the perceived value of instructional and
skill-building activities and students' self-efficacy to learn and apply programming skills in an
introductory computer programming course. The instructional activities include code-demos through

which the instructor demonstrates several cognitive strategies for self-regulated learning. Four different
skill-building activities accompanied by Q&A sessions let the students model the teacher's practices, and
apply various self-regulated learning methods to strengthen their programming skills. Surveys are
implemented and analyzed to learn the students’ perceptions of the task value of skill-building activities

and the Q&A sessions and their reported self-efficacy for independent mastery, problem-solving,
correcting errors, and experimenting with programs. Studies revealed that the perceived ability to
master programming independently is significantly correlated to the perceived task value of activities

that required students to complete programs similar to the instructor's code-demos. Students who
report a higher self-efficacy for problem-solving also positively value the Q&A sessions through which
they obtain help from the instructor to complete tasks on pre-written codes.

Keywords: Computer-programming, Self-Regulated-Learning, self-efficacy, problem-solving, teaching,
learning.

1. INTRODUCTION

Introductory computing courses are generally
regarded as difficult and often see many dropouts
that lead to attrition (Kinnunen & Malmi, 2006).

According to (Beaubouef & Mason, 2005), most
attrition occurs during freshman and sophomore
years. Studies have also shown that students
often do not acquire good practice as they
complete their introductory computing courses
(Lister et al., 2004). One approach to increasing
success rates in undergraduate computer

programming courses is teaching students how to
become more effective self-regulated learners

who will apply deliberate practice to improve their
programming skills.

Self-regulated learning (SRL) is an active process
in which the learners take significant initiative in

their learning process and persevere by
continually adapting to the tasks at hand
(Zimmerman, 2002). They set learning goals,
monitor their goals, and regulate their cognition,
motivation, and behavior to achieve their set
goals (Pintrich, 2004).

A key determinant of whether learners employ
SRL depends on the beliefs about their
capabilities (Cleary& Zimmerman, 2006). SRL

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://isedj.org/; https://iscap.info

strategies and beliefs of self-efficacy to do a

particular task are interdependent; both require
the presence of specific cognitive capacities, such
as the ability to set goals, self-monitor, reflect,

and make judgments. More importantly, both also
support personal agency or control. Students’
academic self-efficacy is related to motivation
and academic achievement (Komarraju & Nadler,
2013). Self-efficacy combines judgments of one’s
ability to accomplish a task, confidence in one’s
skills to perform a task, and expectancy for

success in the task.

Another motivational factor that positively
impacts SRL is the learner's task value (Pintrich,
2000) (Pintrich & Zusho, 2002). A student can
perceive a task as valuable based on its perceived

utility, importance, or interest.

Improving students' self-efficacy in learning
through SRL strategies could significantly benefit
students in an introductory computer
programming course (Bergin et.al, 2005). The
majority of learning in a computer programming

course occurs outside the classroom, as it
involves hands-on practice in problem-solving,
writing, compiling, and testing computer
programs. However, many college students do
not know how to effectively self-regulate their
learning process (Bembenutty, 2008). First-year
students often rely on their teachers' support

during secondary schooling to direct their
learning processes (Chemers et.al, 2001).

Therefore, many freshmen students find it
challenging to engage in self-directed learning
that requires repetitions of planning-practice-
and-reflection cycles.

This study explores the value of various
instructional and skill-building activities that can
teach some of the critical self-regulated learning
strategies required to master computer
programming. This study's context is an
undergraduate level introductory programming

class of 22 students in a computer information
system program at a public university. This study
considers an instructional approach that models
the instructor's practice of applying the SRL

process during a programming demonstration
and Q&A sessions. Additionally, this study also
considers four different skill-building activities

through which students get an opportunity to
emulate the instructor's practices to solve
programming problems and develop critical skills.

This study attempts to find the correlation
between the student perceptions of the learning

activities' task value and the reported self-
efficacy for independent mastery, problem-

solving, correcting errors, and experimenting

with programs.

2. RELATED WORK

This study assumes that learning computer
programming practice occurs as a cyclical
exchange of knowledge and information between
the learner and an external learning environment.
Besides the learner's interaction with external
agents, a learner goes through an internal

process that regulates the thoughts and actions
within the learner's mind. A Self-Regulated-
Learning (SRL) model is used to identify various
steps in a learning process.

2.1 The teaching-learning model

For this study, the learner's interaction with the
learning environment is assumed to occur in two
ways; 1) between the learner and the teacher,
and 2) between the learner and an external
learning tools such as an Integrated Development
Environment (IDE). These interactions may be
termed as the Teacher-Practice cycle and the

Teacher-Modeling cycle, respectively (Laullilard,
2012). The Teacher-Practice cycles involve
interactions in which the teacher demonstrates
the ideal way to practice a skill and provides
useful feedback to the students to improve their
skill. On the other hand, the teacher-modeling
cycle allows the student to independently model

the teacher practices and involves an interaction
between the learner and the learning tool, which

in this study is the IDE. Teacher-Modeling cycles
influence the learner's abilities to engage in
independent and deliberate practice to improve
programming and problem-solving skills. The

IDE provides immediate feedback to students and
provides opportunities for students to engage in
repeated practice and self-regulated learning.
Although there might be several relevant
interactions among the learners, which are
beyond this paper's scope.

In a programming course, the Teacher-Practice
cycle typically consists of code-demonstrations
and Q&A sessions used to discuss coding and
problem-solving practices. The Teacher-Modeling

cycle is enabled through skill-building problems
that require the use of an IDE to implement
solutions. A teacher may provide additional

feedback and support through regular Q&A
sessions to help students understand and apply
appropriate actions based on the IDE feedback.

2.2 The Self-Regulated Learning Model
Self-Regulated-Learning (SRL) is a research area

under which many variables that influence
learning, such as self-efficacy, volition, and

https://journals.sagepub.com/doi/full/10.1177/2332858418809346
https://journals.sagepub.com/doi/full/10.1177/2332858418809346

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://isedj.org/; https://iscap.info

cognitive strategies, are studied within a

comprehensive and holistic approach. A meta-
analytic study of SRL identifies various models
that researchers can utilize to suit their research

goals better and focus (Panadero, 2017). This
study draws from previous studies on SRL that
posits that Self-regulated learning can be taught
(Pintrich & Zusho, 2002). SRL strategies can be
transferred to students through instructions
specific to the learning context (Perels, Dignath,
& Schmitz, 2009). These studies show that

providing direct instructions on specific strategies
and using the right learning environment can
enhance students’ self-regulated learning.

This study's SRL model is derived from
Zimmerman's work (Zimmerman & Moylan,

2009). Zimmerman's SRL model is organized into
three phases: forethought, performance, and
self-reflection. In the forethought phase, the
students analyze the task, set goals, and plan
how to reach them.

Students execute the task in the performance

phase as they monitor their progress and use
self-control strategies to keep themselves
cognitively engaged and motivated to finish the
task. Finally, in the self-reflection phase, students
assess and understand the factors that might
have impacted their success or failure. The self-
reflection phase generates reactions that can

positively or negatively influence how the
students approach the task in later performances.

Zimmerman’s cyclical phase model has been
tested in a series of studies. Studies that compare
experts and non-experts in sports show that
experts performed more SRL actions (Cleary &

Zimmerman, 2001) (Cleary et al., 2006).

Zimmerman’s three-phase SRL model could be
applied to model the learning process in a
computer programming course. Students need to
analyze the task requirements in a programming
course and continuously monitor their code to find
errors before arriving at an acceptable

programming solution. After completing a task, it
would help the students reflect on their coding
habits and practices to improve their

performance. By providing students with suitable
instruction during the Teacher-Practice cycles,
the teacher can model different ways by which
students may monitor their practices. Students

could apply these learning strategies to take
control of their learning during the Teacher-
Modeling cycles.

Previous studies have examined the role of self-
regulation within the educational context of

computer programming (Bergin et al., 2002)

(Kumar et al., 2005) (Chen, 2020) (Ramirez et
al., 2018).

Figure 1. Zimmerman’s Self-Regulated-
Model (Zimmerman & Moylan, 2009)

These studies' focus has been to evaluate the
impact of self-regulated learning strategies on

students' coding performance. Another study by

Castellanos et al. uses students' source code to
study student motivation, performance, and
learning strategies (Castellanos, 2017). Unlike
the two studies mentioned earlier, the study
described in this paper evaluates the perceived
value of teaching and learning activities and the

self-efficacy required to learn and practice
programming through a course that instructs
cognitive strategies for self-regulated learning
through the course contents. This study focuses
on students' self-efficacy and not on their
measured or reported performance in the course.

Extensive recent work on SRL exists in building
online, adaptive learning systems with open-
learner-models (OLMs) that allow learners to

visualize and inspect their progress during the
learning process. It has been pointed out that
OLM can support metacognition and self-

regulation (Bull & Kay, 2013). Moreover,
researchers have incorporated OLM in all phases
of self-regulation, i.e., preparation, performance,
and appraisal, and in the areas of cognitive,
metacognitive, motivational, and emotional
support (Hooshyar et al., 2020). For example,
OLM has been used to improve self-assessment

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://isedj.org/; https://iscap.info

accuracy through dialog-based support (Suleman

et al., 2016) and improve engagement in a
programming course (Hossieni et al., 2020). All
these studies were performed in full-online

learning that does not include any teacher's direct
intervention during the learning process. The
study described in this paper models a typical
freshman-level, under-graduate classroom
scenario. The teacher still plays a central role in
mediating students' self-regulation strategies.
Therefore, this paper's focus is on a teaching-

learning model that includes the central role of a
teacher in designing and supporting the learning
process by adapting to the learners' needs.

3. THE DESIGN APPROACH

The instructional design evaluated in this study
incorporates teaching strategies for the Teacher-
Practice cycle and suitable learning activities for
the Teaching-Modeling cycle. The teaching
methods are chosen such that they incorporate
the three phases of Zimmerman’s SRL model.

3.1 Designing the Instructional Activities
The teacher-practice learning cycle consists of
activities through which the instructor, who is also
an expert programmer, models the programming
practices. Table 1 shows the instructional
activities in the Teacher-Practice cycle. Code-
demonstrations (code-demos) explain the

programming process through task analysis, code
development, execution, and testing. The sample

code used for the code-demo contains extensive
documentation and comments that students can
refer to later on.

The forethought/planning phase of the code-
demo typically includes a detailed explanation
and analysis of the problem statement to identify
the functional and data requirements. These
planning activities are written down as part of the
code documentation in the code's comments
section. The instructor may use real-world

examples to show the value of the problem. The
instructor will then teach students to identify the
problem's inputs and the expected outputs,
create a test plan, and search for similar problems

that use similar programming structures.

The code-demo's performance phase typically

involves the instructor elaborating on the
systematic thought process required to write the
program sequences. The instructor encourages
extensive use of comments next to the code
statements. Students also observe how the
instructor applies techniques such as tracing the

variables or printing out the variables' values to
test and incrementally build their code.

Table 1. Instruction Activities – Teacher-
Practice Learning Cycle

The self-reflection phase of each code-demo is
used to analyze various options for accomplishing
the same outputs. The instructors discusses

acceptable coding practices that are relevant to
the problem. The instructor also highlights the
challenges commonly encountered while solving
the problem and improve their problem solving
and programming skills.

Integral to the Teacher-Practice learning cycle are

the Q&A sessions. The Q&A sessions are
conducted during the regular class session after
students get adequate time to complete learning
activities. These activities are described in Table
2. During the Q&A sessions, the instructor would
clear any misconceptions or problem-solving

difficulties students would have experienced while

completing a learning activity. The instructor may
also discuss the graded assignments and some of
the common errors and misconceptions that
would have appeared in student submissions.

3.2 Designing Practice Exercises
The Teacher-Modeling cycle follows the Teacher-
Practice cycle. Students learn to apply the
teacher's program development practices
previously explained through the code-demos.
Through shorter practice problems, such as the
Test-Tube, Hack-the-code, Messed-up-code,

students practice essential programming skills
that could be used to develop larger programs.

The Do-It-Yourself (DIY) exercises are more
time-consuming activities that students complete
at home. These activities contain problems that
are analogous to the ones explained during code-

demos. By observing the sample code provided
during the code-demos, students can recollect
and emulate the practices of the instructor and
apply all three phases of SRL to document and
write the code by themselves using an IDE. The

Forethought Performance Self-Reflection

Q&A

Sessions

Task planning ,

Goal Setting for

the class

Discussions on

Identifying and

correcting errors;

adopting good

practices

Choosing

practice

materials to

strengthen

practice

Instructional activities -

 Teacher-Practce Learning Cycle

Code

 Demos

Problem Analysis,

 Solution planning,

Reviewing Test

Plans

Choice of constructs,

Identifying right

sequence,

Tracing variables,

Running Tests

Evaluating Style

&

Practices and

Errors

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 17

https://isedj.org/; https://iscap.info

DIY activities also advise students to analyze the

problems and the test plan, write extensive
comments, and incrementally build their code. A
sample DIY activity problem is shown in Appendix

B.

Table 2. Type of Practice Exercises –

Teacher-Modeling Cycle

As they learn to write programs, novice
programmers generate programming errors, and
they need to learn how to identify the cause and
correct these errors. Many students require help
to understand the types of errors and on how to

recall their previous troubleshooting experiences
to improve their programming skills.

The instructor developed activities called Hack-
the-code and Messed-up-code to help students
gain practice and become comfortable with
detecting and correcting logical, syntax and

runtime errors. The Messed-up code contains one
or more errors that students need to identify and

correct. Hack-the-code is an activity in which
students need to alter a pre-written code's logic
to obtain the required set of outputs. The Messed-
up code and Hack-the-code activities intend to

encourage students to feel comfortable in
experimenting with their code. Another activity
that encourages students to solve problems by
experimentation is the Test-Tube activity. This
activity requires students to develop and execute
a test-plan for a given code and, in most cases,
also requires them to trace the variables. All

these activities intend to teach cognitive and
meta-cognitive strategies that improve coding
practice. Appendix B contains Samples of Hack-
the-code, Test-Tube, and Messed-up code
activities.

The learning activities let students work on the

problems by themselves and learn how to ask for
help from their peers and instructor. Students are
encouraged to apply the three phases: task
analysis, performance monitoring, and self-
reflection for every task they perform. The Q&A
sessions address the problems students faced

while working on the activities. Students attempt
the smaller activities during class time, and the
more extensive DIY activities are completed at

home. Students received class participation

points for attempting and not necessarily
completing these activities. These activities
prepare students to complete graded assignment

problems and the exams.

4. THE STUDY

This study's primary intent is to analyze students'
perceptions of the task value and their self-
efficacy in an introductory programming course.

This study is conducted in an undergraduate
computer programming course that teaches
introductory programming using Java. Results of
a final, end-of-the-course survey are used to
study the student perceptions of the usefulness of
various learning activities and students' perceived

self-efficacy to learn computer programming.
Appendix A shows the final survey questions. An
initial survey during the beginning of the course
was also used to assess the learning needs of the
incoming students. The questions of the initial
survey are as listed in Table 3.

The surveys used a 5-point Likert scale to score
student responses. Nineteen students attempted
the final survey, and 20 students attempted the
initial survey. Student surveys are administered
anonymously during class time. Students were
required to attempt all the assigned skill-
building/learning activities assigned throughout

the course. Practicing these skill-builder activities
could potentially give enough cognitive and

learning skills to help students regulate their
efforts towards writing good computer programs.

5. RESULTS

5.1 The need for instruction of skills to learn
to program
Table 3 shows the results of an initial survey
conducted during the first week of the course.
Students were less concerned about how much
they could master this course's contents than

about having the right skills and abilities to learn
to program. This survey was administered to
students during the first week of the course after
the instructor discussed the course syllabus.

Table 3 indicates the self-reported prior
experience with computer programming. Since

data collected using a 5-point Likert scale is
ordinal, a Spearman-rank correlation method is
used to investigate the correlation between the
degree of prior exposure to computer
programming and students' learning concerns.
Prior exposure to programming negatively

correlates with a moderately significant
correlation coefficient (rho of -0.6, p = 0.005)

Activity name

DIY

Test-Tube

Messed Up Code

Hack the Code

Analyze an errored-code

Experiment with a given code to produce a

set of outputs (including errors)

Test a given code by varying the inputs,or by

making suggested changes to obtain a given

output

Try out every code-demo independently,

following the instructor's

comments/explanation.

 Practice Exercises -

Teacher-Modeling Learnng Cycle

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 18

https://isedj.org/; https://iscap.info

with the students' concerns about having the

right skills to learn to program.

Table 3. Survey response distributions on

the perceived self-efficacy to learn to
program - before attending the course.

The correlation between prior exposure to
programming and concerns about learning the
subject matter was not significant (rho = -0.3,
p=0.15). These results show that students with

lesser prior exposure to programming were more
concerned about having the right skills to learn to
program than their concern about mastering the
subject matter. These results pointed to the

possibility that an instructional strategy that
included explicit activities to build essential

learning skills might be valuable to develop
students' perceived self-efficacy in their ability to
learn to program.

5.2 Perceptions of the value of learning
activities in the course

A final survey administered at the end of the
course showed the perceived value of various
learning activities that became a regular part of
instruction throughout the semester. Appendix A
lists the final survey questions. Table 4 shows
some of the results of the final survey. Most

students agreed that practicing and participating

in these learning activities were valuable in
acquiring the programming skills that they were
expected to learn from the course.

All the activities, except for the Q&A sessions,
required students to apply their knowledge and

skills to identify the problem, plan the solution,
write the code, correct errors, and test the code
–all by themselves. These activities provided
students with different ways to apply one or more

SRL skills related to learning how to develop

programming solutions. The Q&A sessions were
the time when students obtained help and
feedback from the instructor.

Table 4. Student response distribution on
the effectiveness of different learning
activities in developing programming skills

Survey results on students’ perceptions, depicted

in Table 5, showed that 18 out of 19 respondents
agree or strongly agree that they feel comfortable
experimenting with their code.

Table 5. Student response distribution on
various indicators of student self-efficacy

related to learning programming

Very

Much

Disagree

Somewhat

 Disagree

Neutral Somewhat

Agree

Very

Much

 Agree

I am concerned

about how

much I can

master the

subject matter

2 3 2 7 6

I am concerned

if I have the

right skills to

learn

programming

1 6 6 3 4

I have some

prior knowledge

of programming

8 3 2 3 4

Very

Much

Disagree

Disagree
Neutral

Agree

Very

Much

 Agree

I feel that learning

how to program

has improved my

problem solving

skills

0 0 3 7 9

I feel confident to

experiment with

my programs

0 0 1 8 10

I feel confident

that I can correct

programming

errors

0 0 0 9 10

I believe that one

can master

programming only

by working on

independently on

hands-on activities

1 2 6 7 3

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 19

https://isedj.org/; https://iscap.info

All the respondents also report that they feel

confident in their ability to correct programming
errors. Out of the 19 respondents, 16 (85% of
respondents) feel that learning how to program

has improved their problem-solving skills.
However, nearly 9 out of 19 (48%) respondents
do not believe that they can master programming
only by working independently on hands-on
activities. At the same time, high value of the
Q&A sessions, as shown in Table 4, shows that
students have relied on getting help from the

instructor through the Q&A sessions.

5.3 Correlation studies
A Spearman-Rho correlation was used to study
the co-occurrence of various factors indicating
self-efficacy (listed in Table 5) and the perceived

value of various instructional methods (listed in
Table 4). Table 6 shows the value of rho and p
values after correlating the student responses.
For the sample of 19 respondents, there existed
a significant correlation (rho = 0.6, p < 0.01)
between students' belief in their ability to
independently master programming and the

perceived value of doing many DIY activities.

Table 6. Correlation results showing values
of rho and p

Another significant correlation (rho = 0.6, p<
0.01) existed between the value of the Q&A
sessions and the perception that learning to
program has improved their problem-solving

skills. No significant correlation was found to
ascertain that the perceived values of Test-tube
or Hack-the-code are associated with any of the
factors that indicate the perceived self-efficacy
measure listed in Table 5. A moderately strong

correlation was seen between the value of

messed-up code and the perceived ability to
master programming independently.

5.4 The Instructor’s reflection on the results
Both the Q&A session and the DIY activities
involved the instructor's support to a much
greater extent than the Test-tube, Hack-the-
code, or the Messed-up-code activities. The DIY
activities problems were very similar to those
used in the code-demos to explain problem-

solving. The code-demos provide a scaffold for
students to work on their DIY problems. However,
the DIY activities did require students to read the
question prompt, discover a similar problem in
the code-demos, write the solution, implement
the code, debug, and test the codes with various

inputs. The DIY activities resembled mini-
projects, while the other learning activities were
shorter problem-solving activities. Students were
provided with a pre-written code for the Messed-
up-code, Test-tube, and Hack-the-code activities.
The value of completing the DIY programs by
'walking in the instructor's shoes’ seems to

correlate more with the belief that students can
master programming through independent
practice.

By reflecting upon the classroom experience, it
was observed that students did not require much
help from the instructor to complete the DIY

activities. This could be due to the fact that the
DIY closely resembled the examples in the code-

demos that had extensive documentation
corresponding to the planning, reflection and
implementation phases of SRL. However, to
complete the Test-tube, Hack-the-code, and

Messed-up-code activities, students had no
template to work with and had to recall similar
problems or situations from their memory. As a
result students required more help from the
instructor for these activities. Majority of the Q&A
sessions addressed ways to reformulate the task
and identify similar problems from experience.

From an instructor’s perspective, asking
questions and seeking help is an important skill
required to become independent, self-directed

learners. A student who considers Test-tube and
Hack-the-code as valuable to their learning is still
not likely to say that they believe they can master

programming independently, possibly because
they needed more help and support to complete
the tasks. Compared to the Test-tube and Hack-
the-code activities, the Messed-up-code, which
moderately correlated with belief in independent-
mastery, did not require students to alter the

inputs. A significant correlation between
confidence in problem-solving skills and the value

Task

Value of

Q&A

Task

Value of

DIY

Task

Value of

Messed-

up-code

Task

Value of

Hack-the-

code

Task

Value of

Test-

Tube

Improved

problem

solving skills

(0.57,

0.01)

(0.308,

 0.13)

(0.07,

.8)

(0.21,

0.38)

(0.21,

0.38)

Experiment

with programs

(0.4,

0.08)

(0.25,

 0.56)

(-0.06,

0.65)

(0.03,

 0.9)

(0.05,

.8)

Correct

programming

errors

(0.33,

0.16)

(0.18,

0.44)

(-0.16,

0.68)

(0.5,

0.5)

(0.5,

0.5)

Master

programming

only by doing

indepedent

hands-on

activities

(0.4,

 0.08)

(0.6,

0.006)

(0.46,

0.04)

(0.3,

0.20)

(0.19,

.40)

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 20

https://isedj.org/; https://iscap.info

of Q&A indicates that students are likely to view

help and support as factors that improve their
problem-solving, but not necessarily towards
developing independent-mastery.

In addition to needing more help with the Test-
tube, Messed-up-code, and Hack-the-code,
students tended to make more mistakes, even
though they would eventually figure out a way to
correct the mistakes. From an instructor's
perspective, learning how to correct mistakes

indicates self-regulated learning. However, if
students perceive mistakes negatively, they are
less likely to register these activities as
contributing to their confidence to learn
independently. Despite their perceived task
value, Test-tube, Messed-up-code, and Hack-the-

code, they were not significantly correlated to
confidence for independent mastery.

6. CONCLUSIONS

This study investigates the student perceptions of
the role of teacher-practice activities and teacher-

modeling activities in an introductory computer
programming class. The majority of the students
agree that all the hands-on learning activities had
significantly helped them acquire the
programming skills, even though more than half
of the students reported that they were not
confident in their ability to master programming

independently. Emulating the instructor's coding
process through the DIY activities is what the

students found as most valuable in mastering
their programming skills independently, and the
Q&A sessions were strongly perceived and
correlated with confidence in problem-solving

skills. Future iterations of the course could
consider tweaking the self-directed learning
activities so that students can see the value of
making mistakes and getting help as an essential
part of their ability to master programming
independently. Future studies could look into
learning strategies that could help students

regulate their behavior and motivation at a
granular level as they encounter learning
challenges.

7. ACKNOWLEDGEMENTS

The author would like to thank and acknowledge

the PASSHE-FPDC grant for funding the instructor
during summer 2019. The grant funding helped
the author acquire the required professional
development on Self-Regulated Learning and
Design Thinking applied in this study.

8. REFERENCES

Beaubouef, T., & Mason, J. (2005). Why the high
attrition rate for computer science students:
some thoughts and observations. ACM

SIGCSE Bulletin, 37(2), 103-106.

Bembenutty, H. (2008). The teacher of teachers
talks about learning to learn: An interview
with Wilbert (Bill) J. McKeachie. Teaching of
Psychology, 35, 363–372.

Bergin, S., Reilly, R., & Traynor, D. (2005)
“Examining the role of self-regulated learning

on introductory programming performance”,
Proceedings of the first international
workshop on Computing education research,
pp. 81-86, 2005.

Bull, S & Kay, J. (2013) “Open learner models as
drivers for metacognitive processes,” in

International Handbook of Metacognition and
Learning Technologies. Springer, pp. 349–
365.

Castellanos, F. H. Restrepo-Calle, F., González. A,
& Echeverry, J. R. (2017) "Understanding the
relationships between self-regulated learning
and students source code in a computer

programming course," 2017 IEEE Frontiers in
Education Conference (FIE), Indianapolis, IN,
2017, pp. 1-9,.

Chemers, M. M., Hu, L. T., Garcia, B. F.
(2001). Academic self-efficacy and first year

college student performance and adjustment.
Journal of Educational psychology,

93(1), 55–64.

Chen, C. S., (2002) "Self-regulated learning
strategies and achievement in an introduction
to information systems course", Information
technology learning and performance journal,
vol. 20, no. no. 1, pp. 11.

Cleary, T., Zimmerman, B. J., & Keating, T.
(2006). Training physical education students
to self-regulate during basketball free throw
practice. Res. Q. Exerc. Sport 77, 251–262.

Cleary, T., & Zimmerman, B. J. (2012). “A cyclical
self-regulatory account of student
engagement: theoretical foundations and

applications,” in Handbook of Research on
Student Engagement, eds S. L. Christenson
and W. Reschley (New York, NY: Springer
Science), 237–257.

Hooshyar, D. M., Pedaste, K., Saks, ̈A., Leijen,
E. Bardone, & Wang, M. (2020) “Open
learner models in supporting self-regulated

learning in higher education: A systematic

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 21

https://isedj.org/; https://iscap.info

literature review, ”Computers & Education,

p.103878

Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P.,
Malmi, L., Pollari-Malmi, K., Schunn, C., and

Sirkiä, T. (2020) Improving Engagement in
Program Construction Examples for Learning
Python Programming. International Journal
of Artificial Intelligence in Education.

Kinnunen, P., & Malmi, L. (2006). Why students
drop out CS1 course? Paper presented at the
Proceedings of the second international

workshop on Computing education research.

Komarraju, M. & Nadler, D. (2013). Self-efficacy
and academic achievement: Why do implicit
beliefs, goals, and effort regulation

matter? Learning and Individual Differences,
25, 67–72.

Kumar, V., Winne, P., Hadwin, A., Nesbit, J. et al.,
(2005) "Effects of self-regulated learning in
programming", Advanced Learning
Technologies. ICALT 2005. Fifth IEEE
International Conference on, pp. 383-387.

Laurillard, D. (2012) Teaching as a Design
Science. (New York: Routledge).

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W.,
Hamer, J., Lindholm, M., McCartney, R.,
Moström, J. E., Sanders, K., Seppälä, O.,
Simon, B., & Thomas, L. (2004). A Multi-
National Study of Reading and Tracing Skills

in Novice Programmers. ACM SIGCSE
Bulletin, 36(4), 119-150.

Panadero E. (2017). A Review of Self-regulated
Learning: Six Models and Four Directions for
Research. Frontiers in psychology, 8, 422.

Perels, F., Dignath, C., & Schmitz, B. (2009). Is it
possible to improve mathematical
achievement by means of self-regulation

strategies? Evaluation of an intervention in

regular math classes. European Journal of

Psychology of Education, 24(1), 17.

Pintrich, P. (2004). A conceptual framework for
assessing motivation and self–regulated

learning in college students. Educational
Psychology Review, 16, 385–407.

Pintrich, P. R. (2000). The role of goal orientation
in self-regulated learning. In M. Boekaerts,
P.R. Pintrich, & M. Zeidner (Eds.), Handbook
of self-regulation (pp. 451–502) (pp. 451–
502). San Diego, CA: Academic Press.

Pintrich, P. R., & Zusho, A. (2002). The
development of academic self-regulation: The
role of cognitive and motivational factors. In
A. Wigfield & J. S. Eccles (Eds.), A Vol. in the

educational psychology series. Development
of achievement motivation (p. 249–284).

Academic Press.

Ramírez, J. J. E., Rosales-Castro, L. F., Restrepo-
Calle & González, F. A. (2018) "Self-
Regulated Learning in a Computer
Programming Course," in IEEE Revista
Iberoamericana de Tecnologias del
Aprendizaje, vol. 13, no. 2, pp. 75-83.

Suleman, R. M., Mizoguchi, R. & Ikeda, M. (2016)
“A new perspective of negotiation-based
dialog to enhance metacognitive skills in the
context of open learner models,”
International Journal of Artificial Intelligence
in Education, vol. 26, no. 4, pp. 1069–1115,

publisher: Springer.

Zimmerman, B.J. (2002). Becoming a self-
regulated learner: An overview. Theory Into
Practice, 41 (2), 64-70.

Zimmerman, B. J., & Moylan, A. R. (2009). Self-
regulation: Where metacognition and
motivation intersect. In Handbook of

metacognition in education (pp. 311-328).

Routledge.

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 22

https://isedj.org/; https://iscap.info

Appendix A

Very Much

Disagree- 0

 Disagree-

1

Neutral- 2 Agree - 3 Very Much

 Agree-4

Hack-the-code: Experimenting with the code to alter the outputs helped

me learn better

I believe that one can master programming

by working only independently on hands on activities.

I feel that learning how to program has improved my problem solving skil ls

I feel confident to experiment with my programs

I feel confident that I can correct programming errors

Messed-up-code: Analyzing and fixing an errored code is a vauable learning

method for this course

Final Survey - conducted at the end of the course

Please answer these questions based on your learning experience

in the CIS 120 course

The Q&A session is a valuable learning method for this course

Test-Tube: Experiementing with code is a valuable learning method

for this course

DIY : Trying out the code-demos using Eclipse is a valuable learning

method for this course

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 23

https://isedj.org/; https://iscap.info

Appendix B
1. A Sample DIY problem:

Shopping Cart – Create a file called ShoppingCart.java

Please refer to the code demo called VariableDataEntry.java prior to attempting this

problem. This problem shows you how to:

• obtain data from the user, scan this data, and save it in an appropriate variable.

• perform arithmetic using the numeric data types,

• print a message displaying values of all the variables.

In this program you will capture data of an item for a ShoppingCart application. Your

program may need to know the following properties: customer_name, item_name, item

price, sales tax rate, item quantity, calculated total price of all items in the cart

A ShoppingCart may need the following behaviors:

• Obtain the following data from the user for a single item: customer_name,

item_price, sales_tax_rate, item_quantity. Scan these values and store them in

variables of appropriate data type.

• Calculate the total price of all items in the cart

• Print a message listing all the item variables with its total calculated price (that

includes the sales_tax factored in).

2. A Sample Hack-the-Code activity:

Refer to the code called AgeCheckerCase2.java.

 Hack this code so that your decision structure calculates the ticketPrice based on the

following rule: For an age that is less than 12, give a 20% discount on ticketPrice, but for an

age greater than 65, give just 10% discount on the ticketPrice for all other age groups

between and including 12 and 65, give just 2% discount on ticketPrice.

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 24

https://isedj.org/; https://iscap.info

3. A Sample Test-Tube activity

1. Determine the value of result, i/4 and (i<gate) for each iteration of the while loop

and complete the table shown below

gate = 5 n =2 i result i/4 i<gate

5 2 0 0

5 2

5 2

5 2

5 2

5 2

2. Determine the value of result, i/4 and (i<gate) for each iteration of the while loop

and complete the table shown below for a gate = 10 and n = 3. Add more rows if

needed.

gate = 10 n =3 i result i/4 i<gate

5 2 2 0

5 2

5 2

5 2

5 2

5 2

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 25

https://isedj.org/; https://iscap.info

A Sample Messed-up Code Activity

Problem: Use decision structures to check if a variable userLetter is a vowel in the English

alphabet. Assume the value of userLetter is already obtained from the user and set to an

appropriate data type in each of the following responses. Correct the errors each of the

following responses that assumes a given data type for userLetter,

 Response 1: userLetter is a String.

if (userLetter.equalsIgnoreCase "a"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "e"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "i"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "o"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "u"){

System.out.println("Letter is a vowel");

}

else{

System.out.println("Letter is not a vowel");

}

Response 2: userLetter is a char

if(user == a){

 System.out.println("It’s a Vowel ");

 }

Information Systems Education Journal (ISEDJ) 19 (6)
ISSN: 1545-679X December 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 26

https://isedj.org/; https://iscap.info

else if (user == e){

 System.out.println("It’s a Vowel ");

 }

else if (user == i){

 System.out.println("It’s a Vowel ");

 }

else if (user == o){

 System.out.println("It’s a Vowel ");

 }

else if (user == u){

 System.out.println("It’s a Vowel ");

 }

else {

 System.out.println("Not a vowel ");

 }

Response 3: userLetter is a String and you need to use a || in your if condition

if else(letter.equalsIgnoreCase("A||E||I||O||U")){

 System.out.println("you got a vowel");

}

Response 4: userLetter is a char and you need to use a || in your if condition

if (userLetter = a || e || I || o || u) {

System.out.println("This letter is a vowel.");

else if () {

System.out.println("This letter is not a vowel.");}

