

Information Systems

Education Journal

Volume 19, No. 3

June 2021
ISSN: 1545-679X

In this issue:

4. Development of a Small Cybersecurity Program at a Community College

Patrick Ward, Claremont Graduate University

11. Cognitive Learning Strategies in an Introductory Computer Programming

Course

Pruthikrai Mahatanankoon, Illinois State University

James Wolf, Illinois State University

21. An Inventory of Privacy Curricula Offerings in Higher Education Student

Dustin Steinhagen, Dakota State University

Chase Lucas, Dakota State University

Mary Francis, Dakota State University

Mark Lawrence, Dakota State University

Kevin Streff, Dakota State University

31. Online teaching effectiveness: A case study of online 4-week classes in a

graduate information systems program

 Joni K. Adkins, Northwest Missouri State University

 Cindy Tu, Northwest Missouri State University

38. The Importance of Faculty/Staff Support During Times of Crisis
Kiku Jones, Quinnipiac University

Bruce Saulnier, Quinnipiac University

Julia Fullick-Jagiela, Quinnipiac University

Lori N. K. Leonard, The University of Tulsa

47. From Engagement to Empowerment:

Project-Based Learning in Python Coding Courses

Mark Frydenberg, Bentley University

Kevin Mentzer, Bryant University

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://isedj.org/; https://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed

academic journal published by ISCAP (Information Systems and Computing Academic

Professionals). Publishing frequency is six times per year. The first year of publication was

2003.

ISEDJ is published online (https://isedj.org). Our sister publication, the Proceedings of

EDSIGCON (https://proc.iscap.info) features all papers, panels, workshops, and presentations

from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

EDSIGCON conference. At that point papers are divided into award papers (top 15%), other

journal papers (top 25%), unsettled papers, and non-journal papers. The unsettled papers

are subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under

40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of

Publishing Opportunities in Educational Technology and Library Science, in both the electronic

and printed editions. Questions should be addressed to the editor at editor@isedj.org or the

publisher at publisher@isedj.org. Special thanks to members of ISCAP/EDSIG who perform

the editorial and review processes for ISEDJ.

2021 ISCAP Board of Directors

Eric Breimer
Siena College

President

James Pomykalski

Susquehanna University
Vice President

Jeffry Babb
West Texas A&M
Past President/

Curriculum Chair

Jeffrey Cummings
Univ of NC Wilmington

Director

Melinda Korzaan
Middle Tennessee State Univ

Director

Niki Kunene
Eastern CT St Univ
Director/Treasurer

Michelle Louch

Carlow University
Director

Michael Smith

Georgia Institute of Technology
Director/Secretary

Lee Freeman

Univ. of Michigan - Dearborn
Director/JISE Editor

Tom Janicki

Univ of NC Wilmington
Director/Meeting Facilitator

Anthony Serapiglia

St. Vincent College
Director/2021 Conf Chair

Copyright © 2021 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Paul Witman, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://isedj.org/; https://iscap.info

Information Systems

Education Journal

Editors

Jeffry Babb

Co-Editor
West Texas A&M

University

Paul Witman
Co-Editor

California Lutheran
University

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Ira Goldman

Teaching Cases
Co-Editor

Siena College

Paul Witman
Teaching Cases

Co-Editor California
Lutheran University

Donald Colton
Emeritus Editor Brigham

Young University
Hawaii

Anthony Serapiglia
Associate Editor

 St. Vincent’s College

Jason H. Sharp
Associate Editor
Tarleton State

University

2021 ISEDJ Editorial Board

Wendy Ceccucci
Quinnipiac University

Ulku Clark
U of North Carolina Wilmington

Amy Connolly
James Madison University

Jeffrey Cummings
U of North Carolina Wilmington

Christopher Davis
U of South Florida St Petersburg

Mark Frydenberg
Bentley University

Nathan Garrett
Woodbury University

Biswadip Ghosh
Metropolitan St U of Denver

Ranida Harris
Indiana University Southeast

Scott Hunsinger
Appalachian State University

Melinda Korzaan
Middle Tennessee St Univ

James Lawler
Pace University

Li-Jen Lester
Sam Houston State University

Michelle Louch
Carlow College

Jim Marquardson
Northern Michigan Univ

Mary McCarthy
Central CT State Univ

Richard McCarthy
Quinnipiac University

Muhammed Miah
Tennessee State Univ

RJ Podeschi
Millikin University

James Pomykalski
Susquehanna University

Renee Pratt
Univ of North Georgia

Dana Schwieger
Southeast Missouri St Univ

Cindi Smatt
Univ of North Georgia

Karthikeyan Umapathy
University of North Florida

Thomas Wedel
California St Univ Northridge

Peter Y. Wu
Robert Morris University

Jason Xiong
Appalachian St University

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 11

https://isedj.org/; https://iscap.info

Cognitive Learning Strategies in an Introductory
Computer Programming Course

Pruthikrai Mahatanankoon

pmahata@ilstu.edu

James Wolf
jrwolf@ilstu.edu

School of Information Technology

Illinois State University
Normal, IL 61761, USA

Abstract

Learning a computer programming language is typically one of the basic requirements of being an
information technology (IT) major. While other studies previously investigate computer programming
self-efficacy and grit, their relationships between "shallow" and "deep" learning (Miller et al., 1996) have
not been thoroughly examined in the context of computer programming. Exploratory factor analyses

using data collected from undergraduate information technology students, who just completed their first
programming class shows distinct shallow and deep learning in computer programming. While shallow
learning supports previous research, deep learning has three sub-scale activities: practice by examples,

analytical thinking, and diagramming. The results also reveal that computer programming grit and self-
efficacy have low to moderate correlations with shallow and deep learning, requiring further
examination. Preliminary regression analyses also find that shallow learning positively influences

computer programing grit and self-efficacy. Shallow learning strategies may be more widely employed
during the initial stages of computer programming, while deep learning strategies may be more
prevalent in higher-level computer programming courses. IT educators can examine this shift in
strategies by observing students as they progress from introductory to advanced computer
programming courses.

Keywords: Cognitive Learning, Programming, Deep Learning, Grit, Self-efficacy, Shallow Learning

1. INTRODUCTION

After over 50 years of study, the low success
rates in introductory programming courses
remain among the most intractable problems in

computing education. The problem has been

widely studied, but solutions have proven elusive.
The lack of success in introductory programming
courses and aversion to computer programing are
often mentioned as significant factors in low
retention numbers (McGettrick et al., 2005).

In addition to the large number of students with
low performance, instructors often report a nearly
equal number of students with high performance
(Robins, 2010). As a result, instructors in

introductory programming courses often report a
binomial or two-humped distribution, with
students grouped into the left and right tails, and
few in the middle. This has led to a great deal of
work that aims to understand the difference

between these two student groups.

This reported binomial distribution has also led to
a belief that programming is more innate than
other academic subjects. That is that some
people were born to be programmers while others
are not. This belief is best captured in what Lister

(2010) calls the idea of the "geek gene."
According to this theory, those students born with
the "geek gene" have the innate ability to
program and the attitude necessary to succeed in

mailto:pmahata@ilstu.edu
mailto:jrwolf@ilstu.edu

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 12

https://isedj.org/; https://iscap.info

programming courses. Other students,

presumably those born without the “geek gene”,
are genetically predestined to fail.

However, there is little empirical evidence to
support this hypothesis. While most research
finds that there is a correlation between
mathematical aptitude and success in
introductory programming courses, strong math
skills are correlated with overall collegiate
success (Pea and Kurland, 1984). Further

programmer aptitude tests, like the PAT
(Programmer Aptitude Test) administered by IBM
and others, have shown little association with
career programming success (Pea and Kurland,
1984). As a testament to its lack of predictive
power, IBM no longer administers the PAT to

prospective programmers (Lorenzen and Chang,
2006).

If innate skills and aptitude tests have little
empirical evidence, then what could be the
determinants of success in an introductory
computer programming course? Recently

researchers have begun examining cognitive
factors and traits associated with student success
in programming courses that are malleable and
can be taught. For example, both grit and
computer self-efficacy are associated with
student success in programming courses (Wolf
and Jia, 2015; Kanaparan, Cullen, & Mason,

2013; and Rex & Roth, 1998) are malleable
(McClendon et al., 2017; Bandura, 1997).

Similarly, student choice of cognitive learning
strategies (deep or shallow) has been found to
affect academic success and is changeable
(Marton & Säljö, 1976b).

There has been limited research on the impact of
grit, self-efficacy, and cognitive learning
strategies on student success in introductory
programming courses. This work will examine the
relationship between these three constructs using
scales developed explicitly for the task of

computer programming. The study's purposes
are 1) to test the measurement of cognitive
learning strategies, i.e., shallow and deep
learning, in the computer programming settings,

and 2) to understand their relationships with grit
and self-efficacy. Examining these relationships
will help us extend the roles of grit and self-

efficacy to students' cognitive learning strategies.

2. RELATED LITERATURE

Coding Grit
Grit is the trait-level perseverance and passion

needed to obtain long-term goals (Duckworth et
al., 2007). Grit is associated with academic

success in a variety of academic settings (e.g.,

Duckworth and Quinn, 2009; Duckworth et al.,
2007; & Strayhorn, 2013). Grit changes over
time. People become gritter as they age, and their

grit can be strengthened with deliberate practice
(McClendon et al., 2017).

Grit has been widely studied in academic settings.
For example, Duckworth et al. (2007) found that
"grittier" students were more likely to succeed in
both an Ivy League university and the United

States Military Academy. Strayhorn (2013) found
that African American males with higher grit
earned higher grades in college than same-race
male peers with lower grit. Similarly, Wolf and Jia
(2015) found that grittier students earned higher
grades in introductory programming courses than

their less gritty peers.

While an abundance of studies demonstrates the
positive link between intelligence and academic
achievement (e.g., Laven, 1965), Duckworth et
al. (2007) suggest that grit may be a better
predictor of student success than talent or

intelligence. Similarly, Wolf and Jia (2015) found
that grit was a more powerful predictor of success
in programming courses than college entrance
exam scores.

While Wolf and Jia (2015) investigated the
relationship between "generic grit" and student

programming success, Mahatanankoon & Sikolia
(2017) and Mahatanankoon (2018) altered the

12-point grit scale (Duckworth et al., 2007) to
capture computer programming specific grit or
coding grit. Mahatanankoon (2018) defined
coding grit as the ability to "persevere and focus

through computer programming activities."
Mahatanankoon (2018) found that female
computer science/information students were
grittier. That is, they had higher levels of
perseverance and long-term interest in computer
programming than their male counterparts. In
related work, Mahatanankoon & Sikolia (2017)

found that passion and grit were positively
correlated with computer programming attitude
and retention in computer majors.

Computer Programming Self-efficacy
The widely studied information systems
construct, computer self-efficacy, is an adaption

of the more general self-efficacy (Compeau et al.,
2006). Self-efficacy is four sources and reflects a
future-oriented belief about one's ability to
execute a specific task in a given context
(Bandura, 1997). For example, computer self-
efficacy is one's belief about their ability to use a

computer (Compeau & Higgins, 1995). The four
sources of self-efficacy beliefs are performance

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://isedj.org/; https://iscap.info

accomplishment, vicarious experience, verbal

persuasion, and physiological states (Bandura,
1977). As a result, self-efficacy is malleable.

Computer self-efficacy (CSE) is positively
correlated with academic success in computer
programming courses (e.g., Kanaparan, Cullen, &
Mason, 2013 and Rex & Roth, 1998). Students
with higher computer self-efficacy are more
comfortable using computers and more confident
in their computer-related skills. It is not

surprising that this comfort and confidence leads
to higher grades in computer programming
courses.

In the seminal work in this area, Compeau &
Higgins, 1995 defined computer self-efficacy

(CSE) as the judgment of one's capabilities to use
a computer in diverse situations. Mahatanankoon
(2018) adapted the computer self-efficacy (CSE)
(Compeau & Higgins, 1995) scale to capture self-
efficacy for the specific task of computer
programming. Computer programming self-
efficacy or coding self-efficacy is one's belief

about his/her computer programming ability.
Mahatanankoon (2018) found that computer
programing grit was a significant predictor of
programming self-efficacy.

Deep and Shallow Learning Approaches
Marton, F., & Säljö, R. (1976a) identified two

cognitive learning strategies: deep and surface.
Within this framework, students adopt deep

learning strategies when they intend to fully
understand the subject matter and link it to their
prior knowledge and personal experiences. In
contrast, students adopt shallow learning

strategies when their intention is merely to
reproduce information without any further
analysis (Murphy & Tyler, 2005).

Students using surface cognitive strategies are
primarily concerned with storing the information
into short-term memory, they focus on memory

strategies (i.e., rote processing, repetition,
reciting, and highlighting) (Boyle, Duffy, &
Dunleavy, 2003). Students using surface
cognitive strategies often rush through

assignments and write down the first answer that
comes to mind (Anderman, 1992).

Students using deep cognitive processing
strategies try to understand new concepts by
connecting new material with previously learned
material, adopting a critical attitude towards
information, and stopping to think about their
work (Murphy & Tyler, 2005; Weinstein & Mayer,

1986). Students using deep cognitive processing
strategies often monitor comprehension through

self-quizzing, and engage in paraphrasing or

summarizing (Anderman, 1992). In studies
examining student achievement, several have
found that academic performance was influenced

positively by deep processing (e.g., Fenollar et
al., 2007; Cano, 2005; Elliot et al., 1999; Miller
et al., 1996).

As with earlier studies, we believe that the
constructs under investigation, i.e., coding grit,
coding self-efficacy, and cognitive processing, are

related. The next section describes our methods.

3. METHODS

We conducted a field study to examine the
relationships between coding grit, coding self-

efficacy, and student cognitive learning strategies
in introductory programming courses. The data
were collected in fall 2019 (Sample 1) and spring
2020 (Sample 2). We used Sample 2 to verify
Sample 1's results.

Sample 1

In fall 2019, we collected data from information
technology students enrolled in systems analysis
and design class, which had introductory Java
programming as its prerequisite. Introductory
Java programming is required for all IT majors in
our department. We had 85 initial responses.
After eliminating non-IT majors (n=2),

telecommunication management (n=4), graduate
MSIS students (n=13), duplications (n=6), and

incomplete responses (n=7), we had a final total
of 53 respondents in the study with Computer
Science (32%), Information Systems (42%), and
Cyber Security (26%). ANOVA also showed no

significant mean differences in the research
variables among the IT majors, i.e., Computer
Science (n=17), Information Systems (n=22),
and Cyber Security (n=14). Male students made
up the majority of respondents (74%) in this
sample. However, independent t-tests showed no
significant mean difference in the research

variables between male and female students.

Measures
For computer programming grit and computer

programming self-efficacy, we will use previously
developed scales (Mahatanankoon & Sikolia,
2017; Mahatanankoon, 2018). To examine

shallow and deep learning, we modified the items
developed by Greene and Miller (1993) to fit the
context of computer programming. Appendix A
shows the list of our modified questionnaire.

Analyses and Results of Sample 1

Exploratory factor analysis (EFA) was used to
examine the dimensions of shallow and deep

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://isedj.org/; https://iscap.info

learning in computer programming. Our initial

factor analysis indicated five factors with
eigenvalues higher than or equal to 1.0. Any
factor with cross-loadings was eliminated.

Through several iterations of EFA, Table 1 shows
a three-factor solution with at least .50 loading
value. The solution accounts for 62.7 percent of
the total variance.

We see that shallow learning loaded into a single
factor (Factor 1, SL1-SL4, DL11). We define

Factor 1 as the set of "fundamental" skills in
computer programming, plus DL11 added to the
factor. Deep learning skills loaded into two
factors. Factor 2 included DL3 and DL4 as the
predominant items. DL3 involves working on
several programming examples by repeating the

same type of problems. Similarly, DL4 also relies
on practicing and checking one's understanding of
"new" concepts and rules. Factor 3 entails
analytical thinking of programming, which
demands the ability to classify (DL6), analyze
(DL7) coding problems, and eventually leading to
an optimized solution.

Items Factor 1

Factor 2

Factor 3

SL1 .636

SL2 .971

SL3 .699

SL4 .540

DL3 .618

DL4 .988

DL6 .917

DL7 .567

DL11 .590

Table 1: Sample 1 Three-factor Solution

Sample 2
To verify our previous results, we collected
another set of data using the students taking
systems analysis and design, introduction to
software and hardware concepts, and database
systems in spring 2020. These courses have a
Java programming class as a prerequisite. From

our initial 62 responses, we eliminated three
incomplete and four duplicated responses (n=7).
Three graduate students, one telecommunication

management, and three non-IT majors were
dropped (n=7), giving us a total of 48 responses:
Computer Science (n=11), Information Systems
(n=17), and Cyber Security (n=20). This sample

also has male students as the majority (87.5
percent). ANOVA found no significant mean
differences in the research variables among the
IT majors.

Analyses and Results of Sample 2

Our initial factor analysis resulted in four factors
with eigenvalues higher than or equal to 1.0. Any
factor with cross-loadings or with a loading value

below .50 was eliminated. Through several
iterations of EFA, Table 2 shows a three-factor
solution with at least .50 loading value. The
solution accounts for 60.6 percent of the total
variance.

Our second sample had the same set of

"fundamental" skills as our first sample. The
results differed from Pilot Sample 1 in two
aspects: 1) DL6 loaded onto Factor 2 as its third
item, and 2) DL8 loaded with DL7 as Factor 3.
These differences seem plausible, suggesting that
the classification of programming problems (DL6)

coincide with "practicing by examples" (Factor 2),
and that finding a practical application could
enhance "analytical thinking" (Factor 3).

Items Factor 1

Factor 2

Factor 3

SL1 .622

SL2 .870

SL3 .655

SL4 .544

DL3 .867

DL4 .799

DL6 .652

DL7 .665

DL8 .748

Table 2: Sample 2 Three-factor Solution

Earlier, we questioned the learning role of
diagramming activities and included D1-4 during
our data collection of Sample 2 (see Appendix A).
Using the same EFA process with all previous

items plus the new diagramming items (i.e., SL1-
5, DL1-11, plus D1-4), the initial scree plot and
eigenvalues revealed a five-factor solution. After
several items were dropped due to low factor
loadings (<.50) or cross-factor loadings, the final
EFA iteration had a three-factor solution
capturing 65.6 percent of the variability in

learning. Table 3 shows the results of the factor
loadings higher than .50.

Adding the diagramming items forced other deep
learning strategies to load onto the same factor.
However, without the diagramming items—
dropping D3 and D4—the variability decreased to

58.9 percent (a 6.7 percent reduction) with a
two-factor solution, as shown in Table 4.

The two-factor solution also persisted when we
eliminated the diagram item (D1-D4) from the
model (only Sample 2). To verify this result, we

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://isedj.org/; https://iscap.info

force-loaded the same set of items using Sample

1, the loadings were similar to those of Sample 2,
except for low factor loadings of DL2, DL6, and
DL9.

Items Factor 1

Factor 2

Factor 3

SL1 .634

SL2 .903

SL3 .792

SL4 .624

DL2 .566

DL3 .766

DL4 .718

DL6 .757

DL9 .750

DL10 .732

D1 .590

D3 .936

D4 .785

Table 3: Sample 2 Three-factors Solution with

Diagramming Items

Items Sample 2
(n=48)

Sample 1
(n=53)

SL
α=.826

DL
α=.877

SL
α=.832

DL
α=.782

SL1 .641 .696

SL2 .841 .903

SL3 .880 .766

SL4 .557 .548

DL2^ .624^ --

DL3 .706 .639

DL4 .717 .988

DL6^ .801^ --

DL9^ .779^ --

DL10 .757 .523

D1^ .680^ NA

^ = excluded from composite reliability (α)
calculation

Table 4: Comparing Two-factors Solution of
Both Samples

From our EFAs and results, shallow learning in

computer programming meant that students
focus on memorizing the solution or syntax
without the tacit understanding of the logical

sequences, concepts, and ideas behind coding.
We can provide a list of activities constituting of
what we called the "Shallow Learning" (SL-CP) in

Computer Programming (α sample1=.832, α

sample2=.826) as:
• I try to memorize the steps for solving

programming problems presented in the text
or in the lecture (SL1).

• When I study for the tests, I review my class

notes and look at solved programming
problems (SL2).

• When I study for tests, I used solved

programming problems in my notes or in the
book to help me memorize the 'programming'
steps involved (SL3).

• I find reviewing previously solved
programming problems to be a good way to
study for a test (SL4).

On the contrary, "Deep Learning" in Computer
Programming (DL-CP), from our factor analyses,
constitutes practice by examples, although the
learning activities varied between the two
samples. Nevertheless, these recurring activities
persisted among our respondents (αsample1=.782,

α sample2=.877):
• I work on several programming examples of

the same type of problems when studying this
class so I can understand the problems better
(DL3).

• I work practice programming problems to
check my understanding of new concepts or

rules (DL4).
• I work on practice programming

questions/problems to check my
understanding of new concepts or rules
(DL10).

Besides, there could be other complementing

activities for DL-CP. Based on the data, the sub-
activities might include

a) DL-A Analytical Thinking (αsample1=.601,
αsample2=.610)

• I classify programming problems into
categories before I begin to work them

(DL6).
• When I work a programming problem, I

analyze it to see if there is more than one
way to get the right solution (DL7).

• While learning new programming
concepts, I try to think of practical
applications (DL8).

 b) DL-D Diagramming (α sample2=.816)

• I model different program modules or
functions using some diagramming

techniques (D3).
• I use some diagramming techniques to

understand how programming work (D4).

▪ Some programming problems can be
visualized using diagrams and models
(D1).

▪ I draw pictures or diagrams to help me
solve some programming problems
(DL2).

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://isedj.org/; https://iscap.info

Relationships with Coding Grit and Self-

efficacy
On the one hand, self-efficacy is one's ability to
control the outcome of a task-specific belief

(Bandura, 1977). Coding self-efficacy (C-SE) is
defined as "one's belief about his/her computer
programming ability" (Mahatanankoon, 2018, p.
2). It should enhance one's belief in the success
of learning how to write computer programs. The
higher the level of one's belief is, the more likely
it is for the person to engage in computer

programming. On the other hand, grit—a trait
related to perseverance, passion, long-term
commitment, and interest (Duckworth and Quinn,
2009)—may also be another internal factor driven
by one's intention to enhance their knowledge
and skills. Coding Grit (C-G) is defined as "one’s

ability to persevere and focus through computer
programming activities” (Mahatanankoon, 2018,
p. 2). Coding grit may encourage long-term
learning interests in programming leading to both
shallow and deep learning strategies. Therefore,
to demonstrate nomological validity, we propose
that coding self-efficacy (C-SE) and coding grit

(C-G) that can be predicted by SL-CP, DL-CP, DL-
Analytical Thinking (DL-A), and DL-Diagramming
(DL-D, Sample 2 only).

Tables 5 and 6 reveal low correlations among our
exploratory factors and the established
measures. We see that coding grit and coding

self-efficacy are moderately correlated. The
cognitive learning strategies (i.e., SL-CP, DL-CP,

DL-A, DL-D) are also moderately correlated,
supporting the construct validity and suggesting
that deep learning in computer programming are
multidimensional (also see Tables 1-3).

 SL-CP DL-

CP
DL-A C-G C-SE

SL-CP 1

DL-CP .35 1

DL-A .28 .47 1

C-G -.13 -.18 -.12 1

C-SE .07 -.16 -.02 .59 1

Table 5: Sample 1 Correlation Matrix

 SL-

CP
DL-
CP

DL-A DL-D C-G C-
SE

SL-CP 1

DL-CP .44 1

DL-A .15 .48 1

DL-D .33 .59 .62 1

C-G .22 -.17 .01 .03 1

C-SE .18 -.30 -.11 .02 .50 1

Table 6: Sample 2 Correlation Matrix

From Table 7, we also explored the predictive

validity (not hypothesized). The regression
showed that the SL-CP positively predicted coding
grit and coding self-efficacy. DL-CP, on the other

hand, negatively predicted coding grit and coding
self-efficacy. These significant findings were
found only in Sample 2. In both samples, DL-A
and DL-D did not influence the dependent
variables.

4. DISCUSSION

Our study examined the measurement of shallow
and deep learning in computer programming and
tested the variable’s relationships to coding grit
and coding self-efficacy. EFA reveals the
similarities of shallow learning in previous

studies: route learning emphasized by
memorizing and replicating the steps used to
solve programming problems.

However, deep learning constitutes a multi-
faceted construct. EFA solutions suggest at least
three different activities: practicing, analyzing,

and diagramming. Solving advanced
programming problems calls for various
viewpoints, which may be built on both shallow
learning and higher cognitive strategies. Both
samples yield inconsistent loadings. Future
research warrants a larger sample size.

Our data leads us to question the importance of
diagrams and models leading to programming

solutions. From our factor analyses, the
diagramming items (Sample 2) are not
significantly loaded, although DL2 (“I draw
pictures or diagrams to help me solve some

programming problems’) and D1 (“Some
programming problems can be visualized using
diagrams or models”) correlated with a deeper
level of learning (see Table 4). There are several
plausible explanations:
 1) The introductory programming class is
the prerequisite of systems analysis and design,

in which diagramming techniques are introduced.
Therefore, diagramming is less valued by
students taking programming for the first time.

2) Instructors have not emphasized a

clear connection between the phases of analysis
and design to the implementation (coding)
activities.

3) Diagraming such as a flow chart or
decision tree is used to conceptualize the program
control statements, which is a precursor to
introducing program syntaxes themselves. For
example, the domain model class diagram assists
the development of class definition (coding).

4) Our diagramming items (D1-4) are
oversimplified and do not capture a wide variety

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 17

https://isedj.org/; https://iscap.info

of diagramming activities. UML has a different set

of modeling techniques that coincide with the
different phases of the systems development life
cycle.

The positive correlation between coding grit and
coding self-efficacy is consistent with previous
work. Similarly, shallow and deep learning
strategies also have positive correlations among
their designated items, but they are quite distinct
from coding grit and coding self-efficacy, as our

data have shown. Interestingly, deep learning in
computer programming has an inverse
relationship with coding grit and coding self-
efficacy. We offer several explanations:

Firstly, shallow learning is an essential learning

strategy to complete the class. Many students
who completed an introductory programming
course may focus on shallow learning to get a
passing grade. Lizzio et al. (2002) find a positive
link between a surface approach (“reproducing”
approach with less knowledge integration) and a
higher GPA among commerce students. Lizzio et

al. (2002) posited that the given the narrower
vocational focus of commerce courses and the
typically employed assessment methods, surface
methods, like shallow learning, may be a logical
and strategic choice for students to pursue.

Secondly, deep learning strategies may occur in

other advanced programming classes. Our
samples are students who have just completed

their first introductory programming class.
Therefore, it is likely that deep learning has not
been incorporated into their learning strategy.
Computer programming skills may progress

through different learning stages: Students use
shallow learning to memorize language syntax,
flow controls, and compilation steps. As they
progress towards more advanced programming
classes, evidence of deep learning strategies
could be seen, including more substantial
evidence of coding grit and coding self-efficacy.

The research finding is mixed regarding the
relationship between surface processing and
academic performance, with most studies finding
the relationship as either not statistically

significant or negative (Watkins, 2001).

Thirdly, deep learning strategies may differ from

one IT major to another, which affects the level
of coding grit and coding self-efficacy required.
Students usually begin with similar coding skills
in the introductory programming course. As they
progress to their intended information technology
majors (e.g., computer science, information

systems, cybersecurity, telecommunication, and
others.), their programming needs and skills will

adapt to their changing educational focus.

Therefore, we may observe different types of
deep learning, e.g., analytical thinking and
diagramming, that differ across different IT

majors. Echo this sentiment, Beattie et al. (1997)
suggest that in certain academic situations
adopting a surface approach may be
advantageous. Fenollar et al. (2007) suggest that
that memorization and rote rehearsal might be
appropriate for some types of material and exam
formats.

Lastly, we collected our samples from various
classes and instructors. Student perceptions of
the course workload, teaching quality, and
fairness of assessment influenced student choices
of learning strategies (Lizzio et al., 2002). It is,

therefore, possible that other external factors
could influence computer programming learning
strategies. All in all, we plan to further investigate
this phenomenon using data obtained from
junior/senior-level undergraduate students.

5. CONCLUSIONS

The most significant contribution of this work is
the development, testing and validation of the
Deep Learning in Computer Programming (DL-
CP) and Shallow Learning in Computer
Programming (SL-CP) scales. This work lays the
groundwork for further research into the

intersection of coding grit, coding self-efficacy
and student learning strategy selection in

programming courses. The goal of this work is to
better understand why some students struggle in
programming courses and to equip instructors
with the knowledge needed to help these students

succeed.

Despite IT researchers’ long tradition of modifying
scales to fit specific computer-related tasks,
previous work in this area has often utilized
generic scales, which may fail to capture the
important differences between computer

programming courses and other IT or general
education courses. By creating coding specific
scales for deep and shallow learning strategies,
this work also provides tools that others

investigating the student achievement in
computer programming courses may use to
better understand the antecedents of student

success or failure.

Future work should examine the relationships
between coding grit, coding self-efficacy, shallow
and deep learning strategies, and student
outcomes in both introductory and advanced

programming courses. A longitudinal study of
how the learning strategies change with increased

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 18

https://isedj.org/; https://iscap.info

programming skills may provide pedagogical

insights to instructional scaffolding. It may also
be fruitful to explore whether student cognitive
learning strategies are associated with learning

goals and persistence in computer-related
majors.

6. REFERENCES

Anderman, E.M. (1992). Motivation and Cognitive
Strategy Use in Reading and Writing. In the
annual meeting of the National Reading

Conference, San Antonio, Texas.

Beattie IV, V., Collins, B., & McInnes, B. (1997).
Deep and surface learning: a simple or
simplistic dichotomy?. Accounting
Education, 6(1), 1-12.

Bandura, A. (1977). Self-efficacy: toward a

unifying theory of behavioral
change. Psychological Review, 84(2), 191.

Bandura, A. (1997). Efficacy: The Exercise of
Control. Freeman, New York.

Barrington, K., & Johnson, D. (2005). The
relationship between lab attendance and
academic performance in a computer

information systems course. In Proceedings
of ISECON 2005, Vol. 22 (Columbus OH):
3573

Boyle, E. A., Duffy, T., & Dunleavy, K. (2003).
Learning styles and academic outcome: The

validity and utility of Vermunt's Inventory of
Learning Styles in a British higher education

setting. British Journal of Educational
Psychology, 73(2), 267-290.

Cano, F. (2005). Epistemological beliefs and
approaches to learning: Their change through
secondary school and their influence on
academic performance. British Journal of

Educational Psychology, 75(2), 203–221.

Compeau, D. R., & Higgins, C. A. (1995).
Computer self-efficacy: Development of a
measure and initial test. MIS Quarterly,
19(2), 189-211.

Compeau, D., Gravill, J., Haggerty, N., & Kelley,
H. (2006). Computer self-efficacy. In P.

Zhang and D.F. Galletta (Eds.), Human-
computer Interaction and Management
Information Systems: Foundations, Advances
in Management Information Systems, 225-
261.

Duckworth, A.L., & Quinn, P. D. (2009).
Development and Validation of Short Grit

Scale (Grit-S). Journal of Personality
Assessment, 91(2), 166-174.

Elliot, A.J., McGregor, H.A., & Gable, S. (1999).

Achievement goals, study strategies, and
exam performances: A mediational analysis.
Journal of Educational Psychology, 91(3),

549–563.

Fenollar, P., Roman, S., & Cuestas, P.J. (2007).
University students' academic performance:
An integrative conceptual framework and
empirical analysis. British Journal of
Educational Psychology, 77(4), 873–891.

Jones, C. H. (1984). Interaction of absences and

grades in a college course. The Journal of
Psychology, 116(1), 133-136.

Lavin, D.E. (1956). The Prediction of Academic
Performance, Russell Sage Foundation, New

York.

Lin, G-Y. (2006). Self-efficacy beliefs and their

sources in undergraduate computing
disciplines: an examination of gender and
persistence. Journal of Educational
Computing Research, 53(4), 540-561.

Lister, R. (2011). Computing education research
geek genes and bimodal grades. ACM
Inroads, 1(3), 16-17.

Lizzio, A., Wilson, K., & Simons, R. (2002).
University students' perceptions of the
learning environment and academic
outcomes: implications for theory and
practice. Studies in Higher education, 27(1),

27-52.

Lorenzen, T., & Chang, H. L. (2006).

MasterMind©: a predictor of computer
programming aptitude. ACM SIGCSE
Bulletin, 38(2), 69-71.

Mahatanankoon, P. (2018). Exploring the
Antecedents to Computer Programming Self-
Efficacy. In Proceedings of the 10th

International Conference on Advances in
Information Technology (pp. 1-6).

Mahatanankoon, P., & Sikolia, D. W. (2017).
Intention to Remain in a Computing Program:
Exploring the Role of Passion and Grit. In the
23rd Americans Conference on Information
Systems (AMCIS), Boston (pp. 1-10).

Miller, R., Greene, B., Montalvo, G., Ravindran,
B., & Nicholls, J. (1996). Engagement in
academic work: The role of learning goals,
future consequences, pleasing others, and
perceived ability. Contemporary Educational
Psychology, 21(4), 388–422.

Marton, F., & Säljö, R. (1976a). On qualitative

differences in learning: I—Outcome and

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 19

https://isedj.org/; https://iscap.info

process. British Journal of Educational

Psychology, 46(1), 4-11.

Marton, F., & Säljö, R. (1976b). On qualitative
differences in learning—ii Outcome as a

function of the learner's conception of the
task. British Journal of Educational
Psychology, 46(2), 115-127.

McClendon, C., Neugebauer, R. M., & King, A.
(2017). Grit, Growth Mindset, and Deliberate
Practice in Online Learning. Journal of
Instructional Research, 8, 8-17.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J.,
Lovegrove, G., & Mander, K. (2005). Grand
challenges in computing: Education—a
summary. The Computer Journal, 48(1), 42-

48.

Murphy, S. M., & Tyler, S. (2005). The

relationship between learning approaches to
part‐time study of management courses and

transfer of learning to the
workplace. Educational Psychology, 25(5),
455-469.

Pea, R. D., & Kurland, D. M. (1984). On the
cognitive effects of learning computer

programming. New ideas in
psychology, 2(2), 137-168.

Rex, K., & Roth, R. M. (1998). The relationship of

computer experience and computer self-
efficacy to performance in introductory
computer literacy courses. Journal of

research on computing in education, 31(1),
14-24.

Robins, A. (2010). Learning edge momentum: A
new account of outcomes in CS1. Computer
Science Education, 20(1), 37-71.

Strayhorn, T. L. (2014). What role does grit play
in the academic success of black male

collegians at predominantly white
institutions?. Journal of African American
Studies, 18(1), 1-10.

Watkins, D. (2001). Correlates of approaches to

learning: A cross-cultural meta-analysis. In
R. J. Sternberg & L.-f. Zhang (Eds.), The

educational psychology series. Perspectives
on thinking, learning, and cognitive styles (p.
165–195). Lawrence Erlbaum Associates
Publishers.

Wolf, J. R., & Jia, R. (2015). The role of grit in
predicting student performance in
introductory programming courses: an

exploratory study. In the 2015 SAIS 2015
Proceedings, 21. Retrieved online from
http://aisel.aisnet.org/sais2015/21

Editor’s Note:

This paper was selected for inclusion in the journal as an EDSIGCON 2020 Distinguished Paper. The

acceptance rate is typically 7% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2020.

http://aisel.aisnet.org/sais2015/21

Information Systems Education Journal (ISEDJ) 19 (3)
ISSN: 1545-679X June 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 20

https://isedj.org/; https://iscap.info

Appendix A

DVs Sample 1 Sample 2

IDV Est. t p 95% CI
L/U

IDV Est. t p 95% CI
L/U

Coding
SE

(C-SE)

SL-CP
DL-CP

DL-A

0.148
-0.222

 0.045

0.935
-1.413

0.279

.354

.164

.781

-0.17/0.47
-0.54/0.09

-0.28/0.37

SL-CP
DL-CP

DL-A
DL-D

0.458
-0.606

-0.026
0.219

2.461
-3.286

-0.120
1.151

.018

.002

.905

.256

0.08/0.83
-0.98/-0.23

-0.46/0.41
-0.16/0.60

F=.794, p-value=.503, R2=.046 F=3.448, p-value=.016, R2 =.243

Coding
Grit

(C-G)

SL-CP
DL-CP

DL-A

-0.048
 -0.076

 -0.022

-0.512
-0.819

-0.230

.611

.416

.819

-2.84/1.69
-3.26/1.33

-2.58/2.05

SL-CP
DL-CP

DL-A
DL-D

0.193
-0.176

0.061
0.005

2.327
-2.131

0.643
0.067

.025

.039

.524

.947

0.31/4.33
-4.10/-0.11

-1.58/3.05
-1.99/2.12

F = .657, p-value = .582, R2 = .038 F = 1.866, p-value=.1338, R2=.148

Table 7 Regression Results

Shallow Learning in Computer Programming (SL-CP)

SL1: I try to memorize the steps for solving programming problems presented in the text or in
the lecture.
SL2: When I study for the tests I review my class notes and look at solved programming

problems.
SL3: When I study for tests I used solved programming problems in my notes or in the book
to help me memorize the ‘programming’ steps involved.
SL4: I find reviewing previously solved programming problems to be a good way to study for a
test.
SL5: In order for me to understand what technical terms meant, I memorized the textbook

definitions.
Deep Learning in Computer Programming (DL-CP)

DL1: When studying, I try to combine different pieces of information from course material in

new ways.
DL2: I draw pictures or diagrams to help me solve some programming problems.
DL3: I work on several programming examples of the same type of problems when studying
this class so I can understand the problems better.

DL4: I work practice programming problems to check my understanding of new concepts or
rules.
DL5: I examine example programming problems that have already been worked to help me
figure out how to do similar ‘coding’ problems on my own.
DL6: I classify programming problems into categories before I begin to work them.
DL7: When I work a programming problem, I analyze it to see if there is more than one way
to get the right solution.

DL8: While learning new programming concepts, I try to think of practical applications.
DL9: I put together programming ideas or concepts and draw conclusions that were not
directly stated in course materials.
DL10: I work on practice programming questions/problems to check my understanding of new
concepts or rules.

DL11: When I finish my programming practice questions/problems I check my solution for

syntax errors.
Additional Survey Items for Pilot Sample 2
D1: Some programming problems can be visualized using diagrams and models.
D2: I develop models or pictures to help me visualize how programming work.
D3: I model different program modules or functions using some diagramming techniques.
D4: I use some diagramming techniques to understand how programming work.

