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Abstract  
 
Learning a computer programming language is typically one of the basic requirements of being an 
information technology (IT) major. While other studies previously investigate computer programming 
self-efficacy and grit, their relationships between "shallow" and "deep" learning (Miller et al., 1996) have 
not been thoroughly examined in the context of computer programming. Exploratory factor analyses 

using data collected from undergraduate information technology students, who just completed their first 
programming class shows distinct shallow and deep learning in computer programming. While shallow 
learning supports previous research, deep learning has three sub-scale activities: practice by examples, 

analytical thinking, and diagramming. The results also reveal that computer programming grit and self-
efficacy have low to moderate correlations with shallow and deep learning, requiring further 
examination. Preliminary regression analyses also find that shallow learning positively influences 

computer programing grit and self-efficacy. Shallow learning strategies may be more widely employed 
during the initial stages of computer programming, while deep learning strategies may be more 
prevalent in higher-level computer programming courses. IT educators can examine this shift in 
strategies by observing students as they progress from introductory to advanced computer 
programming courses. 
 
Keywords: Cognitive Learning, Programming, Deep Learning, Grit, Self-efficacy, Shallow Learning 

 
1. INTRODUCTION 

 
After over 50 years of study, the low success 
rates in introductory programming courses 
remain among the most intractable problems in 

computing education. The problem has been 

widely studied, but solutions have proven elusive. 
The lack of success in introductory programming 
courses and aversion to computer programing are 
often mentioned as significant factors in low 
retention numbers (McGettrick et al., 2005).  
 

In addition to the large number of students with 
low performance, instructors often report a nearly 
equal number of students with high performance 
(Robins, 2010). As a result, instructors in 

introductory programming courses often report a 
binomial or two-humped distribution, with 
students grouped into the left and right tails, and 
few in the middle. This has led to a great deal of 
work that aims to understand the difference 

between these two student groups.  

 
This reported binomial distribution has also led to 
a belief that programming is more innate than 
other academic subjects. That is that some 
people were born to be programmers while others 
are not. This belief is best captured in what Lister 

(2010) calls the idea of the "geek gene." 
According to this theory, those students born with 
the "geek gene" have the innate ability to 
program and the attitude necessary to succeed in 

mailto:pmahata@ilstu.edu
mailto:jrwolf@ilstu.edu
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programming courses. Other students, 

presumably those born without the “geek gene”, 
are genetically predestined to fail. 
 

However, there is little empirical evidence to 
support this hypothesis. While most research 
finds that there is a correlation between 
mathematical aptitude and success in 
introductory programming courses, strong math 
skills are correlated with overall collegiate 
success (Pea and Kurland, 1984). Further 

programmer aptitude tests, like the PAT 
(Programmer Aptitude Test) administered by IBM 
and others, have shown little association with 
career programming success (Pea and Kurland, 
1984). As a testament to its lack of predictive 
power, IBM no longer administers the PAT to 

prospective programmers (Lorenzen and Chang, 
2006).  
 
If innate skills and aptitude tests have little 
empirical evidence, then what could be the 
determinants of success in an introductory 
computer programming course? Recently 

researchers have begun examining cognitive 
factors and traits associated with student success 
in programming courses that are malleable and 
can be taught.  For example, both grit and 
computer self-efficacy are associated with 
student success in programming courses (Wolf 
and Jia, 2015; Kanaparan, Cullen, & Mason, 

2013; and Rex & Roth, 1998) are malleable 
(McClendon et al., 2017; Bandura, 1997). 

Similarly, student choice of cognitive learning 
strategies (deep or shallow) has been found to 
affect academic success and is changeable 
(Marton & Säljö, 1976b). 

 
There has been limited research on the impact of 
grit, self-efficacy, and cognitive learning 
strategies on student success in introductory 
programming courses. This work will examine the 
relationship between these three constructs using 
scales developed explicitly for the task of 

computer programming. The study's purposes 
are 1) to test the measurement of cognitive 
learning strategies, i.e., shallow and deep 
learning, in the computer programming settings, 

and 2) to understand their relationships with grit 
and self-efficacy. Examining these relationships 
will help us extend the roles of grit and self-

efficacy to students' cognitive learning strategies.  
 

2. RELATED LITERATURE 
 
Coding Grit  
Grit is the trait-level perseverance and passion 

needed to obtain long-term goals (Duckworth et 
al., 2007). Grit is associated with academic 

success in a variety of academic settings (e.g., 

Duckworth and Quinn, 2009; Duckworth et al., 
2007; & Strayhorn, 2013). Grit changes over 
time. People become gritter as they age, and their 

grit can be strengthened with deliberate practice 
(McClendon et al., 2017).  
 
Grit has been widely studied in academic settings. 
For example, Duckworth et al. (2007) found that 
"grittier" students were more likely to succeed in 
both an Ivy League university and the United 

States Military Academy. Strayhorn (2013) found 
that African American males with higher grit 
earned higher grades in college than same-race 
male peers with lower grit. Similarly, Wolf and Jia 
(2015) found that grittier students earned higher 
grades in introductory programming courses than 

their less gritty peers.  
 
While an abundance of studies demonstrates the 
positive link between intelligence and academic 
achievement (e.g., Laven, 1965), Duckworth et 
al. (2007) suggest that grit may be a better 
predictor of student success than talent or 

intelligence. Similarly, Wolf and Jia (2015) found 
that grit was a more powerful predictor of success 
in programming courses than college entrance 
exam scores.   
 
While Wolf and Jia (2015) investigated the 
relationship between "generic grit" and student 

programming success, Mahatanankoon & Sikolia 
(2017) and Mahatanankoon (2018) altered the 

12-point grit scale (Duckworth et al., 2007) to 
capture computer programming specific grit or 
coding grit. Mahatanankoon (2018) defined 
coding grit as the ability to "persevere and focus 

through computer programming activities." 
Mahatanankoon (2018) found that female 
computer science/information students were 
grittier. That is, they had higher levels of 
perseverance and long-term interest in computer 
programming than their male counterparts. In 
related work, Mahatanankoon & Sikolia (2017) 

found that passion and grit were positively 
correlated with computer programming attitude 
and retention in computer majors. 
 

Computer Programming Self-efficacy 
The widely studied information systems 
construct, computer self-efficacy, is an adaption 

of the more general self-efficacy (Compeau et al., 
2006). Self-efficacy is four sources and reflects a 
future-oriented belief about one's ability to 
execute a specific task in a given context 
(Bandura, 1997). For example, computer self-
efficacy is one's belief about their ability to use a 

computer (Compeau & Higgins, 1995).  The four 
sources of self-efficacy beliefs are performance 
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accomplishment, vicarious experience, verbal 

persuasion, and physiological states (Bandura, 
1977). As a result, self-efficacy is malleable. 
 

Computer self-efficacy (CSE) is positively 
correlated with academic success in computer 
programming courses (e.g., Kanaparan, Cullen, & 
Mason, 2013 and Rex & Roth, 1998). Students 
with higher computer self-efficacy are more 
comfortable using computers and more confident 
in their computer-related skills. It is not 

surprising that this comfort and confidence leads 
to higher grades in computer programming 
courses.  
 
In the seminal work in this area, Compeau & 
Higgins, 1995 defined computer self-efficacy 

(CSE) as the judgment of one's capabilities to use 
a computer in diverse situations. Mahatanankoon 
(2018) adapted the computer self-efficacy (CSE) 
(Compeau & Higgins, 1995) scale to capture self-
efficacy for the specific task of computer 
programming. Computer programming self-
efficacy or coding self-efficacy is one's belief 

about his/her computer programming ability. 
Mahatanankoon (2018) found that computer 
programing grit was a significant predictor of 
programming self-efficacy. 
 
Deep and Shallow Learning Approaches 
Marton, F., & Säljö, R. (1976a) identified two 

cognitive learning strategies: deep and surface. 
Within this framework, students adopt deep 

learning strategies when they intend to fully 
understand the subject matter and link it to their 
prior knowledge and personal experiences. In 
contrast, students adopt shallow learning 

strategies when their intention is merely to 
reproduce information without any further 
analysis (Murphy & Tyler, 2005). 
 
Students using surface cognitive strategies are 
primarily concerned with storing the information 
into short-term memory, they focus on memory 

strategies (i.e., rote processing, repetition, 
reciting, and highlighting) (Boyle, Duffy, & 
Dunleavy, 2003). Students using surface 
cognitive strategies often rush through 

assignments and write down the first answer that 
comes to mind (Anderman, 1992).  
 

Students using deep cognitive processing 
strategies try to understand new concepts by 
connecting new material with previously learned 
material, adopting a critical attitude towards 
information, and stopping to think about their 
work (Murphy & Tyler, 2005; Weinstein & Mayer, 

1986). Students using deep cognitive processing 
strategies often monitor comprehension through 

self-quizzing, and engage in paraphrasing or 

summarizing (Anderman, 1992). In studies 
examining student achievement, several have 
found that academic performance was influenced 

positively by deep processing (e.g., Fenollar et 
al., 2007; Cano, 2005; Elliot et al., 1999; Miller 
et al., 1996).  
 
As with earlier studies, we believe that the 
constructs under investigation, i.e., coding grit, 
coding self-efficacy, and cognitive processing, are 

related. The next section describes our methods.  
 

3. METHODS 
 
We conducted a field study to examine the 
relationships between coding grit, coding self-

efficacy, and student cognitive learning strategies 
in introductory programming courses. The data 
were collected in fall 2019 (Sample 1) and spring 
2020 (Sample 2). We used Sample 2 to verify 
Sample 1's results. 
 
Sample 1 

In fall 2019, we collected data from information 
technology students enrolled in systems analysis 
and design class, which had introductory Java 
programming as its prerequisite. Introductory 
Java programming is required for all IT majors in 
our department. We had 85 initial responses. 
After eliminating non-IT majors (n=2), 

telecommunication management (n=4), graduate 
MSIS students (n=13), duplications (n=6), and 

incomplete responses (n=7), we had a final total 
of 53 respondents in the study with Computer 
Science (32%), Information Systems (42%), and 
Cyber Security (26%). ANOVA also showed no 

significant mean differences in the research 
variables among the IT majors, i.e., Computer 
Science (n=17), Information Systems (n=22), 
and Cyber Security (n=14). Male students made 
up the majority of respondents (74%) in this 
sample. However, independent t-tests showed no 
significant mean difference in the research 

variables between male and female students. 
 
Measures 
For computer programming grit and computer 

programming self-efficacy, we will use previously 
developed scales (Mahatanankoon & Sikolia, 
2017; Mahatanankoon, 2018). To examine 

shallow and deep learning, we modified the items 
developed by Greene and Miller (1993) to fit the 
context of computer programming. Appendix A 
shows the list of our modified questionnaire. 
 
Analyses and Results of Sample 1 

Exploratory factor analysis (EFA) was used to 
examine the dimensions of shallow and deep 
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learning in computer programming. Our initial 

factor analysis indicated five factors with 
eigenvalues higher than or equal to 1.0. Any 
factor with cross-loadings was eliminated. 

Through several iterations of EFA, Table 1 shows 
a three-factor solution with at least .50 loading 
value. The solution accounts for 62.7 percent of 
the total variance.   
 
We see that shallow learning loaded into a single 
factor (Factor 1, SL1-SL4, DL11). We define 

Factor 1 as the set of "fundamental" skills in 
computer programming, plus DL11 added to the 
factor. Deep learning skills loaded into two 
factors. Factor 2 included DL3 and DL4 as the 
predominant items. DL3 involves working on 
several programming examples by repeating the 

same type of problems. Similarly, DL4 also relies 
on practicing and checking one's understanding of 
"new" concepts and rules. Factor 3 entails 
analytical thinking of programming, which 
demands the ability to classify (DL6), analyze 
(DL7) coding problems, and eventually leading to 
an optimized solution. 

 

Items Factor 1 
 

Factor 2 
 

Factor 3 

SL1 .636   

SL2 .971   

SL3 .699   

SL4 .540   

DL3  .618  

DL4  .988  

DL6   .917 

DL7   .567 

DL11 .590   

Table 1: Sample 1 Three-factor Solution 
 

Sample 2 
To verify our previous results, we collected 
another set of data using the students taking 
systems analysis and design, introduction to 
software and hardware concepts, and database 
systems in spring 2020. These courses have a 
Java programming class as a prerequisite. From 

our initial 62 responses, we eliminated three 
incomplete and four duplicated responses (n=7). 
Three graduate students, one telecommunication 

management, and three non-IT majors were 
dropped (n=7), giving us a total of 48 responses: 
Computer Science (n=11), Information Systems 
(n=17), and Cyber Security (n=20). This sample 

also has male students as the majority (87.5 
percent). ANOVA found no significant mean 
differences in the research variables among the 
IT majors. 
 
 

Analyses and Results of Sample 2 

Our initial factor analysis resulted in four factors 
with eigenvalues higher than or equal to 1.0. Any 
factor with cross-loadings or with a loading value 

below .50 was eliminated. Through several 
iterations of EFA, Table 2 shows a three-factor 
solution with at least .50 loading value. The 
solution accounts for 60.6 percent of the total 
variance.   
 
Our second sample had the same set of 

"fundamental" skills as our first sample. The 
results differed from Pilot Sample 1 in two 
aspects: 1) DL6 loaded onto Factor 2 as its third 
item, and 2) DL8 loaded with DL7 as Factor 3. 
These differences seem plausible, suggesting that 
the classification of programming problems (DL6) 

coincide with "practicing by examples" (Factor 2), 
and that finding a practical application could 
enhance "analytical thinking" (Factor 3).  
 

Items Factor 1 
 

Factor 2 
 

Factor 3 

SL1 .622   

SL2 .870   

SL3 .655   

SL4 .544   

DL3  .867  

DL4  .799  

DL6  .652  

DL7   .665 

DL8   .748 

Table 2: Sample 2 Three-factor Solution  
 
Earlier, we questioned the learning role of 
diagramming activities and included D1-4 during 
our data collection of Sample 2 (see Appendix A). 
Using the same EFA process with all previous 

items plus the new diagramming items (i.e., SL1-
5, DL1-11, plus D1-4), the initial scree plot and 
eigenvalues revealed a five-factor solution. After 
several items were dropped due to low factor 
loadings (<.50) or cross-factor loadings, the final 
EFA iteration had a three-factor solution 
capturing 65.6 percent of the variability in 

learning. Table 3 shows the results of the factor 
loadings higher than .50. 
 

Adding the diagramming items forced other deep 
learning strategies to load onto the same factor. 
However, without the diagramming items—
dropping D3 and D4—the variability decreased to 

58.9 percent (a 6.7 percent reduction) with a 
two-factor solution, as shown in Table 4. 
 
The two-factor solution also persisted when we 
eliminated the diagram item (D1-D4) from the 
model (only Sample 2). To verify this result, we 



Information Systems Education Journal (ISEDJ)   19 (3) 
ISSN: 1545-679X  June 2021 

 

©2021 ISCAP (Information Systems and Computing Academic Professionals)                                            Page 15 

https://isedj.org/; https://iscap.info  

force-loaded the same set of items using Sample 

1, the loadings were similar to those of Sample 2, 
except for low factor loadings of DL2, DL6, and 
DL9.  

 

Items Factor 1 
 

Factor 2 
 

Factor 3 

SL1 .634   

SL2 .903   

SL3 .792   

SL4 .624   

DL2  .566  

DL3  .766  

DL4  .718  

DL6  .757  

DL9  .750  

DL10  .732  

D1  .590  

D3   .936 

D4   .785 

Table 3: Sample 2 Three-factors Solution with 

Diagramming Items 
 

Items Sample 2 
(n=48) 

Sample 1 
(n=53) 

SL 
α=.826 

DL  
α=.877 

SL  
α=.832 

DL  
α=.782 

SL1 .641  .696  

SL2 .841  .903  

SL3 .880  .766  

SL4 .557  .548  

DL2^  .624^  -- 

DL3  .706  .639 

DL4  .717  .988 

DL6^  .801^  -- 

DL9^  .779^  -- 

DL10  .757  .523 

D1^  .680^  NA 

^ = excluded from composite reliability (α) 
calculation 

Table 4: Comparing Two-factors Solution of 
Both Samples 
 
From our EFAs and results, shallow learning in 

computer programming meant that students 
focus on memorizing the solution or syntax 
without the tacit understanding of the logical 

sequences, concepts, and ideas behind coding. 
We can provide a list of activities constituting of 
what we called the "Shallow Learning" (SL-CP) in 

Computer Programming (α sample1=.832, α 

sample2=.826) as:  
• I try to memorize the steps for solving 

programming problems presented in the text 
or in the lecture (SL1). 

• When I study for the tests, I review my class 

notes and look at solved programming 
problems (SL2). 

• When I study for tests, I used solved 

programming problems in my notes or in the 
book to help me memorize the 'programming' 
steps involved (SL3). 

• I find reviewing previously solved 
programming problems to be a good way to 
study for a test (SL4). 

 

On the contrary, "Deep Learning" in Computer 
Programming (DL-CP), from our factor analyses, 
constitutes practice by examples, although the 
learning activities varied between the two 
samples. Nevertheless, these recurring activities 
persisted among our respondents (αsample1=.782, 

α sample2=.877): 
• I work on several programming examples of 

the same type of problems when studying this 
class so I can understand the problems better 
(DL3). 

• I work practice programming problems to 
check my understanding of new concepts or 

rules (DL4). 
• I work on practice programming 

questions/problems to check my 
understanding of new concepts or rules 
(DL10). 

 
Besides, there could be other complementing 

activities for DL-CP. Based on the data, the sub-
activities might include  

a) DL-A Analytical Thinking (αsample1=.601, 
αsample2=.610) 

• I classify programming problems into 
categories before I begin to work them 

(DL6). 
• When I work a programming problem, I 

analyze it to see if there is more than one 
way to get the right solution (DL7).  

• While learning new programming 
concepts, I try to think of practical 
applications (DL8). 

 
      b) DL-D Diagramming (α sample2=.816) 

• I model different program modules or 
functions using some diagramming 

techniques (D3). 
• I use some diagramming techniques to 

understand how programming work (D4). 

▪ Some programming problems can be 
visualized using diagrams and models 
(D1). 

▪ I draw pictures or diagrams to help me 
solve some programming problems 
(DL2). 
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Relationships with Coding Grit and Self-

efficacy 
On the one hand, self-efficacy is one's ability to 
control the outcome of a task-specific belief 

(Bandura, 1977). Coding self-efficacy (C-SE) is 
defined as "one's belief about his/her computer 
programming ability" (Mahatanankoon, 2018, p. 
2). It should enhance one's belief in the success 
of learning how to write computer programs. The 
higher the level of one's belief is, the more likely 
it is for the person to engage in computer 

programming.  On the other hand, grit—a trait 
related to perseverance, passion, long-term 
commitment, and interest (Duckworth and Quinn, 
2009)—may also be another internal factor driven 
by one's intention to enhance their knowledge 
and skills. Coding Grit (C-G) is defined as "one’s 

ability to persevere and focus through computer 
programming activities” (Mahatanankoon, 2018, 
p. 2). Coding grit may encourage long-term 
learning interests in programming leading to both 
shallow and deep learning strategies. Therefore, 
to demonstrate nomological validity, we propose 
that coding self-efficacy (C-SE) and coding grit 

(C-G) that can be predicted by SL-CP, DL-CP, DL-
Analytical Thinking (DL-A), and DL-Diagramming 
(DL-D, Sample 2 only). 
 
Tables 5 and 6 reveal low correlations among our 
exploratory factors and the established 
measures. We see that coding grit and coding 

self-efficacy are moderately correlated. The 
cognitive learning strategies (i.e., SL-CP, DL-CP, 

DL-A, DL-D) are also moderately correlated, 
supporting the construct validity and suggesting 
that deep learning in computer programming are 
multidimensional (also see Tables 1-3). 

 
 SL-CP DL-

CP 
DL-A C-G C-SE 

SL-CP 1     

DL-CP .35 1    

DL-A .28 .47 1   

C-G -.13 -.18 -.12 1  

C-SE .07 -.16 -.02 .59 1 

Table 5: Sample 1 Correlation Matrix 
 
 SL-

CP 
DL-
CP 

DL-A DL-D C-G C-
SE 

SL-CP 1      

DL-CP .44 1     

DL-A .15 .48 1    

DL-D .33 .59 .62 1   

C-G .22 -.17 .01 .03 1  

C-SE .18 -.30 -.11 .02 .50 1 

Table 6: Sample 2 Correlation Matrix 
 

From Table 7, we also explored the predictive 

validity (not hypothesized). The regression 
showed that the SL-CP positively predicted coding 
grit and coding self-efficacy. DL-CP, on the other 

hand, negatively predicted coding grit and coding 
self-efficacy. These significant findings were 
found only in Sample 2. In both samples, DL-A 
and DL-D did not influence the dependent 
variables.  

 
4. DISCUSSION 

 
Our study examined the measurement of shallow 
and deep learning in computer programming and 
tested the variable’s relationships to coding grit 
and coding self-efficacy. EFA reveals the 
similarities of shallow learning in previous 

studies: route learning emphasized by 
memorizing and replicating the steps used to 
solve programming problems.  
 
However, deep learning constitutes a multi-
faceted construct. EFA solutions suggest at least 
three different activities: practicing, analyzing, 

and diagramming. Solving advanced 
programming problems calls for various 
viewpoints, which may be built on both shallow 
learning and higher cognitive strategies. Both 
samples yield inconsistent loadings. Future 
research warrants a larger sample size. 
 

Our data leads us to question the importance of 
diagrams and models leading to programming 

solutions. From our factor analyses, the 
diagramming items (Sample 2) are not 
significantly loaded, although DL2 (“I draw 
pictures or diagrams to help me solve some 

programming problems’) and D1 (“Some 
programming problems can be visualized using 
diagrams or models”) correlated with a deeper 
level of learning (see Table 4). There are several 
plausible explanations:  
  1) The introductory programming class is 
the prerequisite of systems analysis and design, 

in which diagramming techniques are introduced. 
Therefore, diagramming is less valued by 
students taking programming for the first time. 

2) Instructors have not emphasized a 

clear connection between the phases of analysis 
and design to the implementation (coding) 
activities. 

3) Diagraming such as a flow chart or 
decision tree is used to conceptualize the program 
control statements, which is a precursor to 
introducing program syntaxes themselves. For 
example, the domain model class diagram assists 
the development of class definition (coding).  

4) Our diagramming items (D1-4) are 
oversimplified and do not capture a wide variety 
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of diagramming activities. UML has a different set 

of modeling techniques that coincide with the 
different phases of the systems development life 
cycle. 

 
The positive correlation between coding grit and 
coding self-efficacy is consistent with previous 
work. Similarly, shallow and deep learning 
strategies also have positive correlations among 
their designated items, but they are quite distinct 
from coding grit and coding self-efficacy, as our 

data have shown. Interestingly, deep learning in 
computer programming has an inverse 
relationship with coding grit and coding self-
efficacy. We offer several explanations: 
 
Firstly, shallow learning is an essential learning 

strategy to complete the class. Many students 
who completed an introductory programming 
course may focus on shallow learning to get a 
passing grade. Lizzio et al. (2002) find a positive 
link between a surface approach (“reproducing” 
approach with less knowledge integration) and a 
higher GPA among commerce students. Lizzio et 

al. (2002) posited that the given the narrower 
vocational focus of commerce courses and the 
typically employed assessment methods, surface 
methods, like shallow learning, may be a logical 
and strategic choice for students to pursue.  
 
Secondly, deep learning strategies may occur in 

other advanced programming classes. Our 
samples are students who have just completed 

their first introductory programming class. 
Therefore, it is likely that deep learning has not 
been incorporated into their learning strategy. 
Computer programming skills may progress 

through different learning stages: Students use 
shallow learning to memorize language syntax, 
flow controls, and compilation steps. As they 
progress towards more advanced programming 
classes, evidence of deep learning strategies 
could be seen, including more substantial 
evidence of coding grit and coding self-efficacy. 

The research finding is mixed regarding the 
relationship between surface processing and 
academic performance, with most studies finding 
the relationship as either not statistically 

significant or negative (Watkins, 2001). 
 
Thirdly, deep learning strategies may differ from 

one IT major to another, which affects the level 
of coding grit and coding self-efficacy required.  
Students usually begin with similar coding skills 
in the introductory programming course. As they 
progress to their intended information technology 
majors (e.g., computer science, information 

systems, cybersecurity, telecommunication, and 
others.), their programming needs and skills will 

adapt to their changing educational focus. 

Therefore, we may observe different types of 
deep learning, e.g., analytical thinking and 
diagramming, that differ across different IT 

majors. Echo this sentiment, Beattie et al. (1997) 
suggest that in certain academic situations 
adopting a surface approach may be 
advantageous. Fenollar et al. (2007) suggest that 
that memorization and rote rehearsal might be 
appropriate for some types of material and exam 
formats.  

 
Lastly, we collected our samples from various 
classes and instructors. Student perceptions of 
the course workload, teaching quality, and 
fairness of assessment influenced student choices 
of learning strategies (Lizzio et al., 2002). It is, 

therefore, possible that other external factors 
could influence computer programming learning 
strategies. All in all, we plan to further investigate 
this phenomenon using data obtained from 
junior/senior-level undergraduate students. 
 

5. CONCLUSIONS 

 
The most significant contribution of this work is 
the development, testing and validation of the 
Deep Learning in Computer Programming (DL-
CP) and Shallow Learning in Computer 
Programming (SL-CP) scales. This work lays the 
groundwork for further research into the 

intersection of coding grit, coding self-efficacy 
and student learning strategy selection in 

programming courses. The goal of this work is to 
better understand why some students struggle in 
programming courses and to equip instructors 
with the knowledge needed to help these students 

succeed.  
 
Despite IT researchers’ long tradition of modifying 
scales to fit specific computer-related tasks, 
previous work in this area has often utilized 
generic scales, which may fail to capture the 
important differences between computer 

programming courses and other IT or general 
education courses. By creating coding specific 
scales for deep and shallow learning strategies, 
this work also provides tools that others 

investigating the student achievement in 
computer programming courses may use to 
better understand the antecedents of student 

success or failure. 
 
Future work should examine the relationships 
between coding grit, coding self-efficacy, shallow 
and deep learning strategies, and student 
outcomes in both introductory and advanced 

programming courses. A longitudinal study of 
how the learning strategies change with increased 
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programming skills may provide pedagogical 

insights to instructional scaffolding. It may also 
be fruitful to explore whether student cognitive 
learning strategies are associated with learning 

goals and persistence in computer-related 
majors. 
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Appendix A 

 

DVs Sample 1 Sample 2 

IDV Est. t p 95% CI 
L/U 

IDV Est. t p 95% CI 
L/U 

Coding 
SE  

(C-SE) 

SL-CP 
DL-CP 

DL-A 

0.148 
-0.222 

 0.045 

0.935 
-1.413 

0.279 

.354 

.164 

.781 

-0.17/0.47 
-0.54/0.09 

-0.28/0.37 

SL-CP 
DL-CP 

DL-A 
DL-D 

0.458 
-0.606 

-0.026 
0.219 

2.461 
-3.286 

-0.120 
1.151 

.018 

.002 

.905 

.256 

0.08/0.83 
-0.98/-0.23 

-0.46/0.41 
-0.16/0.60 

F=.794, p-value=.503, R2=.046 F=3.448, p-value=.016, R2 =.243 

Coding 
Grit 

(C-G) 

SL-CP 
DL-CP 

DL-A 

-0.048 
 -0.076 

 -0.022 

-0.512 
-0.819 

-0.230 
 

.611 

.416 

.819 

-2.84/1.69 
-3.26/1.33 

-2.58/2.05 

SL-CP 
DL-CP 

DL-A 
DL-D 

0.193 
-0.176 

0.061 
0.005 

2.327 
-2.131 

0.643 
0.067 

.025 

.039 

.524 

.947 

0.31/4.33 
-4.10/-0.11 

-1.58/3.05 
-1.99/2.12 

F = .657, p-value = .582, R2 = .038 F = 1.866, p-value=.1338, R2=.148 

Table 7 Regression Results 

 
 
 
Shallow Learning in Computer Programming (SL-CP) 

SL1: I try to memorize the steps for solving programming problems presented in the text or in 
the lecture. 
SL2: When I study for the tests I review my class notes and look at solved programming 

problems. 
SL3: When I study for tests I used solved programming problems in my notes or in the book 
to help me memorize the ‘programming’ steps involved. 
SL4: I find reviewing previously solved programming problems to be a good way to study for a 
test. 
SL5: In order for me to understand what technical terms meant, I memorized the textbook 

definitions. 
Deep Learning in Computer Programming (DL-CP) 

DL1: When studying, I try to combine different pieces of information from course material in 

new ways. 
DL2: I draw pictures or diagrams to help me solve some programming problems. 
DL3: I work on several programming examples of the same type of problems when studying 
this class so I can understand the problems better. 

DL4: I work practice programming problems to check my understanding of new concepts or 
rules. 
DL5: I examine example programming problems that have already been worked to help me 
figure out how to do similar ‘coding’ problems on my own. 
DL6: I classify programming problems into categories before I begin to work them. 
DL7: When I work a programming problem, I analyze it to see if there is more than one way 
to get the right solution. 

DL8: While learning new programming concepts, I try to think of practical applications. 
DL9: I put together programming ideas or concepts and draw conclusions that were not 
directly stated in course materials. 
DL10: I work on practice programming questions/problems to check my understanding of new 
concepts or rules. 

DL11: When I finish my programming practice questions/problems I check my solution for 

syntax errors. 
Additional Survey Items for Pilot Sample 2 
D1: Some programming problems can be visualized using diagrams and models. 
D2: I develop models or pictures to help me visualize how programming work. 
D3: I model different program modules or functions using some diagramming techniques. 
D4: I use some diagramming techniques to understand how programming work. 

 
 


