JOURNAL OF INFORMATION SYSTEMS APPLIED RESEARCH

Volume 14, Issue. 4 December 2021 ISSN: 1946-1836

In this issue:

- 4. Integration of Information Systems: Robotic Process Automation William H. Money, The Citadel
- 13. The Sting of Adoption: The Technology Acceptance Model (TAM) with Actual Usage in a Hazardous Environment Edgar Hassler, Appalachian State University Preston MacDonald, Appalachian State University Joseph Cazier, Appalachian State University James Wilkes, Appalachian State University
- 21. An International Review and Study on Perceptions of Security, Adoption, and Implementation of Electronic Health Records Faith Aliyu, Georgia Southern University Hayden Wimmer, Georgia Southern University Loreen Powell, Bloomsburg University of Pennsylvania Carl Redman Jr. University of San Diego
- 29. Open Source Software: A Detailed Analysis of Contributions and Quality Alan Peslak, Penn State University D. Scott Hunsinger, Appalachian State University

The **Journal of Information Systems Applied Research** (JISAR) is a double-blind peer reviewed academic journal published by ISCAP, Information Systems and Computing Academic Professionals. Publishing frequency is three to four issues a year. The first date of publication was December 1, 2008.

JISAR is published online (https://jisar.org) in connection with CONISAR, the Conference on Information Systems Applied Research, which is also double-blind peer reviewed. Our sister publication, the Proceedings of CONISAR, features all papers, panels, workshops, and presentations from the conference. (https://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the conference. At that point papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are subjected to a second round of blind peer review to establish whether they will be accepted to the journal or not. Those papers that are deemed of sufficient quality are accepted for publication in the JISAR journal. Currently the target acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at publisher@jisar.org. Special thanks to members of ISCAP/EDSIG who perform the editorial and review processes for JISAR.

2021 ISCAP Board of Directors

Eric Breimer Siena College President

Jeffrey Cummings Univ of NC Wilmington Director

Michelle Louch Carlow University Director

Tom Janicki Univ of NC Wilmington Director/Meeting Facilitator James Pomykalski Susquehanna University Vice President

Melinda Korzaan Middle Tennessee State Univ Director

Michael Smith Georgia Institute of Technology Director/Secretary

Anthony Serapiglia St. Vincent College Director/2021 Conf Chair Jeffry Babb West Texas A&M Past President/ Curriculum Chair

Niki Kunene Eastern CT St Univ Director/Treasurer

Lee Freeman Univ. of Michigan - Dearborn Director/JISE Editor

Copyright © 2021 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

JOURNAL OF INFORMATION SYSTEMS APPLIED RESEARCH

Editors

Scott Hunsinger Senior Editor Appalachian State University Thomas Janicki Publisher University of North Carolina Wilmington

2021 JISAR Editorial Board

Ulku Clark University of North Carolina Wilmington

Ed Hassler Appalachian State University

Muhammed Miah Tennessee State University

James Pomykalski Susquehanna University Christopher Taylor Appalachian State University

Karthikeyan Umapathy University of North Florida

Jason Xiong Appalachian State University

Open Source Software: A Detailed Analysis of Contributions and Quality

Alan Peslak arp14@psu.edu Penn State University Scranton, PA, USA

D. Scott Hunsinger hunsingerds@appstate.edu Appalachian State University Boone, NC, USA

Abstract

Open source software has been an option for many applications since the dawn of computing. Simply put, open source is "software for which the original source code is made freely available and may be redistributed and modified." (Oxford dictionary). But with this free software, there often comes little support and sometimes perceived or actual questionable quality. Our study examines the current attitudes and participation among the developer community towards contributing to open source software as well as the present perceptions of quality among this group. Overall, we find that levels of participation are relatively low but do vary by demographic factors. Also, the perceived levels of quality remain below proprietary/closed source software, but again, demographics and country of origin show much variation.

Keywords: Open source software, quality, contribution, adoption

1. INTRODUCTION

Open source software (OSS) is defined by Oxford dictionary (2020) as "software for which the original source code is made freely available and may be redistributed and modified." Some people may prefer using open source software over proprietary software for multiple reasons, including control, training, security, stability, and community. Developers have more control with OSS because they can examine the code and make changes as desired. Since open source code is publicly accessible, people can study it to become better programmers. Some users perceive OSS to be more secure than proprietary software since updates and fixes can be done without asking permission. OSS may be considered more stable since it can still be updated even if the original developers cease working on the software. In addition. OSS often creates a strong community of users and developers (https://opensource.com/).

Many people use some type of open source software on a daily basis. Table 1 displays examples of some of the most popular open software that has been released.

Wordpress	Magento
Mozilla Firefox	Mozilla Thunderbird
FileZilla	GnuCash
Audacity	GIMP
OpenOffice	VLC
Handbrake	Pidgin
Freemind	Notepad++
7-Zip	Blender
PDFCreator	Calibre
TrueCrypt	Ubuntu

Table 1: Popular OSS Examples

The rest of our paper is arranged as follows: the Literature Review examines previous research in this area, including the usage of several theories including the Technology Acceptance Model (TAM) and Unified Theory of Acceptance and Use of Technology (UTAUT). Section 3 explains the methodology we used for this paper. Section 4 presents our results, while Section 5 provides discussion of these results along with conclusions.

2. LITERATURE REVIEW

A number of previous studies have examined the adoption of OSS. Some of these have used wellknown theories such as the Technology Acceptance Model (TAM), Unified Theory of Acceptance and Use of Technology (UTAUT), along with additional constructs and theories, in order to better understand the factors influencing OSS adoption. Others have applied Grounded Theory, systemic literature reviews, frameworks, or other approaches.

Multiple researchers have used variations of TAM in their research regarding OSS adoption. Gallego et al. (2015) developed a research model based upon the Technology Acceptance Model, adding several constructs. The authors discovered that user training, user fit, technological complexity and trainers' support influence the adoption of OSS. Gwebu and Wang (2010) conducted an exploratory study of free open source software (FOSS) users' perceptions, using the Technology Acceptance Model along with other constructs. They identified potential barriers to FOSS adoption and provided recommendations that may increase adoption of FOSS. Gallego et al. (2007) identified the variables and factors that have a direct effect on individual attitude towards OSS adoption by using a variation of the technology acceptance model. Taha et al. (2018) examined the main factors affecting the adoption of OSS in the desktop environment. They administered over 340 auestionnaires and found that quality, compatibility, support, and usability are the key factors that influence OSS adoption. Racero et al. (2020) examined students' behavioral intention to use OSS by combining the Technology Acceptance Model Self-Determination and They used the following constructs: Theory. Autonomy, competence, relatedness, perceived ease of use, perceived usefulness and behavioral intention. The results confirmed the positive influence of intrinsic motivations, autonomy and relatedness on the usefulness and ease of use and on behavioral intention to use Open Source Software.

Alrawashdeh et al. (2019) used an integrated model of OSS characteristics and UTAUT to survey 255 individuals working at public and private organizations. Software security, software interoperability, and software quality had a significant impact on performance expectancy. The authors concluded that effort expectancy, performance expectancy, selfefficacy, social influence, software cost, software interoperability, software quality, and software security are all important indicators in OSS acceptance and implementation.

Hauge, Ayala, and Conradi (2010) performed a systematic literature review of the adoption of open source software in software-intensive organizations. They identified 112 papers that provide empirical evidence on how organizations adopt OSS and created a classification framework consisting of six ways in which these organizations adopt OSS. The researchers found that existing research on OSS adoption does not sufficiently describe the context of the companies that are studied. Steinmacher et al. (2015) conducted a systematic literature review on the barriers faced by newcomers to open source software projects. They examined 291 studies using Grounded Theory to categorize the barriers into five groups: Social interaction, newcomers' previous knowledge, finding a way to start, documentation, and technical hurdles. They also classified the problems with regard to their origin into three categories: newcomers, community, or product. In order to examine OSS adoption in commercial firms, Thanasopon (2015) developed a framework consisting of four elements: external environment, organizational, technological, and individual contexts. The author found 14 factors that impact OSS adoption which fits into these four elements. Some of these factors encourage the adoption of OSS, while others are inhibitors.

Gwebu and Wang (2011) looked at the role of social identification in the adoption of OSS. The authors noted that most previous work had focused on OSS adoption at the organizational level; minimal work existed at the individual level. They found that social identification is a key driver of OSS adoption. Marsan, Pare, and Beaudry (2012) applied the socio-cognitive perspective of IT innovation adoption and the organizing vision theory by surveying 271 IT specialists in order to better understand the adoption of OSS in organizations. They classified specialists into two groups: Detractors and supporters. Detractors possess more years of experience but have less exposure to OSS than supporters. The perceptions of IT specialists are positively associated with their company's openness to OSS

adoption and the existence of an organizational policy that favors the adoption of OSS.

Katsamakas and Xin (2019) created a gametheoretic analytical model to explain when organizations adopt open source software applications and platforms and to explore the implications. Their analysis examines whether adoption patterns are socially beneficial. They found that open-source adoption depends upon organizational IT capabilities, network effects, and the fit of OSS with the company's application needs. Their results imply that open-source adoption can be socially inefficient.

Lopez et al. (2015) modeled OSS adoption strategies using a goal-oriented notation, examining objectives and dependencies to explore the consequences of adopting one strategy vs. another. They applied their approach to a large telecommunications company.

Sarrab and Rehman (2014) noted that governments and organizations are beginning to adopt OSS on a large scale. They conducted an empirical study of OSS adoption based upon software quality characteristics. Their research used additional internal quality characteristics for selecting OSS that were added to the dimensions of DeLone and McLean information systems' model. The authors organized the quality characteristics into a hierarchy, in which they list characteristics with three main dimensions of quality: information, service, and system.

Sbaia et al. (2018) mentioned that OSS is being adopted more by both organizations and individuals. They examined multiple OSS adoption models and used a case study approach to determine what information can be automatically retrieved from OSS platforms such as GitHub, SonarCloud, and StackExchange.

Silic and Back (2015) examined the influence of risk factors in the decision-making process for OSS adoption. They surveyed 188 IT decisionmakers using an Open Source Risk Adoption Model to look at the perceived IT security risk relationship with the intention to adopt OSS. The authors found that IT security risk significantly influences OSS adoption intention.

Donga et al. (2019) suggest that innovation speed of OSS projects can influence users' interest in downloading and using the software. They used a large-scale panel data set from 7442 OSS projects on SourceForge between 2007 and 2010 and found inverted U-shaped relationships between initial release speed and user downloads, as well as between user downloads and update speed.

Most previous research has used much smaller data sets than what we use in our study.

3. METHODOLOGY

In order to study the current usage of open source software, we used the comprehensive 2019 Stack Overflow survey with over 88,000 respondents. Stack Overflow's annual Developer Survey is the largest and most comprehensive survey of people who code around the world. Each year, they field a survey covering everything from developers' favorite technologies to their job preferences. This year (2019) marked the ninth year they've published their annual Developer Survey results, and nearly 90,000 developers took the 20-minute survey earlier this year. (Stack Overflow, 2019). Despite our survey's broad reach and capacity in forming valuable conclusions, we acknowledge that our results don't represent everyone in the software community evenly. But, the 2019 survey had nearly 90,000 respondents and nearly 70,000 of those respondents were employed as software professionals. Our results include selected questions from the survey as well as detailed demographics available. The results were analyzed using IBM SPSS 26.

Our main research questions are focused on two areas participation and perceived quality:

RQ1 How active is the developer community in open source projects?

RQ1a Are there demographic and geographic differences in the developer community in participation in open source projects?

RQ2 What is the perceived quality of open source projects?

RQ2a Are there demographic and geographic differences in the developer community in perceived quality of open source projects?

4. RESULTS

Two specific questions in the survey asked whether respondents contributed to open source projects and also their opinion of the quality of open source software relative to proprietary or closed source software, basically commercial software:

How often do you contribute to open source?

- 1. Never
- 2. Less than once per year

- 3. Less than once a month but more than once per year
- Once a month or more often; and

How do you feel about the quality of open source software (OSS)?

- 1. OSS is, on average, of HIGHER quality than proprietary / closed source software
- 2. The quality of OSS and closed source software is about the same
- 3. OSS is, on average, of LOWER quality than proprietary / closed source software

Table 2 shows the overall means for these two questions based on the 86000+ responses. Overall, participation is slightly better than once a year. But this measure of central tendency is a bit misleading. The largest percentage of respondents did not contribute to open source software as shown in Table 3. Over 36% have NEVER contributed to open source. Overall, though this means that 64% have contributed at some time. 64% have either never or less than once per year but also 64% did at some point. We believe this shows an active participation among the developer community in open source projects. We must note of course that participation in this survey serves as somewhat of a bias and may not represent the entire developer population but we do believe that this result does indicate an active and significant force in the software field.

		OPEN SOURCE PARTICIPATION	OPEN SOURCE QUALITY
N	Valid	88883	86842
	Missing	1	2042
Mean		2.11674	2.32009

Table 2: Means for Open SourceParticipation and Quality

		Frea.		Valid Percent	Cum. Percent
Valid	Never	32295		36.3	36.3
	Less than	24972	28.1	28.1	64.4
	Once per				
	year				
	1 mon- 1	20561	23.1	23.1	87.6
	year				
	More 1	11055	12.4	12.4	100.0
	per mon.				
	Total	88883	100.0	100.0	
Miss.	System	1	.0		
Total		88884	100.0		

Table 3: Open Source Participation

As noted, many researchers have suggested that open source software may be viewed by the population as of lesser quality than proprietary/closed/commercial software. The mean pf 2.32 suggests a perceived somewhat lower quality since 2 is equal and 3 is lesser. Quality of Open source software was seen by 42% as lower quality (Table 5) but 47% saw as same quality as Proprietary software. Only 11% saw as better. The fact that 47% saw open source software was seen as equal quality suggests that not all view open source software poorly. In fact, nearly half see as equal.

(I)1=Male,2=Female, (J)1=Male,2=Female, Sig. 3=Other 3=Other

1	2	.000
	3	.001
2	1	.000
	3	.000
3	1	.001
	2	.000

 Table 4: Post Hoc Analysis

	Freq.	Percent	Valld Percent	Cum. Percent
Higher Quality	8759	9.9	10.1	10.1
Same	41527	46.7	47.8	57.9
Lower Quality	36556	41.1	42.1	100.0
Total	86842	97.7	100.0	
System	2042	2.3		
	88884	100.0		
	Quality Same Lower Quality Total System	Quality Same 41527 Lower 36556 Quality Total 86842 System 2042 88884	Quality 3100 and an and a state of a	Higher Quality 8759 9.9 10.1 Same 41527 46.7 47.8 Lower Quality 36556 41.1 42.1 Total 86842 97.7 100.0 System 2042 2.3 10.1

 Table 5: Quality Analysis

The other area of our research questions was to explore whether there were demographic and/or geographic differences in participation and perceived quality. Variables available to us in the survey and used to explore for significant differences were Age, Gender, Years programming, Year started programming, Race, Professionals versus non-professionals, and Country. We examined all these variables.

1=Male, 2=Female 3=Other	Ν	Std. Deviation	
1	2.13563	77919	1.034646
2	1.82282	6344	.996989
3	2.19306	4439	1.097084
Total	88702	1.038480	
		• (0.0.1.)

Table 6: Age and Gender (p < .001)

The first variable analyzed was gender. There were 8 categories of gender which we compressed to 3 categories because of low numbers in the neither male nor female identities. The results are in Table 6. Overall males were significantly more likely to participate in open source projects than females. This may suggest a gender bias in contributing to open source groups. There was no such difference with other gender participants. In fact, other gender were significantly higher than either male or female as shown in the Table 4. All variances were significant at p < .01.

OPEN SOURCE PARTICIPATION

Age Group	Mean	Ν	Std. Deviation		
5-30	2.09011	47544	1.046185		
31-50	2.16646	28722	1.013663		
51+	1.98947	2943	.995003		
Total	2.11405	79209	1.033548		
Table 7: Age Group Analysis					

Table 7: Age Group Analysis

Table 7 shows the open source participation by age group. The highest participation is by the 31-50 age group, followed by the 5-30. (Yes, there was a self-identified respondent age 5). It appears that older, more mature individuals in mid-career or age appear to have skills, time, and/or desire to participate in open source. For all these groups an ANOVA and Post hoc showed p < .001.

A between-subjects F test was performed with open source participation as the dependent variable and age group and gender as independent variables. The test showed no interaction effect for the two variables. (Table 8 in Appendix A)

Another research question examined was whether there were demographic differences with regard to perceived quality of open source software relative to closed source. Table 9 shows the results of perceived open source quality by gender. Surprisingly, there are no significant difference in quality based on gender.

OPEN SOURCE QUALITY

Deviation
647843
619027
683969
647659
6 6

Table 9: Perceived Quality by Gender

Differences based on age group however do exist. The youngest group rates open source significantly more unfavorably than the 31-50 and in turn the 31-50 rate open source significantly more unfavorable than the 51+. The older you are the higher you rate open source quality. The reason for this is unclear. Perhaps older users have had more and longer term exposure to open source. A Between-subject F test showed no interaction effects between age group and gender for this variable.

OPEN SOURCE	QUALITY
-------------	---------

Age Group	Mean	Ν	Std. Deviation
5-30	2.33444	46483	.657144
31-50	2.30763	28294	.621326
51+	2.25552	2853	.620683
Total	2.32177	77630	.643239

Table 10: Comparison of Age Groups(p < .001)</td>

Within our dataset, there were questions about how many years the respondent has been coding and at what age they started. We anticipated that the more years coding and the younger individuals started coding, the more likely they were to contribute to open source projects and the more years coding more likely to view open source favorably. Tables 11 and 12 analyze these two independent variables.

Coefficients

~	coefficients							
Model		Unstd	-	Std.	t	Sig.		
		Coeffi	cients	Coefficients				
		В	Std.	Beta				
			Error					
1	(Con.)	2.411	.014		172.633	.000		
	Years	.007	.000	.061	17.504	.000		
	Code							
	Age	024	.001	115	-32.648	.000		
	1 st							
	Code							
a.	a. Dependent Variable: OPEN SOURCE							
PA	ARTICI	PATIO	N					
	Table 11							

Table 11

Open source participation was significantly positively correlated with years coding. The more years coding the higher the participation rate.

And the more years coding, the more favorably open source is viewed (reverse scaled). When we examine age first coded however, we see slightly different results. The earlier a respondent started coding, the lower the quality perception. These apparently contradictory measures suggest the more you code but the older you start, the higher the participation and more favorable the perception. This suggests that perhaps open source is undervalued by the younger starters since they may be excluded from exposure at an early age.

Coefficients

١	1odel	В	cients	Std. Coefficients Beta	t	Sig.
1	(Con.)	2.370	.009		264.961	.000
	Years Code	002	.000	028	-7.946	.000
	Age	002	.000	012	-3.395	.001

Code a. Dependent Variable: OPEN SOURCE QUALITY Table 12

*. The mean difference is significant at the .05 level.

Professionals are statistically more likely to participate in open source projects but also view open source as of lesser quality. This quality difference could be related to the exposure professionals receive with closed source projects and company's implementing more closed source solutions. Non-professionals often have to utilize more open source products due to cost concerns.

OPEN	SOURCE	PARTICIPATION
	SOORCE	ARTICLATION

DEV	Mean	Ν	Std. Deviation
No	2.03288	23204	1.072591
Yes	2.14636	65679	1.024607
Total	2.11674	88883	1.038538
p < .001			

Table 13

OPEN SOURCE QUALITY					
DEV Mean N Std. Deviation					
No	2.29953	22342	.665600		
Yes	2.32721	64500	.641071		
Total	2.32009	86842	.647579		
p < .001					

Table 14

The final area we examined was geographical differences. We excluded countries where there were less than 500 respondents to ensure we had

a critical mass. The results are shown in Tables 15 and 16. The highest contributions came from some interesting sources with Iran, China, and Bangladesh at the top of the list. This was followed by several European countries, Switzerland, Germany, and the Netherlands. The United States is ranked number 22 in this list of participation rates.

Country	Mean	N	Std. Deviation
Iran	2.43902	738	1.029916
China	2.42018	664	1.044825
Bangladesh	2.31901	605	1.144691
Switzerland	2.29857	978	1.072985
Germany	2.25281	5866	1.027340
Netherlands	2.24298	1852	1.027619
Czech Republic	2.21728	764	1.076334
Austria	2.21216	839	1.054729
India	2.21046	9061	1.106954
Norway	2.17944	574	1.008271
Nigeria	2.16667	522	1.139502
Denmark	2.16370	617	1.026015
France	2.16060	2391	1.051066
Turkey	2.16017	949	1.016558
Australia	2.15554	1903	1.024915
Israel	2.15336	952	1.021128
Finland	2.14652	546	1.024720
Pakistan	2.12134	923	1.093468
Belgium	2.11692	727	1.030567
Sweden	2.09733	1274	0.998007
United States	2.09351	20949	1.024844
Russian Federation	2.08619	1694	1.021163
Hungary	2.08187	513	1.016045
New Zealand	2.08015	524	1.024213
United Kingdom	2.06240	5737	1.032733
Italy	2.06028	1576	0.996907
Spain	2.05611	1604	0.985532
Canada	2.03594	3395	1.008160
Brazil	2.03388	1948	0.972071
Greece	2.02878	556	1.000486
Ukraine	2.01843	868	0.999253

Bulgaria	2.01821	659	0.973651	
Poland	2.01457	1922	1.020761	
Argentina	1.99458	553	0.978930	
Portugal	1.99429	525	0.981686	
Ireland	1.97804	501	0.994745	
Romania	1.96579	760	0.989477	
Indonesia	1.95464	507	1.009791	
South Africa	1.94896	627	0.984194	
Mexico	1.85981	642	0.927465	
Table 45. Disk and a statistic disk a bar statistic				

 Table 15: Highest contributions by country

Belief in the quality of open source by country reveals a much different list. The Russian federation has the highest regard for open source versus closed source software, followed by Ukraine, New Zealand, Poland, Bulgaria. With the exception of New Zealand, these are all former Soviet bloc countries and may reflect their limited resources or lesser trust in "Western" sources.

Country	Maan		Std.
Country	Mean	N 1650	Deviation
Russian Federation	2.13983	1652	0.641158
Ukraine	2.17882	850	0.664442
New Zealand	2.25832	511	0.641539
Poland	2.26223	1880	0.654016
Bulgaria	2.27315	648	0.679409
South Africa	2.27406	613	0.666615
Mexico	2.27473	637	0.645404
Canada	2.28468	3330	0.619625
Pakistan	2.29385	895	0.746143
Romania	2.29690	741	0.650034
Portugal	2.29709	515	0.619944
Israel	2.29803	916	0.650881
Turkey	2.30270	925	0.714145
Czech Republic	2.30470	745	0.619826
United Kingdom	2.31502	5625	0.619127
Finland	2.31648	534	0.602551
United States	2.31850	20543	0.615852
China	2.32258	651	0.727755
Austria	2.32278	821	0.626122
Iran	2.32489	711	0.735373
Greece	2.32532	541	0.678701

Table 16				
Argentina	2.43203	537	0.622599	
Spain	2.40280	1569	0.604737	
France	2.39966	2342	0.608188	
India	2.38019	8772	0.715249	
Nigeria	2.37126	501	0.699923	
Netherlands	2.36900	1813	0.598996	
Norway	2.36348	564	0.628635	
Brazil	2.36137	1926	0.657617	
Bangladesh	2.35986	578	0.762133	
Denmark	2.35585	607	0.614909	
Germany	2.34642	5756	0.609972	
Belgium	2.33616	708	0.594642	
Switzerland	2.33090	958	0.604844	
Australia	2.33030	1871	0.625600	
Sweden	2.33008	1230	0.617079	
Italy	2.32751	1545	0.643964	

5. DISCUSSION AND CONCLUSIONS

The study of the use, acceptance, and adoption of open source software has mainly focused on limited datasets. Though our study has limited specificity on reasons for adoption, it is the first comprehensive review on practitioner attitudes and quality perceptions of open source software. In this way, it extends and supports some of the conclusions of prior research. Past research on open source software has focused on relatively small datasets or limited sample population.

Our study found that overall quality perception for open source software is significantly less than closed source. Gallego et al. (2015) and Taha et al. (2018) suggest training and support are key variables in acceptance of OSS. The lack of support inherent in open source may be a key factor in its perceived quality shortfall.

Racero et al. (2020) suggested that intrinsic motivation plays a key role intention to use OSS. Positive exposure to the software may be a path to a higher perceived quality.

Hagu, Ayala, and Conradi did not find clear reasons for lack of OSS adoption. The lack of received quality we found appears to be a fundamental reason.

Participation in OSS was studied by Gwebu and Wang and they found social identification as a key driver of adoption. This social aspect may be missing in many OSS projects and can be addressed.

One of the key influencers of OSS perception is security risk according to Silic and Back (2015). This may be a key underlying factor in our discovered quality shortfall.

There is much to be gained by use of open source software. Cost savings, transparent logic, and worldwide community input all serve as motivators to implement OSS solutions. Many developers are already engaged in contributing to OSS projects. But the numbers are not as robust as they could be. Further research is needed to more fully understand why OSS is not viewed as favorably as closed source software and practices and platforms need to be further refined so that more individuals can contribute to OSS. Wikipedia and its open source knowledge base has replaced many sources of general information. The potential exists for OSS to do likewise for business and personal software.

6. REFERENCES

- Adewumi, A., Misra, S., Omoregbe, N., Crawford, B., & Soto, R. (2016). A systematic literature review of open source software quality assessment models. SpringerPlus. 5(1936). doi:10.1186/s40064-016-3612-4
- Akatsu, S., Fujita, Y., Kato, T., & Tsuda, K. (2018). Structured analysis of the evaluation process for adopting open-source software. Procedia Computer Science. 126. 1578-1586. doi:10.1016/j.procs.2018.08.131
- Alrawashdeh, T., Elbes, M., Almomani, A., ElQirem, F., & Tamimi, A. (2019). User acceptance model of open source software: An integrated model of OSS characteristics and UTAUT. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01524-7
- Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial companies contribute to open source software? International Journal of Information Management. 32. 106-117. doi:10.1016/j.ijinfomgt.2011.10.003
- Antin, J., & Shaw, A. (2012, May 5-10). Social desirability bias and self-reports of motivation: a study of amazon mechanical

turk in the US and India. Crowd Sourcing & Peer Production II, Austin, TX, United States.

- Boricha, M. (2020, Jun. 28). 18 best open source softwares of 2020. TechArrival. https://techrrival.com/best-open-sourcesoftwares/
- Colazo, J., & Fang, Y. (2010). Following the Sun: Temporal Dispersion and Performance in Open Source Software Project Teams. Journal of the Association for Information Systems. 11(11/12). 684-707.
- Daniel, S., Maruping, L., Cataldo, M., & Herbsleb, J. (2018). The Impact of Ideology Misfit on Open Source Software Communities and Companies. MIS Quarterly. 42(4). 1069-1096. doi:10.25300/MISQ/2018/14242
- Dong, J., Wu, W., & Zhang, Y. (2019). The faster the better? Innovation speed and user interest in open source software. Information & Management. 56. 669-680. https://doi.org/10.1016/j.im.2018.11.002
- Edison, H., Carroll, N., Conboy, K., & Morgan, L. (2018). An investigation into inner source software development: Preliminary findings from a systematic literature review. ACM. doi: 10.1145/1235
- Ellis, C., Parker, J., (2020, Feb. 27). The best open source software 2020: Free, open software for home of business. Techradar. https://www.techradar.com/best/best-opensource-software
- Frej, M., Bach, C., Shock, R., & Desplaines, E. (2015). Open-source software: Adoption and Challenges. American Society for Engineering Education.
- Frequently Asked Questions regarding Open Source Software (OSS) and the Department of Defense (DoD). (n.d.). Department of Defense Chief Information Officer. https://dodcio.defense.gov/Open-Source-Software-FAQ/
- Frey, K., Luthje, C., & Haag, S. (2011). Whom Should Firms Attract to Open Innovation Platforms? The Role of Knowledge Diversity

and Motivation. Long Range Planning, 44. 397-420. doi:10.1016/j.lrp.2011.09.006

- Gallego, M., Bueno, S., Racero, F., & Noyes, J. (2015). Open source software: The effects of training on acceptance. Computers in Human Behavior. 49. 390-399. http://dx.doi.org/10.1016/j.chb.2015.03.02 9
- Gallego, M., Luna, P., & Bueno, S. (2008). User acceptance model of open source software. Computers in Human Behavior. 24. 2199-2216. doi:10.1016/j.chb.2007.10.006
- Gwebu, K., & Wang, J. (2010). Seeing eye to eye? An exploratory study of free open source software users' perceptions, The Journal of Systems and Software. 83. 2287-2296. doi:10.1016/j.jss.2010.07.011
- Gwebu, K., & Wang, J. (2011). Adoption of Open Source Software: The role of social identification. Decision Support Systems. 51. 220-229. doi:10.1016/j.dss.2010.12.010
- Iskoujina, Z., & Roberts, J. (2015). Knowledge sharing in open source software communities: motivations and management. Journal of Knowledge Mangement. 19(4). 791-813. doi:10.1108/JKM-10-2014-0446
- Katsamakas, E., Mingdi, X. (2019). Open source adoption strategy. Electronic Commerce Research and Applications. 36. 100872. https://doi.org/10.1016/j.elerap.2019.1008 72
- Kaufmann, N., Schulze, T., & Veit, D. (2011). More than fun and money. Worker Motivation in Crowdsourcing – A Study on Mechanical Turk. AMCIS 2011 Proceedings-All Submissions. 340. http://aisel.aisnet.org/amcis2011_submissio ns/340
- Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M. (2012). Carrots and rainbows: Motivation and social practice in open source software development. MIS Quarterly. 36(2). 649-676.
- Li, Y., Tan, C., & Yang, X. (2013). It is about what we have: A discriminant analysis of organizations' decision to adopt open source software. Decision Support Systems. 56. 56-

62.

http://dx.doi.org/10.1016/j.dss.2013.05.006

- Lopez, D., Pablos, C., & Santos, R. (2010). Profiling F/OSS adoption modes: An interpretive approach. International Federation for Information Processing. 319. 354-360.
- Lopez, L., Costal, D., Ayala, C. Franch, X. Annosi, M., Glott, R., & Haaland, K. (2015). Adoption of OSS components: A goal-oriented approach. Data & Knowledge Engineering. 99. 17-38. http://dx.doi.org/10.1016/j.datak.2015.06.0 07
- Marsan, J. & Pare, G. (2013). Antecedents of open source software adoption in health care organizations: A qualitative survey of experts in Canada. International Journal of Medical Informatics. 82. 731-741. http://dx.doi.org/10.1016/j.ijmedinf.2013.0 4.001
- Marsan, J., Pare, G., & Beaudry, A. (2012). Adoption of open source software in organizations: A socio-cognitive perspective. Journal of Strategic Information Systems. 21. 257-273. http://dx.doi.org/10.1016/j.jsis.2012.05.004
- Maruping, L., Sherae, D., Cataldo, M. (2019). Attracting, Onboarding, and Retaining Newcomer Developers in Open Source Software Projects. MIS Quarterly. 43(2). 951-976.
- Moqri, M., Mei, X., Qiu, L., & Bandyopadhyay, S. (2018). Effect of "Following" on Contributions to Open Source Communities. Journal of Management Information Systems. 35(4). 1188-1217. https://doi.org/10.1080/07421222.2018.15 23605
- "Nguyen-Duc, A., Cruzes, D., & Conradi, R. (2015). The impact of global dispersion on coordination, team performance and software quality – A systematic literature review. Information and Software Technology. 57. 277-294. http://dx.doi.org/10.1016/j.infsof.2014.06.0 02"
- Oram, A. (2011). Promoting Open Source Software in Government: The Challenges of

Motivation and Follow-Through. Journal of Information Technology & Politics. 8. 240-252. doi:10.1080/19331681.2011.592059

- Oyvind, H., Ayala, C., & Conradi, R. (2010). Adoption of open source software in softwareintensive organizations - A systematic literature review. Information and Software Technology. 52. 113-1154. doi:10.1016/j.infsof.2010.05.008
- Pickett, P. (2019, Nov. 20). How open-source software works. The Balance Careers. https://www.thebalancecareers.com/whatis-open-source-software-2071941
- Qu, W. Yang, Z., & Wang, Z. (2011). Multi-level framework of open source software adoption. Journal of Business Research. 64. 997-1003. doi:10.1016/j.jbusres.2010.11.023
- Racero, F., Bueno, S., & Gallego, M. (2020). Predicting students' behavioral intention to use open source software: A combined view of the technology acceptance model and selfdetermination theory. Applied Sciences. 10. 2711. doi:10.3390/app10082711
- Sarrab, M., & Rehman, O. (2014). Empirical study of open source software selection for adoption, based on software quality characteristics. Advances in Engineering Software. 69. 1-11. http://dx.doi.org/10.1016/j.advengsoft.2013 .12.001
- Sbai, N., Lenarduzzi, V. Taibi, D., Sassi, S., &Ghezala, H. (2018). Exploring information from OSS repositories and platforms to support OSS selection decisions. Information and Software Technology. 104. 104-108. https://doi.org/10.1016/j.infsof.2018.07.009
- Silic, M., & Back, A. (2015). The Influence of Risk Factors in Decision-Making Process for Open Source Software Adoption. International Journal of Information Technology & Decision Making. 1(35). https://www.worldscientific.com/worldscinet /ijitdm
- Spaeth, S., & Krogh, G. (2015). Perceived Firm Attributes and Intrinsic Motivation in Sponsored Open Source Software Projects. Information Systems Research. 26(1). 224-237. http://dx.doi.org/10.1287/isre.2014.0539

- Spinellis, D., Giannikas, V. (2012). Organizational adoption of open source software. The Journal of Systems and Software. 85. 666-682. doi:10.1016/j.jss.2011.09.037
- Steinmacher, I. Silva, M. Gerosa, M. & Redmiles, D. (2015). Information and Software Technology. 59. 67-85. http://dx.doi.org/10.1016/j.infsof.2014.11.0 01
- Steinmacher, I., Gerosa, M., & Redmiles, D. (2014). Attracting, Onboarding, and Retaining Newcomer Developers in Open Source Software Projects. ACM.
- Taha, A., Abbood, A., Abdulrazzaq, A., & Albahri,
 A. (2018). Identifying the affecting factors of open source software in IT community. Journal of Engineering and Applied Sciences. 13(14). 5771-5780. doi: 10.3923/jeasci.2018.5771.5780
- Thanasopon, B. (2015). Open source software (OSS) adoption in commercial firms: A literature review. KMTL Information Technology Journal. http://journal.it.kmitl.ac.th
- Van Loon, A., & Toshkov, Dimiter. (2015). Adopting open source software in public administration: The importance of boundary spanners and political commitment. Government Information Quarterly. 32. 207-215. http://dx.doi.org/10.1016/j.gig.2015.01.004
- Walker, T. (2017, Jan. 15). 20 Most popular open source software ever. Tripwire Magazine. https://www.tripwiremagazine.com/20most-popular-open-source-software-ever-2/
- Weiling, K., & Zhang, P. (2010). The Effects of Extrinsic Motivations and Satisfaction in Open Source Software Development. Journal ot the Association for Information Systems. 11. 784-808.
- What is open source?. (2020). OpenSource. https://opensource.com/resources/whatopen-source

Appendices and Annexures

Appendix A – Table 8

Tests of Between-Subjects Effects

Dependent Variable: OPEN SOURCE PARTICIPATION

	es df	Mean Square	Г	Sig.
hesis 16320.922	1	16320.922	321.623	.003
102.699	2.024	50.745ª		
hesis 29.394	2	14.697	23.570	.000
25.682	41.187	.624 ^b		
hesis 140.635	2	70.317	89.992	.000
124.202	158.954	.781 ^c		
hesis 1.307	4	.327	.309	.872
83693.914	79036	1.059 ^d		
:	102.699 hesis 29.394 25.682 hesis 140.635 124.202 hesis 1.307	102.699 2.024 thesis 29.394 2 25.682 41.187 thesis 140.635 2 124.202 158.954 thesis 1.307 4 83693.914 79036	102.699 2.024 50.745 ^a 29.394 2 14.697 25.682 41.187 .624 ^b thesis 140.635 2 70.317 124.202 158.954 .781 ^c thesis 1.307 4 .327 83693.914 79036 1.059 ^d	102.699 2.024 50.745ª 29.394 2 14.697 23.570 25.682 41.187 .624 ^b

a. .717 MS(GEN2) + .283 MS(Error)

b. .595 MS(AgeGroup * GEN2) + .405 MS(Error)

c. .379 MS(AgeGroup * GEN2) + .621 MS(Error)

d. MS(Error)