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Abstract  
 
The preservation of Wolf populations in North America has been controversial for hundreds of years.  
The preservation of ecosystems or the reintroduction of wolf populations in areas to redress the 
ecological balance has taken place in recent decades.  In other areas, wolves are hunted in an effort 

to manage them.  Previous studies have identified physiological characteristics as an indicator of 
higher stress levels in individual wolf subjects in heavily hunted populations. This stress impacts 
reproduction, social structure and pack dynamics.  The current study supports a prior study that used 
statistics to show elevated stress levels in hunted wolf populations.   Using machine learning (k-
nearest neighbor), we were able to classify individual wolf subjects as belonging to hunting-based 
stressed populations based on physiological data with high accuracy. 
 

Keywords: Machine Learning, data mining, k-NN, physiological indicators, classification 
 
 

1. INTRODUCTION/LITERATURE REVIEW 
 
Human originated mortality of predator 

populations (i.e., hunting) has been documented 
as having a myriad of additional negative 

impacts on the affected population (Coltman, 
2003,  Darimont 2009).  Hunting traditionally 
has the goal of selecting the strongest and 
fittest, thus impacting reproduction by reducing 
breeding of the healthiest members of the 

populations.  Studies of trophy hunting of rams 
determined the effects of selection, placed an 
emphasis on harvesting of trophy rams of 
heavier weight and larger horn size (Festa-
Bianchet, et al. 2004,  Coltman, et al., 2003). 

Rams with higher value in terms of breeding 
were found to be shot at a lower age, 
eliminating their reproductive value to the 

populations (Coltman, et al., 2002). 
 
The complicated social structure of wolf 

populations makes them extremely vulnerable to 
elevated mortality and a disruption of behavior 
dynamics that would occur from human 
intervention (Haber, 1996).  While wolves can 

recover from a moderate decrease in population, 
ongoing pressures can affect behavior, the 
components of social structures, and genetic 
factors.  This combination of factors can have 
potential long-term impacts on group and pack 
recovery  (Rausch 1967; Haber 1996; 
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Jezdrzejewski et al. 2005; Sidorovich et al. 

2007; Rutledge et al.2010, 2012). 
Wolf populations that are heavily impacted by 
hunting predictably produce more female 

offspring (Sidorovich, et al, 2007).  In addition, 
genetic diversity in wolf populations is affected 
by intense hunting (Jezdrzejewski et al. 2005).  
As an example, researchers have found that 
harvesting of wolves outside protected areas can 
impact the social dynamics of  neighboring 
populations (Rutledge, et al.,2010).  Further, 

and not surprisingly, wolf pup mortality is a 
critical factor in the rate of population growth 
(Rausch, 1967).  
 
While changes in population numbers are easily 
measured, physiological impacts of hunting have 

only been documented in a very limited number 
of studies.   Elevated levels of hormones like 
cortisol are an indicator of increased stress in 
hunted individual subjects (Bateson and 
Bradshaw 2007).   Additionally, stress can 
negatively affect the social behavior of the 
target species population (Gobish, et al. 2008). 

 
Testosterone is vital to male reproduction 
capability but is also an indicator of behavior.   
Within the social structure of the population, 
testosterone may be found to increase when 
there is an imbalance in that component 
(Oliveria, 2004).   

 
Several studies have found elevated levels of the 

hormones cortisol, testosterone, and 
progesterone in pregnant females, giving an 
indication of the reproductive activity in the 
population (Foley, et al. 2001).   A few studies 

have proposed a relationship between female 
testosterone levels and the social structure of 
the populations (Albert, et al.  1991 and Bryan, 
et al., 2013). 
 
All of the negative consequences of hunting 
leads to the following research question:  How 

does human caused mortality affect wolf 
populations on the physiological level?   Only 
one study has evaluated hormone levels in wolf 
populations to determine how human-caused 

mortality may impact group behavior, 
reproduction, and social dynamics. (Bryan, et 
al., 2015).  Additional research is needed to 

accurately assess the effects of hunting on wolf 
physiology. 
 

2. RESEARCH METHODOLOGY 
 
The current research seeks to determine 

whether individual wolves can be classified as 
belonging to a heavily-stressed population due 

to hunting, or as a member of a population with 

lower hunting pressure.  The criteria for 
measuring stress will be via the measurement of 
hormones and reproductive steroids in the wolf’s 

fur.   More specifically, this study evaluates the 
hormone levels of two separate wolf populations 
in Northern Canada that were originally studied 
by Bryan, et al. in 2015.   
 
The distinction between these two wolf 
populations is marked by differences in the level 

of hunting and the percentage reduction of the 
population.  Wolves in the tundra-taiga area 
were heavily hunted using snowmobiles and 
firearms.  Taiga is characterized by dense 
conifers, like spruce and pine.  Conversely, 
tundra regions lack any tree cover.   Wolves in 

the second area (i.e., boreal forests) had a lower 
level of mortality and were killed predominately 
by trapping.  Boreal forests consist of deciduous 
and conifer trees, and experience wide-ranging 
temperatures from lows in winter to highs in 
summer (Musiani, M. & Paquet, P.C., 2004). 
 

Bryan, et al., (2015), predicted that there would 
be elevated levels of stress and signs of 
increased reproduction activity in the heavily 
hunted tundra-taiga wolves, as evidenced by 
high rates of hormone production (testosterone, 
progesterone, and cortisol).   The researchers in 
the 2015 study compared the tundra-taiga 

wolves to wolves in areas of lower hunting 
pressure, such as those in the boreal forest 

(Packard & Mech 1980, 1983; Packard, Mech & 
Seal 1983; Haber 1996, Bryan, et al., 2015). 
 
Sampling Method 

The samples (n=152) were collected in a prior 
study in Nunavut, Northwest Territories and 
Alberta, Canada (Musiani, et al., 2007).  The 
samples (See Appendix, populations 1 and 2) 
consisted of wolf hair samples collected during 
the winter months.  The process of extracting 
the hormones from the wolf hair, including 

quality control methodologies, is outlined in the 
Bryan, et al. study (2015). 
 
Bryan, et al., (2015) used predominantly 

statistical analysis methods in attempting to 
differentiate the tundra-taiga wolves from the 
boreal forest wolves.  The researchers used 

ANOVA and Welch’s t-tests to compare the two 
wolf groups, concluding that wolves from the 
more heavily hunted populations had increased 
levels of reproduction and stress related 
hormones.  They also determined that these 
physiological characteristics are in response to 

environmental factors, including human-induced 
mortality (Bryan, et al., 2015).  The researchers 
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did list confounding factors, such as ecological 

and genetic-based differences that could explain 
hormonal discrepancies.  Also, the higher levels 
of cortisol in the tundra-taiga wolves could be 

attributed to extended low levels in the food 
supply in summer, when wolves must travel 
farther to catch up with migrating caribou.   
Finally, the massing of tundra-taiga wolf 
populations near caribou in summer may cause 
a mingling of wolves and the inevitable 
interactions among members of different groups 

(which could also explain the elevated levels of 
testosterone). The boreal wolves, conversely, 
have more traditional territories and stability, 
leading to fewer intergroup interactions (Walton, 
et al., 2001, Musiani, et al., 2007). 
 

In order to mitigate the impact of confounding 
factors, the researchers used a control group of 
wolves (n=30) from a heavily-hunted population 
in a boreal forest region (See Appendix, 
population 3).  The hormone samples in the 
control group showed higher levels of cortisol 
than in boreal forest populations.  The wolves in 

the control group also had similar levels of 
cortisol as wolves in the heavily hunted northern 
tundra-taiga region.  Therefore, the study 
concluded that higher cortisol levels are the 
result of increased mortality rates, possibly 
coupled with some habitat related factors 
(Bryan, et al., 2015). 

 
There are several implications revealed by the 

differences in hormone levels in the Bryan, et al. 
study.  First, reproduction rates are altered (and 
the social structure, along with the reproduction 
rates) when there is no longer a dominant pair 

(i.e., pack hierarchy), and other pack members 
are not prevented from breeding.  The stability 
of the social group, characterized by a single 
litter per pack each year, is threatened (Haber, 
1996).  Second, physiological effects of the 
disruption in the social framework, like increased 
cortisol levels, can enhance wolf musculature 

and release stored energy (Saplosky, 1993).  
Lastly, high levels of testosterone aid in any 
challenges an individual wolf may have within 
the social structure, where strength and 

dominance of the situation are necessary 
(Wingfield, et al., 2001). 
 

The current research centers upon the following 
research questions:  Are human-exploited wolf 
populations more heavily impacted 
physiologically?  Are hormone levels affected to 
a larger extent in exploited wolf populations, as 
opposed to those in less stressed populations?  

And finally, can the type of population an 
individual wolf may inhabit be identified based 

upon the measurement of hormone levels as 

indicators of stress? 
 

Hypotheses Tested 

The research hypotheses to be tested in this 
study are as follows: 
 
H1: Individual wolves can be classified as 
belonging to a heavily exploited population 
based on hormone levels. 
 

H2:  Machine learning classification can be used 
to support the results obtained by Bryan, et al. 
(2015) that human-caused mortality may impact 
group behavior, reproduction, and social 
dynamics, and populations as determined by the 
hormone levels in affected wolves.  That is, 

wolves can accurately be classified into one of 
two groups: those with high levels of hunting-
induced stress, and those with less stress.  
 
The objective of the current study is to 
determine whether the physiological 
consequences of hunting (as determined by 

levels of stress and reproductive hormones in 
hair, an indicator of elevated endocrine activity), 
can be used to classify wolves as belonging to a 
highly-stressed group or a less-stressed group.  
 
To test these hypotheses the current study used 
data previously analyzed by Bryan, et al. (2015) 

and k-Nearest Neighbor as the classification 
methodology to determine wolf membership in 

heavily stressed versus low stressed 
populations, based on hormone levels.  The 
2015 dataset included subject wolves from two 
separate areas and environments.  The dataset 

contained 45 wolves from a lightly-hunted group 
in a northern boreal forest, and 103 wolves from 
a heavily-hunted Tundra-taiga forest area. 
 
All samples were taken as part of a prior study 
(Musiani, et al., 2007). The samples consisted of 
hair from the wolf subjects. Cortisol, 

testosterone, and progesterone (females) levels 
were measured in each hair sample.   The data, 
listing area, gender, and levels of the three 
hormones can be found in the Appendix.  

 
Machine Learning Algorithm Used 
k-Nearest Neighbor (k-NN) was used to compare 

cortisol and testosterone levels in the different 
populations and to determine the accuracy in 
predicting each population, based on its 
hormone levels.  Bryan et al., (2015) 
determined that higher levels of cortisol and 
testosterone were found in the tundra-taiga 

wolves and concluded that this higher level may 
be an indicator of social instability.   The current 
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study also used k-NN to compare progesterone 

levels in the female wolves in the two 
populations.  
 

Due to the lower numbers of northern boreal 
forest wolves, stratified sampling was used.  In 
addition, the data were partitioned into 70% for 
training and 30% for testing.  A k-NN algorithm 
was applied to the data using the knn() function 
from the class package in R and RStudio.   The 
confusionMatrix() function from the caret 

package was used to determine accuracy of the 
classification and sensitivity, specificity, Kappa, 
and the No Information Rate. 
 

3. RESULTS AND DISCUSSION 
 

The highest accuracy in predicting group 
membership of the wolves was 86.96% with k=3 
(as shown in Table 1). The true positive rate was 
100% and the false positive rate was 83%, 
which supports the validity of the model.  The 
No Information Rate is higher than desired, at 
an elevated 78%. The Kappa statistic (a 

measurement of the agreement between 
accuracy and random chance) was 68%, which 
indicates moderate agreement.   
 
Table 1. Results of Classification of Wolf 
Subjects based on Cortisol and 
Testosterone Levels ( k=3) 

 

Measurement Value  
Accuracy  .8697 
Sensitivity 1.00 
Specificity  0.833 

Kappa 
 

0.6849 

No Information 

Rate 
0.7826 

 
The current study also measured the difference 
in progesterone levels between the female 
wolves in the taiga-tundra and the northern 

boreal forest and classified them using k-NN 
(Table 2).  Along with k-NN, a similar sampling 

and data partitioning method was used to 
preprocess the data.   After preprocessing, it 
was determined that k=14 had the highest 
accuracy in predicting classification at 0.8333, 
and with a sensitivity and specificity at 0.7143 

and 0.8824, respectively.  The No Information 
Rate was 0.7083, indicating the model has some 
validity in classification.  The Kappa was 0.5966 
showing, on the low end, moderate agreement 
between random and model accuracy.            

     

Table 2. Results of Classification of Female 

Wolves Based on Progesterone Levels 
(k=14) 
 

Measurement Value  
Accuracy  .8333 
Sensitivity 0.7143 
Specificity  0.8824 

Kappa 
 

0.5966 

No Information 

Rate 
0.7083 

 
 

4. CONCLUSIONS 

 
Past research on this topic has proposed that 
elevated levels of the hormones cortisol, 

testosterone, and progesterone in taiga-tundra 
wolves are explained by the synergistic effects 
of hunting pressures, the habitat, or sampling 
(Bryan, et al., 2015).  In the Bryan, et al., 
study, the researchers compared cortisol levels 
in the taiga-tundra wolves to those of a control 

group of 30 wolf subjects (i.e., Little Smokey 
wolves) in a heavily hunted boreal forest area in 
an effort to explain the differences in habitat and 
ecosystem characteristics.  The results of this 
study showed statistically higher cortisol levels 
in both the Little Smokey and taiga-tundra 
wolves, compared to the northern boreal forest 

wolves. 
 
The current study used the k-NN classification 
algorithm to show that individual wolves can be 
classified as belonging to heavily hunting-
pressured groups based on cortisol and 
testosterone levels.  This classification was also 

shown to be at a highly-accurate level.  The 
current study also concluded that classification 
of female wolves (using the k-NN classifier) is 
possible with a favorable accuracy, based on the 
females’ levels of progesterone. Our results  
support the findings of Bryan, et al., (2015) that 

showed statistically-significant differences in 
hormone levels between taiga-tundra and boreal 

forest wolf populations (i.e., heavily hunted vs. 
lightly trapped populations). Our findings 
support our hypothesis that individual wolves 
can be classified as belonging to a heavily 
exploited population based on hormone levels.   

Additionally, k-nn, a machine learning 
methodology can be used as a classification 
mechanism for this purpose.  
 
Prior studies have concluded that the potential 
ramifications of heavy human-caused mortality 
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in wolves are substantive chronic stress, and 

negative alterations in reproduction and 
breeding practices.  These negative effects on 
breeding, compared with non-distressed 

populations are not known.  However, 
predictable genetic outcomes like in-breeding, 
lack of diversity, increased disease, as well as an 
elevated danger of population extinction are 
potential long-term effects of heavy hunting 
(Leonard, et al., 2005). 
 

If a link exists between stress levels in wolf 
populations and human-based hunting, then 
aside from the impact on wolf populations, the 
effects on entire ecosystems can be influenced.   
Wolves are recognized as a keystone species in 
their natural habitat (Boyce, 2018; Ripple and 

Beschta, 2012).  Therefore, their absence or 
minimization can have far reaching impacts on 
entire ecosystems.  
 
Limitations of Study 
In this study, we did not account for differences 
in male and female subjects in the analysis of 

cortisol and testosterone levels.  This difference 
in levels between wolf sexes can be evaluated in 
a later study.    It should also be noted that the 
sample size in this study was relatively small, 
particularly with the northern boreal forest 
wolves (i.e., n = 45).   However, the research 
was unfortunately limited by the amount of 

available data.  Additionally, only one machine 
learning algorithm for classification (i.e., the k-

NN classifier).  Various machine-learning 
techniques and models could be employed in 
future studies.  These additional techniques 
could be used to determine whether wolves can 

be more accurately classified based hormone 
levels as indicators of human-caused stress. 
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APPENDICES 

 
Appendix A:  Wolf Hair Sample Data Collected during Musiani, et al. Study (2007) 
 
Individual Sex Population Colour Cpgmg Tpgmg Ppgmg 

1 M 2 W 15.86 5.32 NA 

2 F 1 D 20.02 3.71 14.37622 

3 F 2 W 9.95 5.3 21.65902 

4 F 1 D 25.22 3.71 13.42507 

5 M 2 D 21.13 5.34 NA 

6 M 2 W 12.48 4.6 NA 

7 M 1 W 26.78 4.58 NA 

8 M 1 D 15.41 9.27 NA 

9 F 1 D 33.87 4.81 19.9127 

10 F 2 W 17.29 5.07 34.59806 

11 F 1 W 9.43 4.47 25.88548 

12 F 1 W 8.84 3.75 15.86882 

13 F 1 D 34 4.76 33.08362 

14 F 1 D 14.3 6.06 24.82876 

15 M 1 D 12.16 5.75 NA 

16 M 1 D 22.43 6.15 NA 

17 F 2 W 26.26 4.93 25.00037 

18 M 2 W 15.8 5.24 NA 

19 M 1 W 7.93 4.14 NA 

20 M 1 D 4.75 3.34 NA 

21 M 2 W 9.17 4.02 NA 

22 M 2 W 21.52 4.91 NA 

23 M 1 W 10.79 3.91 NA 

24 F 2 W 22.69 6.47 21.50033 

25 F 2 W 22.17 4.28 31.8274 

26 F 2 W 15.34 5.53 34.0765 

27 F 1 W 20.48 5.06 20.21606 

28 F 1 W 16.19 4.79 18.29115 

29 F 1 W 24.05 3.7 21.29735 

30 M 2 W 16.45 6.09 NA 

31 F 2 W 21.91 4.19 36.40797 

32 F 2 W 32.24 6.94 40.92793 

33 F 2 W 23.99 5.97 45.9136 

34 F 2 W 27.82 7.76 47.2674 

35 F 2 W 19.83 6.55 40.93838 

36 F 2 W 12.16 4.34 26.65583 

37 F 2 W 19.05 6.34 23.90413 

38 F 2 D 13.91 4.72 26.36326 

39 F 2 D 17.16 9.25 34.64966 

40 F 1 W 30.16 6.8 19.61885 

41 F 2 W 24.38 5.49 28.12497 
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42 F 2 D 10.14 3.81 NA 

43 M 2 W 18.4 4.98 NA 

44 M 2 W 15.21 7.17 NA 

45 M 2 W 24.64 15.13 NA 

46 M 2 W 22.49 14.45 NA 

47 M 2 W 17.42 5.36 NA 

48 M 2 W 29.51 9.12 NA 

49 M 2 W 27.3 10.75 NA 

50 M 2 W 14.04 7.19 NA 

51 M 2 W 11.77 5.17 NA 

52 M 2 W 23.6 6.97 NA 

53 M 2 W 18.14 5.7 NA 

54 M 2 W 11.25 4.4 NA 

55 F 1 W 14.82 10.81 NA 

56 F 2 W 26.39 6.47 24.46521 

57 M 2 W 15.15 4.52 NA 

58 M 2 W 14.04 6.01 NA 

59 M 2 W 21.39 7.36 NA 

60 F 2 W 20.02 5.19 31.40929 

61 M 2 W 24.64 14.08 NA 

62 M 2 W 13.46 4.09 NA 

63 M 2 W 18.79 9.74 NA 

64 F 2 W 11.77 4.95 21.01472 

65 F 2 W 19.96 7.62 28.06955 

66 F 2 W 12.68 3.82 27.90797 

67 F 2 W 19.76 5.26 27.37918 

68 M 2 D 20.35 14.98 NA 

69 F 2 W 17.68 5.97 53.28191 

70 F 2 W 23.66 6.13 48.53432 

71 F 2 W 17.23 7.24 NA 

72 F 2 W 25.74 4.88 37.65696 

73 F 2 W 19.89 6.35 31.90467 

74 F 1 D 14.24 3.95 28.87637 

75 M 2 W 17.55 5.02 NA 

76 M 2 W 16.32 5.86 NA 

77 M 2 W 15.34 5.78 NA 

78 F 2 W 11.64 4.87 22.87393 

79 M 2 W 13.65 5.04 NA 

80 M 2 W 11.57 5.24 NA 

81 M 2 W 20.35 5.98 NA 

82 M 2 W 8.91 4.58 NA 

83 M 2 W 9.1 4.4 NA 

84 M 2 D 21.65 7.81 NA 

85 M 1 D 10.6 3.65 NA 

86 M 1 D 12.35 9.57 NA 

87 F 1 D 7.93 3.83 16.77475 
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88 F 1 D 8 4.26 19.49892 

89 F 1 D 7.61 4.24 22.56011 

90 M 1 W 11.96 5.62 NA 

91 M 1 D 14.82 5.35 NA 

92 F 1 W 14.43 5.08 34.81566 

93 F 1 D 19.57 6.81 16.67624 

94 F 1 W 12.55 3.25 13.19328 

95 F 1 D 12.61 3.54 13.62372 

96 F 1 D 10.21 4.49 18.52082 

97 M 1 D 15.99 5.82 NA 

98 F 1 D 32.24 4.8 25.20981 

99 M 1 D 15.41 5.68 NA 

100 M 1 D 13.98 5.45 NA 

101 M 1 D 16.32 6.65 NA 

102 M 1 D 6.37 3.31 NA 

103 M 1 W 8.19 3.81 NA 

104 M 1 W 12.29 3.95 NA 

105 F 2 W 12.16 4.37 13.17322 

106 F 2 W 16.19 4.43 26.32807 

107 F 2 W 11.83 3.48 16.40101 

108 F 2 W 10.47 3.9 17.56024 

109 F 2 W 21.13 5.09 29.29508 

110 F 2 W 18.59 4.49 21.51784 

111 F 2 W 12.09 3.96 28.49073 

112 F 2 W 13 3.83 30.98607 

113 F 2 W 12.09 4.65 28.62749 

114 F 2 W 13.26 4.48 25.66584 

115 F 2 W 12.03 4.32 19.28812 

116 F 2 W 17.36 5.01 30.00925 

117 F 2 W 18.14 3.56 12.7591 

118 F 2 W 15.93 4.65 22.72246 

119 F 2 W 12.29 5.01 23.24402 

120 F 2 W 17.42 4.38 18.35924 

121 F 2 W 13.2 5.3 18.88097 

122 F 2 W 14.5 5.01 21.06504 

123 F 2 D 11.44 4.04 16.154 

124 M 2 D 11.57 5.68 NA 

125 M 2 W 15.28 3.9 NA 

126 M 2 W 13.46 5.1 NA 

127 M 2 W 13.2 4.76 NA 

128 M 2 W 11.25 4.89 NA 

129 M 2 W 16.58 7.54 NA 

130 M 2 W 13.2 5.07 NA 

131 M 2 W 14.04 5.65 NA 

132 M 2 W 17.03 5.81 NA 

133 M 2 W 17.81 4.88 NA 
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134 M 2 W 12.48 4.86 NA 

135 M 2 W 11.44 4.34 NA 

136 M 2 W 40.43 9.13 NA 

137 M 2 D 14.3 4.53 NA 

138 M 2 W 14.89 4.32 NA 

139 M 2 W 16.77 4.4 NA 

140 M 2 D 9.95 4.31 NA 

141 M 2 W 10.34 4.36 NA 

142 M 2 W 20.54 8.06 NA 

143 F 1 W 12.81 6.25 26.73429 

144 F 1 W 16.51 4.62 28.10653 

145 M 1 D 11.12 6.71 NA 

146 M 1 D 11.64 4.51 NA 

147 M 1 W 18.92 7.57 NA 

148 M 2 W 19.89 5.35 NA 

149 U 3  9.69 4.23 NA 

150 U 3  19.37 4.26 NA 

151 U 3  19.76 4.56 NA 

152 U 3  11.31 7.73 NA 

153 U 3  11.25 3.81 NA 

154 U 3  13.85 4.28 NA 

155 U 3  17.62 4.54 NA 

156 U 3  22.82 4.34 NA 

157 U 3  18.14 10.33 NA 

158 U 3  13.52 8.12 NA 

159 U 3  21.58 5.79 NA 

160 U 3  8.91 29.74 NA 

161 U 3  9.17 3.14 NA 

162 U 3  14.17 10.32 NA 

163 U 3  12.09 6.7 NA 

164 U 3  54.47 61.79 NA 

165 U 3  10.4 4.2 NA 

166 U 3  50.31 5.48 NA 

167 U 3  33.74 9.61 NA 

168 U 3  14.76 8.94 NA 

169 U 3  22.3 6.16 NA 

170 U 3  23.21 10.59 NA 

171 U 3  19.24 5.66 NA 

172 U 3  13.07 4.4 NA 

173 U 3  49.14 6.21 NA 

174 U 3  73.19 6.41 NA 

175 U 3  37.05 4.75 NA 

176 U 3  16.45 7.29 NA 

177 U 3  43.81 6.09 NA 

178 U 3  14.89 3.53 NA 
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set.seed(123) 

index <- initial_split(WolfData, prop = 0.7, strata = 

"Population") 

 

# index <- sample(2, nrow(WolfData), replace=TRUE, 

prob=c(0.90, 0.10)) 

 

index 

 

trainData <- WolfData[index==1,] 

 

testData <- WolfData[index==2,] 

 

trainData1 <- trainData[-1] 

testData1 <- testData[-1] 

 

trainDataLabels <- trainData [, 1] 

testDataLabels <- testData [ ,1] 

 

 

install.packages ("class")    # if necessary 

library(class) 

 

set.seed(13876) 

WolfDataPred<- knn(train = trainData1, test = testData1, cl = 

trainDataLabels, k=3) 

 

##  Evaluating model performance ---- 

 

# load the "gmodels" library 

install.packages('gmodels') 

library(gmodels) 

 

# Create the cross tabulation of predicted vs. actual 

 

CrossTable(x = testDataLabels, y = WolfDataPred, 

           prop.chisq=FALSE) 

 

dim(testDataLabels) 

dim(WolfDataPred) 

 

install.packages('caret') 

 

#Import required library 

library(caret) 

 

confusionMatrix(testDataLabels,WolfDataPred) 

 

 

i=1                          # declaration to initiate for loop 

k.optm=1                     # declaration to initiate for loop 

for (i in 1:28){  

    knn.mod <-  knn(train=trainData1, test=testData1, 

cl=trainDataLabels, k=i) 

    k.optm[i] <- 100 * sum(testDataLabels == 

knn.mod)/NROW(testDataLabels) 

    k=i   

    cat(k,'=',k.optm[i],'\n')       # to print % accuracy  

} 

Appendix B:  k-NN Algorithm and Resulting Confusion Matrix Coded in R 
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