

JOURNAL OF

INFORMATION SYSTEMS

APPLIED RESEARCH

Volume 15, Issue. 2

July 2022

ISSN: 1946-1836

In this issue:

4. Examining Cloud Data Security Vulnerabilities During Usage

Daniel Amoah, Microsoft Corporation

Samuel Sambasivam, Woodbury University

17. Cybersecurity Maturity Model Certification Initial Impact on the Defense

Industrial Base

Hala Strohmier, University of North Carolina Wilmington

Geoff Stoker, University of North Carolina Wilmington

Manoj Vanajakumari, University of North Carolina Wilmington

Ulku Clark, University of North Carolina Wilmington

Jeff Cummings, University of North Carolina Wilmington

Minoo Modaresnezhad, University of North Carolina Wilmington

30. The COVID-19 Pandemic’s Impact on Information Technology Employment,

Salaries, and Career Opportunities

Patricia Sendall, Merrimack College

Alan Peslak, Penn State University

Wendy Ceccucci, Quinnipiac University

D. Scott Hunsinger, Appalachian State University

39. A Comparison of Internationalization and Localization Solutions for Web and

Mobile Applications

Peng Wang, Pinterest, Inc.

Hee Jung Sion Yoon, City University of Seattle

Sam Chung, City University of Seattle

47. GIS for Democracy: Toward A Solution Against Gerrymandering

Peter Y. Wu, Robert Morris University

Diane A. Igoche, Robert Morris University

54. Determinants of Health Professionals’ Intention to Adopt Electronic Health

Record Systems

Jie Du, Grand Valley State University

Jenna Sturgill, Grand Valley State University

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://jisar.org/; https://iscap.info

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer

reviewed academic journal published by ISCAP, Information Systems and Computing

Academic Professionals. Publishing frequency is three to four issues a year. The first date of

publication was December 1, 2008.

JISAR is published online (https://jisar.org) in connection with CONISAR, the Conference on

Information Systems Applied Research, which is also double-blind peer reviewed. Our sister

publication, the Proceedings of CONISAR, features all papers, panels, workshops, and

presentations from the conference. (https://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the

authors are not aware of the identities of the reviewers. The initial reviews happen before

the conference. At that point papers are divided into award papers (top 15%), other journal

papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are

subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the JISAR journal. Currently the target acceptance rate for the journal is

under 38%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at

publisher@jisar.org. Special thanks to members of ISCAP who perform the editorial and

review processes for JISAR.

2022 ISCAP Board of Directors

Eric Breimer

Siena College
President

Jeff Cummings

Univ of NC Wilmington
Vice President

Jeffry Babb

West Texas A&M
Past President/

Curriculum Chair

Jennifer Breese
Penn State University

Director

Amy Connolly
James Madison University

Director

Niki Kunene
Eastern CT St Univ

Director/Treasurer

RJ Podeschi
Millikin University

Director

Michael Smith
Georgia Institute of Technology

Director/Secretary

Tom Janicki
Univ of NC Wilmington

Director / Meeting Facilitator

Anthony Serapiglia

St. Vincent College
Director/2022 Conf Chair

Xihui “Paul” Zhang

University of North Alabama
Director/JISE Editor

Copyright © 2022 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full
citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or
commercial use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

https://conisar.org/

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://jisar.org/; https://iscap.info

Journal of

Information Systems Applied research

Editors

Scott Hunsinger

Senior Editor
Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

Biswadip Ghosh
Data Analytics

Special Issue Editor
Metropolitan State University of Denver

2022 JISAR Editorial Board

Jennifer Breese

Penn State University

Amy Connolly

James Madison University

Jeff Cummings

Univ of North Carolina Wilmington

Ranida Harris

Illinois State University

Edgar Hassler

Appalachian State University

Vic Matta

Ohio University

Muhammed Miah

Tennessee State University

Kevin Slonka

University of Pittsburgh Greensburg

Christopher Taylor

Appalachian State University

Hayden Wimmer

Georgia Southern University

Jason Xiong

Appalachian State University

Sion Yoon

City University of Seattle

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 39

https://jisar.org/; https://iscap.info

A Comparison of Internationalization

and Localization Solutions for
Web and Mobile Applications

Pen Wang
wangkevin@cityuniversity.edu

Pinterest, Inc.

Hee Jung Sion Yoon
yoonhee@cityu.edu

Sam Chung
chungsam@cityu.edu

School of Technology and Computing

City University of Seattle
Seattle, WA

Abstract
Building web and mobile applications that quickly adapt to the language, currency, number formatting,

etc., of different regions – called internationalization and localization – has become more critical for
most companies since the Internet allows these applications to reach foreign customers easily.
However, the high development and maintenance cost and negative performance impact are two
significant problems for implementing internationalization and localization functionalities. This paper

analyzes current solutions that are handling the internationalization and localization problem for web
and mobile applications. The advantages and disadvantages of each approach are listed and
compared. Based on the information from the analysis, a new system is designed to offer a better
internationalization and localization solution with a low cost and a low-performance impact.

Keywords: Internationalization, Localization, Web Application, Mobile Application, Cloud Computing

1. INTRODUCTION

Nowadays, companies grow faster when they
can ship their products globally. The software

industry is also taking advantage of the Internet
to deliver applications or solutions to foreign
markets more than ever. However, it is hard to

make an application fit into different local
markets due to the language and culture
differences between regions. Having a
remarkable ability to handle the
internationalization and localization for software
becomes very crucial, which can help a company

to achieve a higher customer satisfaction rate,

more market share, and lower maintenance
costs (Saito et al., 2017).

Internationalization in software development is a

term that talks about how to develop software
that can quickly adapt to other markets, i.e.,
other languages and cultures (Kockaert &

Steurs, 2015, p. 451). Kockaert and Steurs
(2015) also mentioned in their book that
localization is the process of adapting a product
to a local market. The localization process can
include translation, date and time formatting,
units converting, currency converting, and so

forth.

mailto:wangkevin@cityuniversity.edu
mailto:yoonhee@cityu.edu
mailto:chungsam@cityu.edu

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 40

https://jisar.org/; https://iscap.info

Problem Statement

Implementing the internationalization and
localization for web and mobile applications can
cause a high cost during the development and

maintenance process and a considerable
performance impact. Therefore, managing the
internationalization and localization for software
can be very challenging since it will significantly
increase the workload and cost due to multiple
versions that may need to be created
simultaneously.

Long delivering time is another problem because
changing a new version may require changing
every file containing text, symbols, images,
videos, etc. Most importantly, adding a new
feature will become more complex and time-

consuming because multiple versions' software
has to be maintained simultaneously. Moreover,
the approach used to handle internationalization
and localization may give an original system a
significant performance impact due to more
complexity.

Motivation
The first motivation is to find a way to allow the
software to improve its user experience through
internationalization and localization. Hau and
Aparfcio (2014) mentioned that users always
expect the software to show their languages,
which can help raise productivity and

significantly reduce mistakes.

The second motivation is to find a more
effortless and cheaper solution for implementing
and maintaining the internationalization and
localization feature for web and mobile

applications. According to Kidambi (2016), 60%
to 80% of the total life-cycle costs for software
is maintenance cost. Thus, how easy it is to
maintain an application after adding the
internationalization and localization solution
becomes very important.

Approach
This paper evaluates how different frameworks
handle the internationalization and localization
problem and the non-framework way. We list

the advantages and disadvantages of the
existing approaches. We also compare them to
find a way to improve. The ideal goal is to have

a solution that can offer all the existing
solutions' benefits without extra work and
maintenance effort.

2. RELATED WORK

he best way to implement internationalization

and localization for web and mobile applications

have been discussed for a long time (Sugiura,

1986). There are many different solutions out
there. Here are some popular industry solutions
using front-end technologies in JavaScript:

● React applications with React-intl library
(Facebook and Community)

● Angular applications (Google)

● Globalize library (jQuery Foundation)

● Android applications (Google)

React applications with React-intl library

React.js is a prevalent web application user
interface library that can help developers to
develop single-page web applications. It has
many different libraries to help to handle
internationalization and localization challenges.

The react-intl library is one of them. React-intl's
(2019) official documentation can format
message, date, time, number, and handle the
plural issue. Developers can enable the
functionality by wrapping the root component
with the IntlProvider component, a higher-order
component offered by the library.

A FormattedMessage component is used to tell
the application to use the different messages
based on the users' language setting. Another
higher-order function inJectIntl is used to inject
the intl object that contains format functions for
the date, time, and number formatting. Using

the higher-order function to wrap and inject

functions makes this library very easy to use.
Moreover, it also means this library will work
with React library. Another downside is that the
translation text files have to include the
application itself, which requires republishing the

application after adding a new language or
updating some existing texts.

Angular applications
Angular is another popular web application
framework that Google develops, used by over
1.9 million developers (2021). It also comes

with its internationalization and localization
solution. Angular's (2019) documentation can
handle date, number, percentages, currencies,
message, and plural forms of words. Moreover,

Angular offers a Command Line Interface (CLI)
tool to help developers generate necessary files
for translators. It also can help to publish

applications in multiple languages.

The following processes will be conducted after
the internationalization is setup:

● Extracting localizable text for translation

● Building and serving the application with the

translated message based on users’ locale

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 41

https://jisar.org/; https://iscap.info

● Creating multiple versions for different

languages

The strength of this approach is that all of the

necessary tools are included in the Angular
framework, and developers can use them out of
the box. It is easy to add new features with
different languages since the CLI tool will extract
the files automatically and allows translators to
work on the text without touching any code.
Moreover, this approach can be used with

Angular applications since it is an internal tool
for the Angular framework.

Globalize library
Globalize is a JavaScript library that aims to
offer internationalization and localization

capability to web applications. According to Rosa
(2016), the Globalize library leverages the
official Unicode Common Locale Data Repository
(CLDR) JavaScript Object Notation (JSON) data,
and very easy to have the latest CLDR data
(CLDR, 2019). The features of the library
include:

● Number formatting

● Date formatting

● Time formatting

● Currency formatting

● Message formatting

● Plural and unit formatting

The Globalize library’s (2019) official website

shows that using the library is very simple. After
requiring the library and loading the CLDR data,
developers need to call the different formatters
such as currencyFormatter, numberFormatter,
dateFormatter, and so forth.

The strength of using this approach is that it will
work for all of the web applications and some of
the mobile applications (using JavaScript
technology such as React Native or progressive
web app) since it is essentially a pure JavaScript
function. Another advantage is that the latest

CLDR data will always be used. The most
significant disadvantage is that the message
module needs to load a local JSON file that
contains messages in all languages, which

requires republishing the application whenever
changing or adding words in the file.

Android applications
Android is another popular development
platform with around 3.48 million mobile apps
available in the Google Play app store by the
first quarter of 2021 (Statista Research
Department, 2021). It also officially supports the

internationalization and localization functionality

of its platform. According to the Android

developers’ documentation (2019), Android
developers can use the resource framework to
separate the localized aspects from core

functionality code. Android applications will
switch the resources such as static data, images,
videos, sounds, logos, texts, and so on based on
users’ languages preference. Developers can
just simply put the different localized resources
into other folders with the correct language
naming convention. For example, the message

resource for English could be placed under the
res/values-en/strings.xml when the French
message resource could be put under the
res/values-fr/strings.xml.

The advantage of this approach is that this is a

build-in tool offered by Android, which makes
the workflow very clean. It also can efficiently
deal with all kinds of resources besides the text,
such as images, sounds, and videos. The
disadvantage is that this approach works for
Android since it leverages Android resource
loader to switch between different resources.

Summary

After we reviewed and evaluated several
different current solutions, we summarize the
findings as below:

● Most of the solutions are tied to specific
frameworks or platforms.

● Offering a way to extract text for translation is

very important.
● Adding new languages should not require

republishing.
● Updating texts should not require republishing.
● All resources such as text, image, currency,

etc., should be automatically switched to the
correct format based on users' preference
language.

● The approach should keep developers’ extra
work as little as possible.

● The approach should have the ability to handle
text, image, audio, video, date, time,

currency, and unit formatting.

Therefore, it is good to have the ability to

update CLDR data to the latest version
automatically.

3. APPROACH

Our approach described in this paper for solving
the internationalization and localization issue
includes five parts:

1. Use plain JavaScript to fit web and mobile
development with all frameworks: Using the

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 42

https://jisar.org/; https://iscap.info

plain JavaScript implementation can make

sure the solution can be used by any
frameworks such as Angular, React, Vue,
and so on (Rauschmayer, 2019; Tackaberry,

2018). It can work without any framework
as well (Osetskyi, 2019; Tin, 2018). The
mobile applications that use JavaScript
technology also work fine with this solution.

2. Separate the text content: All unrelated
texts are extracted and stored in a separate

file. This approach allows interpreters to
work on only text files without touching the
programming code.

3. Use the resource loader concept:

Implementing a resource loader looks like a

mechanism to allow the applications to load
different images, videos, sounds, and CSS
rule-based on users’ languages and regions.

4. Leverage the CLDR rules: Automatically

update the CLDR rules from the database to
ensure the application uses the newest

localization rules.

5. Use an independent cache layer to keep the
resources: An in-memory cache layer is used
to keep all localization-related resources
such as text, images, videos, CSS rules, and
so forth to reduce the application package

size and allow end-users to download the
necessary resources with low latency. The

in-memory cache layer should also be easy
to scale out with cluster mode when
required.

How to integrate our system
We made our system a library and published it
on a Node Package Management (NPM) system
used to share code). Users can integrate and
use it with the following steps:

1. Install the library into their existing system

with the following comment:

2. Add a dictionary file with all translated text

content (this is stored in the cache layer
after integrating with a cache system such
as Redis or Memcached):

3. Import the translation text file and initialize

the library (usually in the entry file):

4. Use the library in the place you need:

How the integrated system works

The testing system has not integrated with the

CLDR rules system and caching mechanism.
After these two parts are done, the system
works as:

1. Get the user’s location setting config

information from the browser.

npm install --save @kevinwang0316/i18n

// Set the dictionary to the I18n
I18n.setDictionary(dictionary);

// Optionally, you can set up a default
language. If the user browser language is
not found in the dictionary, this default
language will be shown.
I18n.setDefaultLanguage('en-US');

import I18n from '@kevinwang0316/i18n';

const YourComponent = () =>
<button>{I18n.get('login')}</button>;

// Define your dictionary for every language

you want to support.
const dictionary = {
'en-US': { // Set the dictionary for the U.S.
users
 login: 'login',
 confirm: 'confirm',
 },

 'es': { // Set the dictionary for Spanish
users
 login: 'iniciar sesión',
 confirm: 'confirmar',
 },
 'zh-CN': { // Set the dictionary for

Simplified Chinese users

 login: '登录',

 confirm: '确认',

 }
};
export default dictionary;

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 43

https://jisar.org/; https://iscap.info

2. One back-end call to fetch the newest

translation and rule resource files comes
from the cache.

3. Initialize the library with the resource files.

4. Swap the content based on the content in

the resource files.

4. DATA COLLECTION

Since we design our solution as a whole system
to make the internationalization and localization
process easier for web and mobile applications,
we collect the following data for the web

application to measure the performance impact:

● Front-end CPU usage

● Page loading time

● Resources retrieving latency

All testing is conducted on the Macbook Pro
2014 version with a 2.2 GHz Quad-Core Intel
Core i7 CPU and 16G memory.

Front-end CPU usage
The CPU usage was collected by using the
Chrome DevTool profiling feature. The extra CPU
usage that our system adds to the original
system will be crucial for performance. If our
system adds a considerable amount of CPU

overhead, the functionalities of the original

system may be impacted a great deal. The
detailed data can be viewed in Figure 1.

Figure 1. CPU usage

Page loading time

The page loading time can be increased
significantly after using our solution since it
requires loading extra resources from the
Internet based on users’ settings. Thus,

collecting and monitoring this data is very

important. It is collected by using the network
module in the Chrome DevTool. The detailed
data can be viewed in Figure 2.

Resources retrieving latency
Since our system can retrieve different
resources such as text, video, audio, images,
and so forth, the retrieving latency time should
be considered vital data that has to be collected.
This job can be done using AWS Cloud Watch

and AWS X-Ray since our system will be
integrated with AWS's services. Figures 3 and 4
show the data from AWS Cloud Watch and AWS
X-Ray.

Figure 2. Page loading time

Figure 3. AWS Cloud Watch latency

Figure 4. AWS X-Ray latency

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 44

https://jisar.org/; https://iscap.info

5. DATA ANALYSIS

Three different kinds of data were collected for
analysis purposes, which will be analyzed with

various methods in this section.

Front-end CPU usage
The data in Figure 1 shows that our system has
a shallow CPU footprint. After parsing the script,
the execution phrase did not cause any high CPU
usage and even finished before the HTML was

parsed. Figure 1 also shows that the total script
execution time is just a litter bit over 100ms.

Page loading time
Figure 2 shows that the total loading time is
515ms and the total finishing time is 1.25s. We

collected the data by using the Chrome DevTool
network panel. Because this test was run under
the development environment that did not use a
production build, the final loading time can be
even lower since the production build will use
multiple techniques such as minification, tree
shaking, etc.

Resources retrieving latency
In the back-end code, a utility tool is written for
collecting the data for a specific step. In this
case, the latency of retrieving data from Redis is
monitored by the utility tool and logged out to
the AWS CloudWatch. Redis is an in-memory

data structure store, used as a distributed, in-
memory key-value database, cache, and

message broker, with optional durability. Figure
3 shows that the time spends on retrieving a
resource from the cache layer (Redis) is 42ms.
Figure 4 shows the execution time for the whole

back-end function (a warm Lambda function),
63ms.

6. FINDINGS

The finding will be shown in two parts to
illustrate how our system impacts performance
and whether this system is easy and cheap to

use.

Performance Impact

● Low impact of CPU usage: The analysis in
Section 6 shows that our system does not add
any noticeable CPU impact to the original
system. It means our system's impact on CPU

usage is low.
● Fast page loading time: The page loading time

analysis shows the whole page is loaded in
600ms. According to Google PageSpeed
Insights (2019), the website will be considered
fast if its First Contentful Paint (FCP) is under

1,000ms. Thus, the system does not harm the

page loading time.
● Resources retrieving latency: The resource

retrieving latency analysis shows latencies for

resource retrieving from both the Redis and
back-end function calls are very low, which will
not significantly impact the original system.

Ease of Use

To use this system, we conduct the following
three steps:
● Use a placeholder for all dynamic content

instead of hard coding

● Create and fill out the resource template every
time your system wants to add a new region
support

● Add the resource template to the Redis server

Only these three steps need to be done to use
the system, which is fairly to say it is
straightforward to use. Additionally, adding and

updating resources and other regions' support
does not require any client-side or server-side
code changing or redeploying, which causes the
maintain cost very low.

7. CONCLUSION

Adding the internationalization and localization

feature for web and mobile applications can
cause a severe development and maintenance
cost and a substantial negative performance
impact. The system designed in this paper

leverages the resource loader concept, cloud
computing, and in-memory cache technology to
balance developing cost, maintenance effort,

and performance impact. The data collected and
analyzed in the paper shows this system can
help web and mobile applications handle the
internationalization and localization functionality
with several benefits such as a very low-
performance impact in terms of CPU usage,

loading page time, and resource retrieving time,
a very low implementation and maintenance
cost due to the ease of use.
We are not comparing the performance with
other existing systems since this paper aims not
to show how our system can improve the
performance but to demonstrate that our system

does not have a significant performance impact.

8. FUTURE WORK

There are three significant improvements to this
system and could be done in future work. Firstly,
make the data persistent and automatically load
the data into Redis. All resource data are living

in the Redis store, which is an in-memory
database. More work should be done to make

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 45

https://jisar.org/; https://iscap.info

the data persistent and allow Redis to load the

data from the data source after a crash.

Secondly, remove the back-end layer. For the

demo system, the AWS ElastiCache is not used
to avoid the cost. The downside of this
implementation is that a Lambda function has to
be used to hide the Redis credentials from the
front-end code. If the AWS ElastiCache is used,
the system can take advantage of the AWS
assumed permission mechanism to allow the

front-end code to call the Redis store directly. In
other words, the back-end code can be removed
completely.

Lastly, offer a tool to generate the resource
template based on the existing information in

the Redis. All resource information is added to
the Redis store manually using a JSON format
for demonstration purposes. In the future, a tool
should be offered to help users to generate a
resource template or event offer interface based
on the current information in the Redis. It can
help non-technical people such as interpreters,

UI designers and handle the localization process.

9. REFERENCE

Android Developers. (2019). Localize your app.
Retrieved December 26, 2021 from
https://developer.android.com/guide/topics/
resources/localization.html#kotlin

Angular. (2021). Github Angular repository.

Retrieved December 26, 2021 from
https://github.com/angular/angular

Angular. (2019). Internationalization. Retrieved
December 26, 2021 from
https://angular.io/guide/i18n

CLDR. (2019). Unicode Common Locale Data

Repository. Retrieved December 26, 2021
from http://cldr.unicode.org

Globalize. (2019). Globalize read me. Retrieved
December 26, 2021 from
https://github.com/globalizejs/globalize

Google PageSpeed Insights. (2019). About
PageSpeed Insights. Retrieved December

26, 2021 from
https://developers.google.com/speed/docs/i
nsights/v5/about?hl=en-
US&utm_source=PSI&utm_medium=incomin
g-link&utm_campaign=PSI

Hau, E., & Aparício, M. (2008, September).
Software internationalization and localization

in web-based ERP. In Proceedings of the
26th annual ACM international conference on
Design of communication (pp. 175-180).

Kidambi, P. C. (2016). Maintenance issues in

software engineering. Retrieved December
26, 2021 from
http://www2.latech.edu/~box/ase/tp_2003/

CS532Termpaper_Kidambi_Praveen%20Cha
ndra.doc

Kockaert, H. J., & Steurs, F. (2015). Handbook
of terminology (Vol. 1). John Benjamins
Publishing Company.

Margaret, R. (2017). Web application. Retrieved
December 26, 2021 from

https://searchsoftwarequality.techtarget.co
m/definition/Web-application-Web-app

Margaret, R. (2019). Mobile app. Retrieved
December 26, 2021 from

https://whatis.techtarget.com/definition/mo
bile-app

Osetskyi, V. (2019). Web application
architecture. Retrieved December 26, 2021
from https://medium.com/existek/web-
application-architecture-da77ea0cb520

Rauschmayer, A. (2014). Speaking JavaScript:
an in-depth guide for programmers. O'Reilly
Media, Inc.

React-intl. (2019). React-intl gets started.
Retrieved December 26, 2021 from
https://github.com/formatjs/react-
intl/blob/master/docs/Getting-Started.md

Rosa, A. (2016). How to Implement

Internationalization (i18n) in JavaScript.
Retrieved December 26, 2021 from

https://www.sitepoint.com/how-to-
implement-internationalization-i18n-in-
javascript

Saito, O., Boafo, Y. A., Kranjac-Berisavljevic, G.,
Yeboah, R. W. N., Mensah, A., Gordon, C., &
Takeuchi, K. (2018). Internationalization and

Localization of the Ghana Model: Lessons
Learned, Opportunities for Upscaling, and
Future Directions. In Strategies for Building
Resilience against Climate and Ecosystem
Changes in Sub-Saharan Africa (pp. 333-
343). Springer, Singapore.

Statista Research Department. (2021). The

number of available apps in the Apple App
Store from 1st quarter 2015 to 1st quarter
2021. Retrieved December 26, 2021 from
https://www.statista.com/statistics/779768/
number-of-available-apps-in-the-apple-app-
store-quarter/

Tackaberry, A. (2018). How to set up

Internationalization in React from start to
finish. Retrieved December 26, 2021 from

https://developer.android.com/guide/topics/resources/localization.html#kotlin
https://developer.android.com/guide/topics/resources/localization.html#kotlin
https://github.com/angular/angular
https://angular.io/guide/i18n
http://cldr.unicode.org/
https://github.com/globalizejs/globalize
https://developers.google.com/speed/docs/insights/v5/about?hl=en-US&utm_source=PSI&utm_medium=incoming-link&utm_campaign=PSI
https://developers.google.com/speed/docs/insights/v5/about?hl=en-US&utm_source=PSI&utm_medium=incoming-link&utm_campaign=PSI
https://developers.google.com/speed/docs/insights/v5/about?hl=en-US&utm_source=PSI&utm_medium=incoming-link&utm_campaign=PSI
https://developers.google.com/speed/docs/insights/v5/about?hl=en-US&utm_source=PSI&utm_medium=incoming-link&utm_campaign=PSI
http://www2.latech.edu/~box/ase/tp_2003/CS532Termpaper_Kidambi_Praveen%20Chandra.doc
http://www2.latech.edu/~box/ase/tp_2003/CS532Termpaper_Kidambi_Praveen%20Chandra.doc
http://www2.latech.edu/~box/ase/tp_2003/CS532Termpaper_Kidambi_Praveen%20Chandra.doc
https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app
https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app
https://whatis.techtarget.com/definition/mobile-app
https://whatis.techtarget.com/definition/mobile-app
https://medium.com/existek/web-application-architecture-da77ea0cb520
https://medium.com/existek/web-application-architecture-da77ea0cb520
https://github.com/formatjs/react-intl/blob/master/docs/Getting-Started.md
https://github.com/formatjs/react-intl/blob/master/docs/Getting-Started.md
https://www.sitepoint.com/how-to-implement-internationalization-i18n-in-javascript
https://www.sitepoint.com/how-to-implement-internationalization-i18n-in-javascript
https://www.sitepoint.com/how-to-implement-internationalization-i18n-in-javascript
https://www.statista.com/statistics/779768/number-of-available-apps-in-the-apple-app-store-quarter/
https://www.statista.com/statistics/779768/number-of-available-apps-in-the-apple-app-store-quarter/
https://www.statista.com/statistics/779768/number-of-available-apps-in-the-apple-app-store-quarter/

Journal of Information Systems Applied Research 15 (2)
ISSN: 1946-1836 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 46

https://jisar.org/; https://iscap.info

https://www.freecodecamp.org/news/setting

-up-internationalization-in-react-from-start-
to-finish-6cb94a7af725

Tin, F. (2018). Automated software

internationalization and localization.
Retrieved December 26, 2021 from
http://www.freepatentsonline.com/1007850

4.html

https://www.freecodecamp.org/news/setting-up-internationalization-in-react-from-start-to-finish-6cb94a7af725
https://www.freecodecamp.org/news/setting-up-internationalization-in-react-from-start-to-finish-6cb94a7af725
https://www.freecodecamp.org/news/setting-up-internationalization-in-react-from-start-to-finish-6cb94a7af725
http://www.freepatentsonline.com/10078504.html
http://www.freepatentsonline.com/10078504.html

