

CyberSecurity pedagogy

& Practice Journal

Volume 1, No. 1

July 2022
ISSN: 2832-1006

In this issue:

4. Teaching Cybersecurity Incident Response Using the Backdoors & Breaches

Tabletop Exercise Game

Jacob Young, Bradley University

Sahar Farshadkhah, University of Illinois Springfield

18. Going Beyond Considering the Use of Competency-based Education for

Designing a Cybersecurity Curriculum

Fred L. Strickland, University of Maine at Presque Isle

29. Preparation for a Cybersecurity Apprenticeship Program (PCAP)

Jonathan Lancelot, University of North Carolina Wilmington

Geoff Stoker, University of North Carolina Wilmington

Grace Smith, University of North Carolina Wilmington

Chris Nichols, University of North Carolina Wilmington

Ulku Clark, University of North Carolina Wilmington

Ron Vetter, University of North Carolina Wilmington

William Wetherill, University of North Carolina Wilmington

40. Rubber Duckies in the Wild: Proof of Concept Lab for USB Pen Testing Tool

(Teaching Case)

Anthony Serapiglia, Saint Vincent College

44. An IoT Based New Platform for Teaching Web Application Security

Zhouzhou Li, Southeast Missouri State University

Ethan Chou, Southeast Missouri State University

Charles McAllister, Southeast Missouri State University

54. Proposing the Integrated Virtual Learning Environment for Cybersecurity

Education (IVLE4C)

Jeff Greer, University of North Carolina Wilmington

Geoff Stoker, University of North Carolina Wilmington

Ulku Clark, University of North Carolina Wilmington

66. Identity Attributes in Teaching Privacy (Teaching Case)

Yaprak Dalat Ward, Fort Hays State University

Li-Jen Lester, Sam Houston State University

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://cppj.info/; https://iscap.info

The Cybersecurity Pedagogy and Practice Journal (CPPJ) is a double-blind peer-

reviewed academic journal published by ISCAP (Information Systems and Computing

Academic Professionals). Publishing frequency is two times per year. The first year of

publication was 2022.

CPPJ is published online (https://cppj.info). Our sister publication, the proceedings of the

ISCAP Conference (https://proc.iscap.info) features all papers, panels, workshops, and

presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the ISCAP

conference. At that point papers are divided into award papers (top 15%), and other accepted

proceedings papers. The other accepted proceedings papers are subjected to a second round

of blind peer review to establish whether they will be accepted to the journal or not. Those

papers that are deemed of sufficient quality are accepted for publication in the CPPJ journal.

Currently the target acceptance rate for the journal is under 35%.

Questions should be addressed to the editor at editorcppj@iscap.us or the publisher at

publisher@iscap.us. Special thanks to members of ISCAP who perform the editorial and

review processes for CPPJ.

2022 ISCAP Board of Directors

Eric Breimer
Siena College

President

Jeff Cummings

Univ of NC Wilmington
Vice President

Jeffry Babb
West Texas A&M

Past President/
Curriculum Chair

Jennifer Breese

Penn State University
Director

Amy Connolly
James Madison University

Director

Niki Kunene
Eastern CT St Univ
Director/Treasurer

RJ Podeschi
Millikin University

Director

Michael Smith
Georgia Institute of Technology

Director/Secretary

Tom Janicki
Univ of NC Wilmington

Director / Meeting Facilitator

Anthony Serapiglia
St. Vincent College

Director/2022 Conf Chair

Xihui “Paul” Zhang
University of North Alabama

Director/JISE Editor

Copyright © 2022 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to editorcppg@iscap.us.

mailto:editorcppj@iscap.us
mailto:publisher@iscap.us

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://cppj.info/; https://iscap.info

Cybersecurity

Pedagogy and Practice

 Journal

Editors

Anthony Serapiglia
Co-Editor

St. Vincent College

Jeffrey Cummings
Co-Editor

University of North Carolina
Wilmington

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Paul Witman
Associate Editor

California Lutheran
University

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 44

https://cppj.info/; https://iscap.info

An IoT Based New Platform for

Teaching Web Application Security

Zhouzhou Li

zli2@semo.edu

Ethan Chou

echou1s@semo.edu

Charles McAllister
cdmcallister@semo.edu

The Deparment of Computer Science

Southeast Missouri State University
Cape Girardeau, MO 63701, U.S.

Abstract

Web application security is a core issue that must be addressed in cybersecurity degree programs to
adequately prepare students for leadership in industry. To teach a “Web Application Security” course, a
good exercise platform that can cover the context of Web application is crucial to the learning outcomes.

Unfortunately, existing platforms cannot satisfy both cost and efficiency requirements. In this paper, a
cost-effective and easy-to-use full-stack Web application platform, ESP32-CAM, is introduced to the
course, which is an Internet of Things device with a built-in face recognition Web App. Our major
contribution in this paper includes the thoughtful design of an exercise series around the platform, which
can provide more hands-on practice in the class, strengthen students’ practical skills, and further inspire
the students’ learning interests on a matured technique such as Web applications. Furthermore, through
this platform students can explore the cutting-edge technologies in their class projects or capstone

project, e.g., “transfer learning” to extend the face recognition to emotion recognition or generative
adversarial network to fool the Artificial Intelligence model, which will greatly involve students in
academic research.

Keywords: Web Application Security, Internet of Things, Artificial Intelligence, Reverse Engineering,
Penetration Testing, Secure Software Development.

1. INTRODUCTION

According to International Telecommunication
Union (Buyannemekh & Chen, 2021), by 2019,
53.6% of the world population had stable Internet

access and enjoyed the wealth of information.
With the Internet, a user who has no technical or
engineering background can solve some technical
challenges by using his/her World Wide Web
(WWW, or just Web) browser to search the
Internet for hints or answers. The Web is a critical

application for the Internet. Due to its core role

played on the Internet, Web application’s security
is naturally a significant issue that needs to be
addressed in the industry and in academic
establishments.

In current usage, the Web becomes a de facto
standard for Internet. Other Internet applications
(such as email, instant messaging, interactive
game, file transfer, cloud storage, etc.) either
build themselves upon Web or provide their Web

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 45

https://cppj.info/; https://iscap.info

version of solutions. Figure 1 shows the context

of Web application, where it depends on the
lower-level Internet protocols and supports other
Internet applications. Every component in this

figure can potentially impact the security.
Therefore, the Web Application Security should
cover all.

Unfortunately, considering both cost and
efficiency, it is difficult to find a suitable platform
providing full-stack protocols for students to

exercise during course study. The major concerns
include:

▪ Only opening the (Web) application layer for

Cybersecurity students to attack. No details
for the implementation of the lower layers.

Not to mention their vulnerabilities.
▪ Only provide an over simplified Web layer for

Cybersecurity students to attack. Seemingly
not a real system.

▪ Not free if the user wants to experience the
advanced functionalities.

Figure 1: The Context of Web App Security

A good platform for students to practice Web
application security but limiting the impact to the
real networks need to be well designed.

The remainder of this paper is organized as

follows. In the ‘Literature Review’ section, we
review the current courseware or labs designed
for teaching Web App Security. In the
‘Background’ section, the Internet of Things (IoT)
device-based face recognition Web platform will
be introduced, and its advantages will be

explained. In the ‘Teaching Objectives’ section,
the teaching goals of the Web App Security course
will be discussed. Then, a list of exercises to

support the teaching goal through the platform

will be provided. In section ‘Student Feedback’,
students’ feedback proved the ESP32-CAM a good
platform for learning ‘Web App Security’ will be

given. With the ‘Outcomes’ section providing
quantitative evaluation on the learning effect. A
summary of what areas can be improved, as well
as a conclusion of discussion will be provided in
“Conclusions and Future Work” section.

2. LITERATURE REVIEW

Currently, the most popular platform for teaching
Web App Security is Virtual Machine (Chen & Tao,
2011; Schweitzer & Bolang, 2009; Chen et al.,
2010; Liegle & Meso, 2005), though in (Yu et al.,
2006), the authors still tried using the traditional

high-performance Cyber Defender Lab. The
advantage of using a VM platform is obvious:
cost-effective. In (Oh et al., 2020), a Raspberry
Pi 3 based platform was proposed, which also had
the cost advantage (cost was about $234) but
provided a real platform to the students. A
corresponding survey was conducted in a course.

The result showed that most students prefer the
real-world Web applications for them to attack
and defend; they are tired of practicing in a
virtual environment.

A Raspberry Pi can be treated as a minicomputer.
Most IoT devices are even smaller and less

expensive. The insight here is, if we can move the
Web App Security teaching platform to a IoT

device, we may achieve further cost-saving.

Fortunately, we found one. And its performance
is even better.

3. BACKGROUND

ESP32-CAM (Fig .2) is an IoT hardware-based
Web App providing quick, accurate and cost-
effective “Face Recognition”. A typical use
case/scenario is given below:

▪ New users should enroll their face image to

the Web App first. A unique ID is then
assigned to that face. After that, the face

image is saved in the system and the user
cannot access it anymore.

▪ The security department places the ESP32-

CAM hardware to the gate/door they want to
implement access control by face recognition.

▪ A user stands in front of the ESP32-CAM
hardware. The Web App analyzes the input,
i.e., the face image, to generate landmarks
for that face and search the image database

for matched face. If found, access privilege

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 46

https://cppj.info/; https://iscap.info

will be given to the user; if not, access will be

denied.

Figure 2: ESP32-CAM Board (Front & Back

Views)

The cost of the ESP32-CAM hardware is about

$8.00. Considering the peripheral cable and
bridge device, the overall cost of one set of
exercise hardware is just about $15.00.
And the Web App is ready, within 1 minute, a user
can deploy it. Furthermore, it can cold start in 10
seconds, which is much faster than all the known
platforms. Not to mention that it is 100% open-

source. The instructor doesn’t need to verify the
potential Intellectual Property issue. And it is easy
to maintain and expand, after all, only 4 source
files need to be maintained with two of them are
header files.

Besides the reasonable price and good
performance, another attractive feature this Web

App can provide is the integration of IoT and
Artificial Intelligence (AI) technologies.

Internet of Things
IoT is an emerging technology. Though many
students have shown their interests in IoT, a

course about IoT fundamentals is often still only
offered as a course elective in degree programs.
If exercises in this Web App Security course can
be provided by using an IoT device, then state-
of-the-art and valuable content can be added to
this old-technique course. It is not necessary for
students to take a full IoT course to touch on the

embedded hardware as well as wireless

communication.

This IoT hardware-based platform is also good for
students to conduct edge computing research,
which is a hot subarea of cloud computing, by
focusing on customized computing to provide

prompt responses and accurate results. The AI
model integrated in ESP32-CAM was trained by a
dataset with different faces. Its generality was
already verified. However, when it is applied to a

specific face, its recognition accuracy and speed

are not perfect, i.e., there is room for new
research to improve. In one of the capstone
projects, one student group realized the

sensitivity of the ESP32-CAM AI model somehow
was impacted by personal face features.

Artificial Intelligence
As aforementioned, an AI model is integrated in
the ESP32-CAM Web application (Zhang, Zhang,
and Qiao, 2016). This generation of AI is an

emerging technology, which is based on
supervised and unsupervised machine learning.
And face recognition belongs to the supervised
learning. Most CS/ECE departments already
offered Machine Learning/AI courses.
Consequently, this course for Web App Security

can offer hands-on opportunities for students to
comprehensively utilize what they have learned
from the ML/AI courses. Due to the interactive
character of this AI model, students showed their
great interests to the face recognition application.

This AI-integrated platform is also good for

students to conduct transfer learning research,
which does not change the existing AI model, but
builds the new learning framework on top of the
existing model. For example, enhance the face
recognition to emotion recognition.

Furthermore, with the prevalence of AI models,

model-based attacks emerge, which makes the
traditional code-based countermeasures

outdated. Students will get a chance to learn the
newest research in data poisoning, data
manipulation, and Generative Adversarial
Network.

4. TEACHING OBJECTIVES

After competing this course, students will be able
to:

1. Understand HTML and front-end code.

2. Describe the components of a Web App.
3. Deploy a Web App to a specific device.
4. Conduct preliminary reverse engineering &

re-engineering.

5. Understand the Software Maturity Model with
concentration on Security.

6. Describe different vulnerabilities and their

root causes.
7. Conduct pen-testing or attacking by code

review, auto vulnerability scanning, and fuzz
testing.

8. Describe functional and non-functional
requirements and their relationships to

security requirements.
9. Conduct threat modeling.

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 47

https://cppj.info/; https://iscap.info

10. Follow secure coding standards to write and

review code.
11. Describe the function of a certificate. Apply

certificates in Web Apps.

12. Apply Public Key Cryptography in Web Apps.
13. Describe the data impact to Web App

Security.

These objectives are the result of decomposing
the high-level outcomes of this course into small
technical areas and integrating practical

skills/tools into these areas. The high-level
outcomes source from the NSA CAE-CDE
designation requirements.

5. EXERCISES

An attempt to fully utilize the proposed platform
was made by designing a variety of exercises for
students to experience the different aspects of
the Web Application Security. In total, 15
independent exercises were prepared, but
together, can provide a systematic layout.

1. The first two exercises are related to user
experience – before attacking or defending a
Web App, the students will need to get
familiar with it.

2. The next six exercises cover how to attack a
Web App and fundamental skills and tools.
Among them, four exercises are related to

finding the vulnerabilities of the Web App by
studying the code. Followed are auto

vulnerability scanning & fuzz testing
exercises.

3. After the students understand how to attack
a Web App, countermeasures (defending

skills and tools) can be introduced. Four
exercises related to Secure Software
Development Life Cycle and one exercise
related to symmetric encryption are provided
in this part to students.

4. The next two exercises address the non-code
vulnerabilities caused by AI models.

A corresponding optional project was designed to
respond to the requests from a few of students,
who would like to do correlated research in this

Web App Security course, an independent study,
or in their capstone course.

As a summary, here is the list of hardware,
Integrated Development Environment (IDE), and
software used in the exercises:

Figure 3: Resources Used in Exercises

Deploy the face recognition Web application

to an ESP32-CAM IoT board
Students will need to learn how to deploy a Web
application to an IoT device.

1. The application code is ready in Arduino IDE

after installing the appropriate ESP32 board’s
add-on.

2. Students need to connect the ESP32-CAM
board to a host (where Arduino IDE is
running), then cross-compile the code in

Arduino and download the executable from
the host to the board.

3. After reset, the board is up with the face

recognition Web application ready.
4. Access a pre-defined URL to reach the

application’s control panel, where a user can
enroll a face and see if the board can
recognize it later when the same face appears
in front of the camera of the ESP32-CAM
board.

This is a team project with 4 or 5 members in the
team. Exercise hardware includes an ESP32-CAM
board, an FTDI Mini USB to TTL Serial converter,
and a mini-USB cable.

For most of the students, this is the first time they

touch an IoT device or an embedded system.
Students are curious and worried. A clear
instruction manual can help them quickly
accomplish this exercise so that they will build
their confidence on learning a new
technique/skill/method.

Through this exercise, students can explore
fundamentals of IoT development and application

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 48

https://cppj.info/; https://iscap.info

deployment, and they can identify the basic

components of a Web application, which could be
deployed on any hardware. They have learned
Web application development concepts in their

freshman or sophomore year but deploying a Web
application to independent physical hardware is
the first time for most of them.

Furthermore, this is a good chance for students
to experience IoT in a Web App Security course.

Fool the AI model
The AI model integrated to the Web application
can provide quick and accurate face recognition.
However, it cannot guarantee 100% correctness.
This exercise encourages the students to stably
reproduce false positive and false negative

situations, which will inspire the students to think
about the deeper logic in the AI model though it
appears a black box so far. This is a very
whimsical yet important exercise, and how
creative students are can be observed. Some
students tried making funny faces to cause false
negative cases. Others tried wearing glasses,

hats, or even a fake beard to fool the AI model,
like a fashion show. Creatively, some students
directly used a printed photo and successfully
made the Web application believe this is the
enrolled person. Students can sample the
problem the AI model has, but do not know why.
Having the question not directly answered here

will keep students’ curiosity piqued until later
they are asked to get hints from the papers about

Data Manipulation, Data Poisoning, and
Generative Adversarial Networks. This is a good
chance for students to experience AI in a Web App
Security course.

Reverse Engineering
Reverse engineering is an important practical skill
that can be used in attacking a system or pen-
testing. Through reading and analyzing the
source code or binary program, the attacker or
tester can infer the original design ideas and

architecture. In this designed exercise students
will be asked to determine the design of the face
recognition Web application from the published C
code. Either the architecture or the pseudo code

of the Web application should be submitted.

There will be several challenges for students to

overcome. The first one is the library code, which
was not published by the application developers.
Only four C source files were published, but the
most fundamental functions were provided by the
libraries with (debugging) symbols stripped off.
Students will need either read the assembly code

(not recommended to them due to the difficulty

level) or perform a Google search for the source

code of the libraries.

Re-engineering

The ESP32-CAM Web App provided a complicated
control panel to configure the attached camera
and the face recognition parameters. However,
half of these parameters are too professional to
be changed by most of the students. Therefore,
simplifying the control panel can reduce the
confusion and distraction on the face recognition

application itself. Figure 4 shows the simplified
version of the control panel, which is much
simple.

Figure 4: Simplified Control Panel of the

Web App

To accomplish this exercise, students will need to
overcome several small challenges:

1. Understand the original HTML code and

identify the unnecessary elements on the
HTML page. Because several elements have

dependency relationships, before deleting
one unnecessary element, students must first
resolve its dependencies.

2. Because the original HTML page was
compressed then saved in the ESP32-CAM

flash, to replace it with the simplified page,
students will need to know how to convert

their HTML code to .gzip format.
3. Also, the compressed HTML page is saved as

an array of hex bytes in ESP32-CAM.
Students will need to convert the raw bytes
of the .gzip file to a hex byte array. To
complete this task, students must master one

Hex Editor.

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 49

https://cppj.info/; https://iscap.info

These are practical skills related to Web App

Security.

Determine vulnerabilities of the Web App

Before taking this course, the students already
had a solid foundation in Cybersecurity from
earlier courses. Thus, it is easy for them to detect
several vulnerabilities of the face recognition Web
application. However, to provide full coverage,
they will need to have a systematic view and
comprehensively utilize their knowledge, skill,

and inference capability. This exercise will provide
a record of how many vulnerabilities they can find
without further education. After they finish this
course study, they can retry this exercise to
identify what additional vulnerabilities they can
find.

Fix the Buffer Overflow vulnerability
demonstrated by a video
Buffer Overflow once was a top vulnerability. And
the original code of the face recognition App
suffered from this vulnerability. A recorded video
can show how the attack vector

“http://{IP}/control?var=framesize&val=512”
could corrupt the face recognition Web application
because the variable used to save the ‘framesize’
parameter is just an 8-bit integer. This attack
vector was not determined through the auto
vulnerability scan nor the reverse engineering
because its URL is a hidden one. When a user

changes a parameter through the control panel,
the front-end code will generate a similar but

hidden URL to update the parameter saved at the
Web server. To expose the hidden URL, students
will need to understand the front-end code (i.e.,
the HTML page), use Wireshark to capture the

network traffic for analysis, or understand the
back-end code.

At minimum, a student will need to master one of
the following skills before they can find the Buffer
Overflow vulnerability:

▪ Efficiently trace the front-end code in HTML
and Java Script.

▪ Know how to filter network traffic by
Wireshark and narrow down the packets of

interest.
▪ Efficiently trace the back-end code in C and

C++.

Unfortunately, it is not easy, but students will
realize tools alone are not the most important
factor in Web App Security. Both understanding
the target’s code and using automatic tools are
crucial.

Auto Vulnerability Scanning & Fixing

There are many automatic scan tools for Web App
vulnerabilities, which can greatly save the
attacker or tester’s effort during target

vulnerability scanning. The Open Web Application
Security Project (OWASP) Zed Attack Proxy (ZAP)
(Wikipedia Contributors, 2021a) is a good one for
Web App attacking or testing. Using it, students
can scan the vulnerabilities of the face recognition
Web App in an automatic style. Based on hints
provided by the ZAP report, students will need to

explore the back-end code for the best place to
put the fix.

Fuzz Testing
Fuzz testing or Fuzzing is an automated software
testing technique that involves providing invalid,

unexpected, or random data as inputs to a
computer program (Wikipedia Contributors,
2021b). Its purpose is to verify the reliability of
the target, and it can verify the coverage of the
implemented code. It is a good tool for Web App
attacking or testing. In previous exercises, the
‘control’ hidden URL has been exposed. Thus,

students can direct OWASP ZAP to feed a wide
range of inputs to the face recognition Web App
to see if some inputs can trigger exceptions to the
App. Students should be able to experience
automated testing and realize its efficiency.

Secure Software Development Life Cycle

(SDLC)
To prevent vulnerabilities from being integrated

into the Web App from scratch, the secure
development process is crucial, which can
monitor the quality of Web App development. And
security is just one aspect of the product quality

metrics. Thus, knowing the impacts from non-
security requirement is also important. The goal
of this exercise is to give the students a
systematic view about the security. OWASP
Software Assurance Maturity Model (SAMM)
allows teams and developers to assess,
formulate, and implement strategies for better

security which can be easily integrated into an
existing organizational Software Development
Life Cycle (SDLC). This is especially important
when students run/join software companies in the

future.

Students are expected to read the OWASP SAMM

Quick Start Guide (Wen, 2017).

Secure Software Design
Producing secure software requires conducting
secure practices as early in the SDLC as possible.
Design is the next phase after the customer

requirement analysis. At this phase, platform,
environment, constraints, components, and their

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Random_data
https://en.wikipedia.org/wiki/Computer_program

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 50

https://cppj.info/; https://iscap.info

relationships as well as interactions are decided.

Integrating security consideration at this phase
can greatly reduce software vulnerabilities.
Therefore, it can avoid the most cost for finding

and fixing the vulnerabilities in downstream. In
this exercise, students will need to analyze the
security requirements of the Web App, then
propose an architecture (update) and detail the
interactions between the components in the
architecture. Both sunny-day and rainy-day
scenarios should be performed to exclude

potential vulnerabilities.

Sequence diagrams that focus on different
aspects of security should be submitted as the
result of Secure Software Design.

Threat Modeling
Threat modeling is a powerful tool, which can be
used to determine the attack surface of the Web
App. It is useful for

▪ Ensuring the design complements the

security objectives.

▪ Making trade-offs and prioritizing efforts
▪ Reducing the risk of security issues during

development and operation.

In this exercise, students will try Microsoft’s
threat modeling framework, STRIDE (Spoofing,
Tampering, Repudiation, Information, DoS,

Elevation of privilege) to determine the attack
surface of their Web App.

Best Coding Practice
Best coding practice is a kind of accumulation of
experience from existing events. Though it cannot

defeat all attacking attempts, it can fix most
severe vulnerabilities and mitigate the attacking
consequence. Students are expected to go
through a check list (i.e., OWASP Secure Coding
Practices Quick Reference Guide (Lala, Kumar, &
Subbulakshmi, 2021)) to review and evaluate the
overall security of their code.

Asymmetric Cryptography
To protect the confidentiality of the Web traffic,
encryption should be conducted. Usually,

asymmetric cryptography is used to generate
public and private keys for symmetric key and
signature distribution. The core part of the

asymmetric cryptography is the difficult
mathematic problem, such as the big integer
factoring problem.

A Fermat Sieve-based 64-bit C program was
given to students to demonstrate the big integer

factoring algorithm as well as the time
consumption. Because the program cannot

handle numbers larger than 64 bits, the students

are expected to port the logic to a Python
program, which can handle larger numbers.

Data Manipulation & Poisoning
During training, machine learning algorithms
search for the most accessible pattern that
correlates pixels to labels. But when a common
yet trivial pattern is given a higher weight, a noise
or a small piece of polluted data could cause the
wrong judgement of the trained AI model.

Students will need to read two articles to realize
and understand the non-code impact to Web App
Security:
1. The Threat of Adversarial Attacks on Machine

Learning in Network Security--A Survey
(Ibitoye et al., 2019).

2. Adversarial machine learning (Vorobeychik &
Kantarcioglu, 2018).

Generative Adversarial Network
Generative modeling discovers and learns the
patterns in input data in such a way that the
model can be used to generate new examples

that plausibly could have been drawn from the
original dataset. In a GAN, two sub-models (the
generator model for new examples and the
discriminator model for classification) are trained
together adversarial, until the discriminator
model is fooled about half the time, meaning the
generator model is generating plausible

examples. Students will need to read one article
to realize and understand the GANs’ impact to

Web App Security: Generative Adversarial
Networks (GAN) A Gentle Introduction (Wang,
2017).

Capstone Projects or Research Directions
Based on the compact ESP32-CAM IoT hardware
and the integrated face recognition AI model,
there are three capstone projects, or three
research directions suggested for students who
want to try different things beyond this course
study.

▪ Transfer Learning (Wikipedia Contributors,

2021c) – the AI model will generate five
landmarks (points) for each input/face image.

The face recognition Web App will compare
enrolled one with the current input/face
image to evaluate their similarity by

calculating a correlation coefficient between
the landmarks. If the landmarks are used as
the starting point for further emotion
recognition, the function of the Web App is
enhanced while leaving the integrated AI
model intact. Emotional information is a

supplement to the face information, which will
enhance the security when they are used in

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 51

https://cppj.info/; https://iscap.info

access control and authentication/

authorization scenarios.

▪ Edge Computing (Wikipedia Contributors,

2021d) – the face recognition AI model was
trained by public datasets. However, different
people have different facial features. When
this AI model is deployed in a specific target
environment, its application context may be
limited to a small group of people. Then, one
thing perhaps may be enhanced: customize

the AI model for the target environment to
provide quicker and more accurate response.
This direction belongs to the scope of Edge
Computing.

▪ Data Manipulation, Data Poisoning, &

GAN (Chen et al., 2017; Ledig et al, 2017) –
Examples have been seen that adding some
trivial noise to the input image can mislead
the AI model. Due to the black-box character
of the AI model, these are hard to explain.
Moreover, the traditional countermeasures
for code-based vulnerabilities cannot be

reused for the model-based (or data-based)
vulnerabilities. Evaluating the impact and
finding a solution is a good project topic or
research direction.

6. STUDENT FEEDBACK

In Spring 2021, one of the authors delivered this
proposed platform-based courseware to 37 senior

Cybersecurity undergraduate students in the
CY410 Web App Security online course. CY410 is
a major core course. Its prerequisites include
“Python Programming”, “Java Programming”,

“Introduction to Cybersecurity”, “Web
Development”, “Data Protocol Security”, and
“Information Security in System Administration”.
At the end of the semester, 59% students
provided their feedbacks to CY410. Overall, the
feedbacks are positive, and the average ‘grade’
the students gave to the instructor was 4.55 (the

program’s average was 4.27 and the school’s
average was 4.29). The students also realized the
depth of this course because of so many tricky
hands-on exercises. Though they never admitted

it. What the students complained most was they
couldn’t get enough hardware for the team
projects. Only one set of devices were given to a

project team. Due to the COVID-19 pandemic,
projects or teamwork is not sufficiently organized.
Each team member individually wanted to use the
hardware. Therefore, assigning a set of
equipment to each student rather than each
project team may further improve their

feedbacks.

7. OUTCOMES

Table 1 (in the Appendix) shows the learning
outcomes corresponding to the teaching

objectives in section 3.

8. CONCLUSIONS AND FUTURE WORK

The ESP32-CAM IoT and AI platform provides rich
features from almost every aspect for students to
experience Web App Security and attracts

students to touch the cutting-edge research in
IoT, Edge Computing, and Transfer Learning.
Totally it can support more than 16 corresponding
hands-on exercises. In the future, we plan to
connect database to this platform or implement a
‘little’ DB in it. A prototyping has been done. We

will provide more details in our future paper.
Furthermore, at a cost of $15/student, this IoT
platform provides a cost-effective solution for
teaching Web App Security, which is the lowest-
cost platform so far to our best knowledge. This
means the instructors can offer sufficient
hardware to the students. The teaching effect

showed students gave very positive feedback to
the new teaching/exercise platform. We expect
further improvement in the student feedback
(currently 4.55) when we equip every student
with one set of the device.

9. REFERENCES

Buyannemekh, B., & Chen, T. (2021). Digital

governance in Mongolia and Taiwan: A
gender perspective. Information Polity. IOS
Press BV. https://doi.org/10.3233/IP-219005

Chen, L., Tao, L., Li, X., & Lin, C. (2010). A tool
for teaching web application security. In

Proceedings of the 14th Colloquium for
Information Systems Security Education (pp.
17-24).

Chen, L. C., & Tao, L. (2011). Teaching web
security using portable virtual labs.
In Proceedings of the 2011 11th IEEE
International Conference on Advanced

Learning Technologies, ICALT 2011 (pp. 491–
495).
https://doi.org/10.1109/ICALT.2011.153

Chen, X., Liu, C., Li, B., Lu, K., & Song, D. (2017).
Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv preprint
arXiv:1712.05526.

Ibitoye, O., Abou-Khamis, R., Matrawy, A., &
Shafiq, M. O. (2019). The Threat of
Adversarial Attacks on Machine Learning in
Network Security--A Survey. arXiv preprint
arXiv:1911.02621

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 52

https://cppj.info/; https://iscap.info

Lala, S. K., Kumar, A., & Subbulakshmi, T.

(2021). Secure web development using
OWASP guidelines. In Proceedings - 5th
International Conference on Intelligent

Computing and Control Systems, ICICCS
2021 (pp. 323–332). Institute of Electrical
and Electronics Engineers Inc.
https://doi.org/10.1109/ICICCS51141.2021.
9432179

Ledig, C., Theis, L., Huszár, F., Caballero, J.,
Cunningham, A., Acosta, A., … Shi, W.

(2017). Photo-realistic single image super-
resolution using a generative adversarial
network. In Proceedings - 30th IEEE
Conference on Computer Vision and Pattern
Recognition, CVPR 2017 (Vol. 2017-January,

pp. 105–114). Institute of Electrical and

Electronics Engineers Inc.
https://doi.org/10.1109/CVPR.2017.19

Liegle, J., & Meso, P. (2005). Evaluation of a
virtual lab environment for teaching web-
application development. In Proceedings of
ISECON.

Oh, S. K., Stickney, N., Hawthorne, D., &

Matthews, S. J. (2020). Teaching Web-
Attacks on a Raspberry Pi Cyber Range.
In SIGITE 2020 - Proceedings of the 21st
Annual Conference on Information
Technology Education (pp. 324–329).
Association for Computing Machinery, Inc.
https://doi.org/10.1145/3368308.3415364

Schweitzer, D., & Boleng, J. (2009). Designing
web labs for teaching security concepts.
Journal of Computing Sciences in Colleges,
25(2), 39-45.

Vorobeychik, Y., & Kantarcioglu, M. (2018).
Adversarial machine learning. Synthesis

Lectures on Artificial Intelligence and Machine
Learning, 12(3), 1-169.

Wang, S. (2017). Generative Adversarial
Networks (GAN) A Gentle Introduction.

Tutorial on GAN in LIN395C: Research in

Computational Linguistics.

Wen, S. F. (2017, November). Software security
in open source development: A systematic

literature review. In 2017 21st conference of
open innovations association (fruct) (pp. 364-
373). IEEE.

Wikipedia contributors. (2021a, May 9). OWASP
ZAP. In Wikipedia, The Free Encyclopedia.
Retrieved 01:10, April 18, 2022, from
https://en.wikipedia.org/w/index.php?title=

OWASP_ZAP&oldid=1022316463

Wikipedia contributors. (2021b, May 21).
Fuzzing. In Wikipedia, The Free Encyclopedia.
Retrieved 01:11, April 18, 2022, from

https://en.wikipedia.org/w/index.php?title=F
uzzing&oldid=1024357049

Wikipedia contributors. (2021c, May 10). Transfer
learning. In Wikipedia, The Free
Encyclopedia. Retrieved 01:53, April 18,
2022, from
https://en.wikipedia.org/w/index.php?title=
Transfer_learning&oldid=1022394104

Wikipedia contributors. (2021d, June 6). Edge

computing. In Wikipedia, The Free
Encyclopedia. Retrieved 01:55, April 18,
2022, from
https://en.wikipedia.org/w/index.php?title=
Edge_computing&oldid=1027237845

Yu, H., Liao, W., Yuan, X., & Xu, J. (2006).
Teaching a web security course to practice

information assurance. ACM SIGCSE
Bulletin, 38(1), 12–16.
https://doi.org/10.1145/1124706.1121348

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016).
Joint Face Detection and Alignment Using
Multitask Cascaded Convolutional

Networks. IEEE Signal Processing
Letters, 23(10), 1499–1503.
https://doi.org/10.1109/LSP.2016.2603342

.

https://en.wikipedia.org/w/index.php?title=OWASP_ZAP&oldid=1022316463
https://en.wikipedia.org/w/index.php?title=OWASP_ZAP&oldid=1022316463
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1024357049
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1024357049
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=1022394104
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=1022394104
https://en.wikipedia.org/w/index.php?title=Edge_computing&oldid=1027237845
https://en.wikipedia.org/w/index.php?title=Edge_computing&oldid=1027237845

Cybersecurity Pedagogy & Practice Journal 1 (1)
ISSN: 2832-1006 July 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 53

https://cppj.info/; https://iscap.info

Appendices and Annexures

Objective ID Objective Description Pass Rate
(grade > 4/5)

Exercise(s)

1 Understand HTML and front-end code. 86.5% Re-engineering

2 Describe the components of a Web App. 100% Deploy App &
Reverse
Engineering

3 Deploy a Web App to a specific device. 100% Deploy App

4 Conduct preliminary reverse engineering & re-
engineering.

86.5% Reverse
Engineering &
Re-engineering

5 Understand the Software Maturity Model with

concentration on Security.

100% Secure SDLC

(Read OWASP
SAMM)

6 Describe different vulnerabilities and their root

causes.

89.2% Determine

vulnerabilities &
Fix Buffer
Overflow

7 Conduct pen-testing or attacking by code
review, auto vulnerability scanning, and fuzz
testing.

91.9% Auto scanning &
Fuzz testing

8 Describe functional and non-functional

requirements and their relationships to security
requirements.

97.3% Secure software

design

9 Conduct threat modeling. 81.1% Threat Modeling

10 Follow secure coding standards to write and
review code.

91.9% Best Coding
Practice

11 Describe the function of a certificate. Apply
certificates in Web Apps.

N/A N/A

12 Apply Public Key Cryptography in Web Apps. Non-graded Asymmetric
Cryptography

13 Describe the data impact to Web App Security. 100% Data
manipulation &
poisoning, and
GAN papers

Table 1. Learning Outcomes

