

Information Systems

Education Journal

Volume 20, No. 2

April 2022
ISSN: 1545-679X

In this issue:

4. Exposing the IT Skills Gap: Surveying Employers’ Requirements in Four Key

Domains

Peter Draus, Robert Morris University

Sushma Mishra, Robert Morris University

Kevin Slonka, University of Pittsburgh

Natalya Bromall, Robert Morris University

15. A Bot Assisted Instructional Framework for Teaching Introductory

Programming Course(s)

Deepak Dawar, Miami University

32. A Topical Examination of the Introduction to Information Systems Course

 Kevin Slonka, University of Pittsburgh

 Neelima Bhatnagar, University of Pittsburgh

38. A Comparison of Student Perceptions and Academic Performance across

Three Instructional Modes

Vic Matta, Ohio University

Shailendra Palvia, Long Island University

49. Coding Bootcamp Satisfaction: A Research Model and Survey Instrument

Guido Lang, Quinnipiac University

Jason H. Sharp, Tarleton State University

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://isedj.org/; https://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed

academic journal published by ISCAP (Information Systems and Computing Academic

Professionals). Publishing frequency is six times per year. The first year of publication was

2003.

ISEDJ is published online (https://isedj.org). Our sister publication, the Proceedings of

EDSIGCON (https://proc.iscap.info) features all papers, panels, workshops, and presentations

from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

EDSIGCON conference. At that point papers are divided into award papers (top 15%), other

journal papers (top 25%), unsettled papers, and non-journal papers. The unsettled papers

are subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under

40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of

Publishing Opportunities in Educational Technology and Library Science, in both the electronic

and printed editions. Questions should be addressed to the editor at editor@isedj.org or the

publisher at publisher@isedj.org. Special thanks to members of ISCAP/EDSIG who perform

the editorial and review processes for ISEDJ.

2022 ISCAP Board of Directors

Eric Breimer
Siena College

President

Jeff Cummings

Univ of NC Wilmington
Vice President

Jeffry Babb
West Texas A&M
Past President/

Curriculum Chair

Jennifer Breese
Penn State University

Director

Amy Connolly
James Madison University

Director

Niki Kunene
Eastern CT St Univ
Director/Treasurer

RJ Podeschi

Millikin University
Director

Michael Smith

Georgia Institute of Technology
Director/Secretary

Tom Janicki

Univ of NC Wilmington
Director / Meeting Facilitator

Anthony Serapiglia

St. Vincent College
Director/2022 Conf Chair

Xihui “Paul” Zhang

University of North Alabama
Director/JISE Editor

Copyright © 2022 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Paul Witman, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://isedj.org/; https://iscap.info

Information Systems

Education Journal

Editors

Paul Witman
Editor

California Lutheran
University

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Donald Colton
Emeritus Editor Brigham

Young University
Hawaii

Dana Schwieger
Associate Editor

Southeast Missouri
State University

Ira Goldman
Teaching Cases

Co-Editor
Siena College

Michelle Louch
Teaching Cases

Co-Editor
Carlow College

Brandon Brown
Cyber Education

Co-Editor
Coastline College

Anthony Serapiglia
Cyber Education

Co-Editor
St. Vincent College

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://isedj.org/; https://iscap.info

A Bot Assisted Instructional Framework for

Teaching Introductory Programming Course(s)

Deepak Dawar

daward@miamioh.edu

Dept. of Computer and Information Technology
Miami University

Hamilton, Ohio 45011, U.S.A.

Abstract

Learning computer programming is a challenging task for most beginners. Demotivation and learned
helplessness are pretty common. A novel instructional technique that leverages the value-expectancy
motivational model of student learning was conceptualized by the author to counter the lack of
motivation in the introductory class. The result was a frequency adherent scaffolded instructional
technique called An Assignment A Day (AAAD). Instead of writing an assignment and a lab for each
module/chapter, students were asked to complete one assignment a day, not exceeding four
assignments a week. The assignments were incrementally difficult and had to be done almost every

day. With the application of AAAD for two consecutive semesters, there was a meaningful improvement
in the final grades. This technique, though initially encouraging, created a significant load on the
instructor in terms of assignments graded and questions answered every day. A natural language
processing (NLP) based conversational agent was designed and integrated with AAAD to counter this
overload. The idea was simple – relay commonly asked course questions to an NLP based chatbot and

let the instructor handle the complex queries. This integrated system was named Conversational Agent
Supported Scaffolded Approach (CASSA). The main contribution of this work is the construction of a

conversational agent and its integration with AAAD. The conversational agent is currently being assessed
for overall efficacy, though preliminary results are discussed. The vision is to create a generic virtual
assistant template that can be re-used across multiple courses to assist instructors.

Keywords: Conversational agents, NLP, introductory programming, pedagogy, value-expectation,
student procrastination.

1. INTRODUCTION

Computer programming is an arduous learning
process for most beginners, and high failure rates
have been reported continuously (Allan & Kolesar,

1997; Newman, Gatward, & Poppleton, 1970;

Bennedsen & Caspersen, 2007; Sheard & Hagan,
1998; Watson & Li, 2014; Beaubouef & Mason,
2005; Howles, 2009; Kinnunen & Malmi 2006;
Mendes et al., 2012). Given the complex nature
of the programming (Kim & Lerch, 1997; Rogalski
& Samurçay, 1990; Robins, Rountree & Rountree,

2003), students frequently get demotivated.
While teaching multiple introductory
programming courses over many years, the
author observed that apart from the complex

nature of programming, there were other factors
at play that feed the demotivation loop. Some
examples are:

• Less than desirable instructor presence
• High temporal disengagement with the

programming activities

• Students internal lack of motivation

Keeping these factors in mind, and inspired by
value-expectancy (Keller, 1983) & cognitive load
theory (Paas, Renkl, & Brünken, 2010; Sweller,
1988, 1994), a novel instructional technique

called An Assignment A Day (AAAD) approach
was designed. Instead of completing a lab and
assignment per chapter, students were asked to
complete one simple assignment a day, with a

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://isedj.org/; https://iscap.info

cap of four assignments a week. Every

subsequent assignment of a chapter/course built
on the previous assignment and carried an
incremental cognitive load (see Appendix A).

Apart from testing students on new concepts, the
subsequent assignment reused the concepts
learned/applied in the previous assignment. The
approach (Dawar, 2021) can be summarized as:

1. Students will ideally do one assignment
per day.

2. Opening assignments of the chapter will

test students on very basic skills like
writing a method stub. Subsequent
assignments will gradually increase in
complexity keeping in mind the cognitive
load asserted by the assignment. This
mechanism is in part based on the study

conducted by Alexandron et al. (2014).
3. There will not be more than four

assignments per week. Deadlines may be
relaxed on a case-to-case basis.

4. As an exception, and depending upon the
cognitive load, an assignment may be
completed in two or more days rather

than a single day.

The technique rests on three central pillars, as
shown in Figure 1.

Figure 1: AAAD Interventional Technique

This study aims to address two research
questions:
a) What is the effect of mandatory continuous

engagement with cognitively germane testing
on student outcome and instructor load?

b) How can instructor load be minimized while
maintaining the sanctity of the technique?

The author could foresee at least two significant

issues that could derail the potential acceptability
of this technique:
a) Will the high number of assignments, albeit of

germane cognitive load, dissuade students

from participating, thereby compounding the
very problem the author is trying to tackle,
i.e., lack of motivation due to learned
helplessness? Constant testing has been
associated with high student anxiety (Kaplan
et al., 2005). An easy way to make students

dislike programming is to put them under

unnecessary stress (Goold & Rimmer, 2000).
Strict enforcement of everyday deadlines
may easily overwhelm these students. The

only chance of overcoming this hurdle was
providing germane load assignments.

b) Even if the intervention shows promising
results with students, what does that mean
for the instructor load? More assignments
would naturally elicit more questions,
requiring additional instructional and tutoring

presence, and more grading time, besides
other externalities. Massive overload and
instructor fatigue become apparent. Some
follow-up questions are warranted. For
example:
1. Is it prudent or even feasible to run a

potentially beneficial instructional
intervention while risking instructor
overload simultaneously?

2. If the intervention is proven to be
beneficial, how can instructor support be
increased so that the outcome is better
for students (in terms of motivation) as

well as the instructor (in terms of course
load)?

3. Do the system and tools required for
instructor support already exist, or would
they need to be allocated/constructed?

4. Are these support systems course-
specific, or can they be reused within

courses?

These questions are vast and may need multiple
solutions at multiple levels. As a preliminary
solution, a conversational agent or a chatbot is
proposed to assist the instructor. The essential

function of this agent is to answer repeatedly
asked student questions in the course when
access to the instructor is not available.

The rest of the paper is structured as follows.
Section 2 discusses the perceived need for the
intervention and the conversational agent and

builds a case for their integration. Section 3
touches upon the operational aspects of natural
language processor systems (NLP) and illustrates
the parts of the conversational agent. Section 4

discusses the preliminary results for the accuracy
of the conversational agent.
Section 5 concludes the paper and briefly

presents the foundations of future research.

2. A Case for Integration of a
Conversational Agent With Scaffolded

Instructional System

In this section, justification for building and

employing the AAAD technique is presented. It is

Teaching
Intervention

Continuous
Practice

Congnitive Load
Increments

Continuous
Feedback and

Resolution

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 17

https://isedj.org/; https://iscap.info

then argued that while this might be a good idea

for student motivation and performance, it can
overload the instructor who lacks access to
dedicated resources like graders and tutors. A

case is then built for the construction and use of
a conversational agent/chatbot to take some load
off the instructor while not jeopardizing the
instructional technique. The terms conversational
agent and chatbot are used interchangeably
throughout the paper.

A Case for AAAD Approach
Students’ belief in their success is vital if they are
to be motivated to learn. There are many causes
of student demotivation, but the one suspect that
the author can categorically point towards in their
classrooms is high cognitive load. Cognitive load

theory (Paas, Renkl, & Brünken, 2010; Sweller,
1988, 1994) throws light on the aspects of load
placed on working memory while a task is being
executed. Computer programming requires
balancing numerous interactive tasks
simultaneously. For example, it involves juggling
numerous details like problem domain, the

current state of the program, language syntax,
strategies (Winslow, 1996).

Procrastination is extremely prevalent in students
studying in a university setup. Some estimates
suggest that 80 to 95 percent of students engage
in procrastination (Steel, 2007). The longer the

students wait to turn in the assignment, the
worse their grades become (Kim & Seo, 2015).

Procrastination has also been linked to higher
levels of anxiety, stress, and fatigue (Beutel et
al., 2016). After having taught multiple
programming courses over multiple years, the

author encountered similar patterns.

AAAD was designed keeping these factors in
mind. The intervention made continuous targeted
interaction between the material and students –
somewhat mandatory. It was opined that this
would:

• Establish a clear study pattern for students to

counter procrastination.
• Potentially improve student’s expectations

owing to germane cognitive loads.
• Make them practice programming every

almost every day. The inspiration for this

operation came from strong evidence
suggested by psychological studies (Brown &
Bennett, 2002; Glover, Ronning & Bruning,
1990; Moors & De Houwer, 2006) done on
variable student populations. Constant
practice can improve student motivation and

make them want to learn more (Moss & Case,
2001).

The technique AAAD was administered to two

experimental groups (E1 and E2), and the study
was spread over three semesters. The control
group (C1) was asked to complete one

assignment and one lab work per week. Quizzes
were given at the end of every chapter. This is
the usual approach followed at our institution for
introductory programming classes. E1 and E2
were taught with the interventional approach for
the subsequent two semesters.

Both experimental groups were asked to
complete 37 assignments over the course of 12
weeks. 10 days were meant for chapter quizzes
and exams. Other details like student population
comparison of the groups, determination of
germane load mechanism can be found in

(Dawar, 2021).

All groups were administered the same module
quizzes and final exam, and their average scores
were compared to measure the impact of this
technique on overall grades if any.

Module
C1 (20

students)
E1 (22

students)
E2 (20

students)

1 71% (3.72) 75% (2.05) 75% (2.22)

2 79% (2.08) 71% (2.33) 78% (3.32)

3 73% (3.19) 73% (2.55) 73% (3.68)

4 62% (3.72) 66% (2.49) 71% (3.01)

5 74% (4.26) 75% (2.44) 75% (3.10)

6 67% (3.41) 67% (1.78) 76% (1.95)

7 56% (3.48) 65% (2.50) 61% (3.30)

Average 68% (3.40) 70% (2.30) 73% (2.94)
Table 1: Mean grade points (with standard

deviations) scored on the quiz by all groups

As shown in Table 1, seven chapters/modules
were taught to all the groups. A quiz was given at
the end of every chapter. Columns C1, C2, and
E2 depict the average class scores (with standard
deviations) of the quiz. The final exam consisted
of a quiz that covered all seven modules, and a
Java problem. Table 2 shows the average

achieved by the class in the final exam.
Though there was no significant difference

between module quiz scores (see Table 1), the
experimental groups performed much better in
the final exam (Table 2).
Even though the gains in the final quiz are
marginal, the experimental groups outperformed

the control group by 20 percentage points or
more in JAVA program writing. The overall
cumulative improvement in the final exam mean
score was 16% and 19% for E1 and E2,
respectively.

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 18

https://isedj.org/; https://iscap.info

These numbers may insinuate that – for the

experimental groups – the increased practice led
to an improvement in final exam score, though it
is too early to say anything with a high degree of

confidence due to such a small sample size.
Nevertheless, the final exam numbers are
encouraging.

Group

Average
Final Quiz

Score
Average JAVA
Program Score

Cumulative
Average

C1 66% 51% 56%

E1 74% 71% 72%

E2 78% 74% 75%
Table 2: Final exam score for all groups

An end-of-course survey (see Appendix C) was
conducted for both E1 and E2. The number of
participants was 22 and 13 respectively, i.e., 35

students in total. One of the questions asked the
students about how they felt about the utility and
effectiveness of this intervention in completing
the course satisfactorily. A surprising 90% of the
students in E1 and 84% in E2 answered that they
felt positive/better about using this technique,
while 10% in E1 and 9% in E2 reported that they

felt slightly worse while working with this
technique.

A cumulative 45% of the students answered that
working every day on assignments made it easy
for them to manage stress. Students remarked

that the process made it easy to manage overall
stress as the assignments were gradually
increasing in difficulty. 39% said it increased their
stress levels as they had to do many more
assignments, and 15% choose that it made no
difference. The final exam results, along with the
student survey responses, instilled confidence in

the instructor that this technique was worth
exploring.

There was one glaring and unavoidable cost of
these improvements – instructor overload.

A Case for the Conversational Agent

The improvements in final exam scores, though

encouraging, came at a high price as far as the
instructor load was concerned. The frequency of
questions asked increased in number, indicating
more students were interested in asking
questions. Replying to these questions consumed

a significant amount of time. This load grew as
the course progressed because assignments were
due almost every day of the week and had to be
graded quickly to provide timely feedback to
students. Since every assignment was built on
top of the previous one, delayed grading could

mean students had no previous feedback

available while attempting the current
assignment. This delay is just not an option when
working with AAAD. Hence, it can be seen how

quickly the instructor load can increase to the
point of exhaustion.

There was undoubtedly a need for support
structures for the instructor. One way would be to
hire a dedicated tutor and a grader. However,
many instructors, due to numerous reasons, do

not have access to such support. Another way
would be to create a scripted expert system
containing scripted question-answers. The script
is a decision tree modeled by domain experts that
determines which path to take in response to a
question. These are static systems that may be

unsuitable in circumstances where a single
question can be asked in multiple ways.

Instead, a Natural Language Processing (NLP)
based conversational agent/chatbot capable of
answering course-related questions is chosen for
bot construction in this work. The reasons for

implementing such a conversational agent are
multifold:

1. Many students ask the same question in
different ways: Questions asked by
students may be divided into two parts;
text-based and knowledge-based
(Scardamalia & Bereiter, 1992). Text

based questions refer to queries
generated as part of reading a text, while

knowledge-based questions are
generated through a deep interest in the
topic to extend knowledge. Through the
years of teaching introductory

programming courses observed, the
author of this work observed that many
questions asked by multiple students
were text-based and strikingly similar. In
those cases, only the semantics and
structure of the question differed, while
the context of the question was the same.

Hence, a system capable of
understanding the context of a text based
question could effectively classify
multiple questions from multiple students

into the same bucket and respond with
a specific predefined answer. Directing
these questions to an NLP-based

conversational agent can save the
instructor much time, which can be
utilized in other areas such as mentoring.
Predefined responses may not be suitable
for knowledge-based questions, though.

2. Quick resolution of trivial queries: Many
text-based questions asked by the

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 19

https://isedj.org/; https://iscap.info

students are simple and straightforward

in nature. These can be easily handled by
the conversational agent, saving precious
time.

3. Student’s expectation of a quick

response: Interaction between instructor
and student is critical for student success,
more so in an online environment (Chang
2009). Many studies (Li et al., 2010;
Chang et al., 2015) have confirmed that

students prefer asynchronous modes of
communication like email or chat while
interacting with instructors. A well-
designed conversational agent can easily
fulfill this task. Given these findings and
the author’s own experiences in the

classroom, it is opined that the quicker a
query is resolved, the stronger the
student’s conviction there is merit in
asking questions, as they will be resolved
quickly. This could lead to a
reinforcement loop, making students
more comfortable asking questions.

4. Long-term potential: As society goes

increasingly digital, the current model of
fixed classrooms, printed textbooks, and
static lectures clearly fall short of fulfilling
the expectations the society has of the
educational establishment. Digital

generation tends to learn at short or
twitched speeds through parallel

processing while simultaneously
connected to others (Beavis, 2010). It is
reported that students learn more when
they immediately apply what they

learned and receive help from human
tutors who respond quickly (Colvin, 2007;
Anwer et al., 2015). A conversational
agent which is always ready to respond to
student queries can be a great add-on in
the toolkit of instructors.

Given all these factors, it was decided to pursue

the integration of a conversational agent with the
AAAD technique to create CASSA.

3. SYSTEM DESIGN

Figure 2 presents an abstracted view of CASSA.
The student initiates a query through a text
dialogue/message. If the conversational agent is
capable of answering the query, it is annotated as

“Simple,” and the response is returned.
Otherwise, the query is automatically sent to the
instructor via email through the agent and is
annotated as “Complex.” When the instructor is
notified of an unanswered query, they update the
knowledge base of the conversational agent with

a potential response while relaying the same

answer/solution to the student.

Figure 2: CASSA – An Abstraction (see

Appendix B for expanded view)

Design Considerations
The retrieval process of many modern
conversational agents makes use of advances in
machine learning in which responses are based
on predefined rules as well as analysis of the web

searches. Some prominent contemporary
examples are Amazon’s Echo, Microsoft’s
Cortana, and Apple’s Siri to name a few
(Weinberger, 2017). The agents on the other side
of the spectrum use generative algorithms and
assemble responses using statistical machine
translation techniques. One popular example of

such mechanisms is Seq2Seq, which uses
recurrent neural networks (RNN’s) to accomplish
the response generation.

For this work, the former approach of predefined
rules aided with natural language processing
algorithms was chosen. There are at least three

reasons for this choice:
a) The landscape of questions asked by

students in a particular course may be
large, but the questions would certainly
be limited by the domain of the course.
This can be achieved through rule-based

or information retrieval methods more
efficiently since generative methods tend
to be reasonably much more complex to
construct.

b) By defining a rule-based template, it
would be a lot easier to use the same

template as a basis for another course,

thereby possibly achieving re-usability in
the future.

c) Generative algorithms like Seq2Seq and
systems that use them tend to be
relatively complex in construction and
operation. Hence, it was deemed fair to
use a rule-based system as a pilot.

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 20

https://isedj.org/; https://iscap.info

Figure 3: Conversational Agent Architecture

Figure 3 presents an abstracted view of the
conversational agent used in this work. Its sub-

parts are discussed below.
a) Student: Students can initiate a dialogue

through three interfaces – Instructor

provided web link, Dialogflow messenger,
and Telegram. The student's questions
are presented to the natural language
processing (NLP) engine of the
conversational agent (CA). It is assumed
that in this day and age, students have
access to the internet and should have

the ability to initiate a conversation from
an interface of their choice. More
integrations like Facebook Messenger,
Slack are possible in the future.

b) Natural Language Processing Engine
(NLP): NLP can be defined as

manipulation of natural language like text
or speech, using mathematical
representations and software. The main
goal of any NLP system is to take in an
unstructured input and provide a
structured output. This work makes use
of Dialogflow, a Google product, and a

commercially available NLP platform for
developing chatbots. It provides a
powerful natural language processer
capable of handling contextual
conversations. It uses deep parsing
techniques and is mainly used as
integration between a conversational

interface (Telegram, Slack, etc.) and the

chatbot.

c) Knowledge Base: The accuracy and final
employability of conversational agents
depend greatly on the quality and
quantity of training data. This statement
is true for both generative (machine

learning classifiers) and information

retrieval (or rule-based) agents.

 Figure 4: Conversational agent

knowledge base

Though there are many ways of

collecting, storing, and using the training
data, this work relies upon a simplified
version depicted in Figure 4.

I. Query Base: The instructor – to
some extent - predefines what
questions students are likely to ask

in the course and creates a data set
of such question-answer pairs. All
the possible questions that might

lead to the same response are
coded under an Intent, and every
Intent will have multiple

questions/user examples under it.
Basically, an intent categorizes the
user’s intention, and the agent
contains possible hundreds of such
intents (231 in this work). When a
user writes or says something, the
NLP engine (Dialogflow in this

case), matches the user expression
with the best Intent.
Students are also very likely to ask
questions over email. This can act
as a rich source of query data that
the agent would need to improve its

accuracy of response. This work

also verifies the fact that on a single
topic, many students ask the same
question in different ways and
formats.
All these similar questions can be
represented by the same Intent to

generate a single, unified response.
Figure 5 illustrates this process.

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 21

https://isedj.org/; https://iscap.info

 Figure 5: Intent matching

II. Response Base: This is where the

responses/answers to the queries
are stored. The responses to simple
to mildly complex queries are
stored in instructor annotated form,
i.e., Intents where the instructor
predefines the answer for a set of

queries. The secondary source is
searched if the response is not
found in Intents, which includes
textbook and instructor notes.
Failing to find an answer in the first
two sources, the agent sends the
query to an external webhook.

d) External Search/Data Retrieval: The

agent, as a last resort, also has the ability
to query the web if it determines that a
suitable response may not be present
within it. This service was hosted on a
web hosting platform named Heroku.

Currently, only Google searches are
supported. The agent extracts the
relevant entities from the student’s
query, forms a search string, and relays
it over to Heroku - a container based
Platform as a Service (PaaS) - which runs

a node.js service with Google search API
enabled. Google search API responds with
multiple URLs, and the first three URLs
are presented to the student as a
reference. This is not a sophisticated

functionality at all. Students could easily
search the web themselves and see the

same URLs listed. The intention is to
minimize student distraction; keep
students engaged with the agent, and
improve the agent’s knowledge base. This
query is moved to instructor annotated
answers later on.

4. Conversational Agent Preliminary

Evaluation

Evaluation of a chatbot is a complex problem.
Many perspectives and methods, many of them

subjective and often conflicting, can be utilized for
its evaluation. For example, a chatbot can be
evaluated on the basis of:

1. User experience
2. Information Retrieval Performance
3. Linguistic accuracy
4. Business perspective

As a direct result of a multitude of evaluation
methods, numerous metrics, not necessarily
mutually inclusive, have been proposed. SASSI,
PARADICE, MIMIC are but a few such evaluation

systems (Venkatesh et al., 2018). Some are

lenient in awarding scores, while others are
punitive. For example, Walker et al., 1997,
proposed an attribute value matrix (AVM) to
measure chatbot effectiveness. In this method, a
script is created and is run through the chatbot.
The desired responses are cataloged in a
“scenario key,” while the bot responses are

recorded in the AVM. A confusion matrix (M) is
then constructed as:

𝜅 =
𝑃(𝐴)−𝑃(𝐸)

1−𝑃(𝐸)
 (1)

where:
P(A) = proportion of AVM aggress with the
correct response

P(E) = probability of agreement by chance

𝜅 = kappa coefficient; bot that provides

random answers, 𝜅=0; for a human 𝜅 would

ideally be 1.

Other subjective methods of chatbot evaluation
are presented in other studies on chatbots (Bates,
& Ayuso, 1991), (Kuligowska, 2015). It becomes
readily evident that no single system is able to
deliver a universal framework for chatbot
evaluation. Moreover, catering to so many
different perspectives is an expensive endeavor

and out of the scope of this work. Hence, this
work focuses on the evaluation of the chatbot
from the perspective of information retrieval

performance only.

Specifically, this work uses a confusion matrix

similar to the one suggested by Walker et al.,

1997, but instead of using 𝜅 as a metric,

precision, recall, and F1-scores are calculated to
evaluate the chatbot.
A confusion matrix visually answers questions like
- when a student asks a question X which has an
actual answer Y, what was actually predicted?

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 22

https://isedj.org/; https://iscap.info

The expected Intents are shown as rows, and the

predicted Intents are shown as columns.

Figure 6: Confusion Matrix for Module 1

Figure 6 shows the confusion matrix for module 1

that has 16 Intents. Every Intent has multiple
user examples, which are nothing but different
ways of asking the same question. For example,
a student can inquire about the IDE for the
course. There are many ways this question be
asked. Some of them are:

1. What is the IDE we are using?

2. What’s the IDE name?
3. Can I use Netbeans IDE?
4. Tell me the IDE for this course?
5. What is the software to run Java

programs?

6. What is the software we are using for this

course?

These user examples are sent to the agent, and
whenever the expected and predicted Intent is a
match, the diagonal cell value is increased by 1,
and these are called successful test cases. All
other cell values that are not on the diagonal are

failed test cases. Again, it must be noted that this
method leaves out many other vital facets like
evaluating chatbot looks, appearance,
personality. These aspects may be evaluated in
the future as the work on this system progresses.

At the time of writing, the agent had access to

had 231 instructor annotated Intents, instructor

class notes compiled as a .pdf, and a freely
available Java textbook as a .pdf. Out of the 231
Intents, 104 were predefined by the instructor,
and the rest were compiled from the questions
asked by students on email over years of teaching

this programming course. It should be noted that
every Intent contains examples/queries that are
written in different formats/ways but point
towards the same response/answer. The

distribution of Intents among different

chapters/modules is listed in Table 3.

Module No. of Intents

1 16

2 27

3 37

4 40

5 41

6 39

7 31

Total 231

Table 3: No. of Intents per module

The instructor annotated Intents if correctly
matched with the user query, are the first line of

response. If the response isn’t found in those
intents, the query is referred to instructor notes

or the textbook, and then the web, in that order.
The more such intents the agent has access to,
the better the potential accuracy of the agent.
Ideally, the number of intents should
progressively expand as the course is taught
multiple times over, and the new questions by the
students, and previously unknown questions to

the agent, are fed into the knowledge base.

Three performance metrics, namely precision,
recall, and F1-score, were measured for every
Intent. As can be seen, there are numerous ways
of asking the same question. These ways are the
instructor annotated queries or user examples. All

these questions should match the same Intent,
which in this case should be
IDE_type_and_version. However, it is tough to
achieve such perfect performance. For the sake
of brevity, Figure 6 only displays the performance
of the agent for Module 1 having 16 intents. The

precision, recall, and F1-score are also shown in
the three rightmost columns.

Averages of all 231 Intent performance scores
were computed to mark the final performance
measures of the agent. The results are listed in
Table 4.

Performance Metric Average Metric
Scores for Seven

Modules

Precision 0.7981

Recall 0.7856

F1-Score 0.7923

Table 4: Preliminary performance score of

conversational agent

F1-Score below 0.80 is less than desirable, and
F1-Score above 0.90 is considered good.

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 23

https://isedj.org/; https://iscap.info

As a work in progress, the author believes that an

F1-Score of 0.7923, though only slightly
comforting, is a reasonable milestone in the
preliminary agent development while

acknowledging that a lot more training data and
improvements are required to make this agent
usable in live courses. See Appendix B for
example conversations between the chatbot and
a student. The integration with Dialogflow
Messenger and Telegram is shown.

5. CONCLUSION AND FUTURE WORK

At an anecdotal level, the results indicate that it
may be possible to affect the motivation levels of
novice programmers using incrementally
scaffolded instruction. Though there were no

significant differences in the individual chapter

quiz scores between the control and experimental
groups, the experimental groups performed
significantly better in the final exam. This came
at the price of significant instructor overload. The
integration of a helper chatbot with this technique
is expected to reduce the instructor load. The
initial preproduction performance of the

conversational agent is undoubtedly below
expectations but is expected to improve with
more data and time. One of the ways the author
intends to collect more data/user examples is to
use the course chat forums and discussion boards
for more questions asked by students to each
other. The next step will be continuous training of

the chatbot to achieve an F1-Score of at least

0.85, after which it will be opened for students to
use.

To further mitigate the load on the instructor
while maintaining the integrity of the technique,

integrating an automatic grading system with the
CASSA is proposed. An abstract schema of this
system is shown in Figure 7.

Figure 7: Integration of Auto Grader with

CASSA

In closing, it would be too premature to consider
the CASSA system as a workable method for
affecting student motivation, given the significant

challenges this system entails presently. The

preliminary results, nevertheless, are
encouraging and provide a solid direction for
future research.

6. REFERENCES

Alexandron, G., Armoni, M., Gordon, M. & Harel,

D. (2014). Scenario–based programming:
Reducing the cognitive load, fostering
abstract thinking. In Companion Proceedings

of the 36th International Conference on
Software Engineering pp. 311–320.

Ali, N., Anwer, M., & J., Abbas. (2015). Impact of
Peer Tutoring on Learning of Students.
Journal for Studies in Management and

Planning, 1(2), 61-66.

Allan, V. H. & Kolesar, M. V. (1997). Teaching
computer science: a problem solving
approach that works. ACM SIGCUE Outlook,
25(1–2), 2–10.

Bates, M., & Ayuso, D. (1991). A proposal for
incremental dialogue evaluation. Proceedings
of the workshop on Speech and Natural

Language - HLT '91.

Beaubouef, T. B. & J. Mason (2005). Why the High
Attrition Rate for Computer Science Students:
Some Thoughts and Observations. Inroads –
The SIGCSE Bulletin, 37(2), 103–106.

Beavis, C. (2010). Literacy, Learning, and Online

Games:Challenge and Possibility in the Digital

Age. In Proceedings of the IEEE 3rd
International Conference on Digital Game and
Intelligent Toy Enhanced Learning.
Piscataway, NJ: Institute for Electrical and
Electronics Engineers.

Bennedsen, J. & Caspersen, M. E. (2007). Failure

rates in introductory programming. ACM
SIGCSE Bulletin, 39(2), 32–36.

Beutel, M. E., Klein, E. M., Aufenanger, S.,
Brähler, E., Dreier, M., Müller, K. W., Quiring,
O., Reinecke, L., Schmutzer, G., Stark, B., &
Wölfling, K. (2016). Procrastination, Distress
and Life Satisfaction across the Age Range -

A German Representative Community

Study. PloS one, 11(2), e0148054.

Brown, S. W., & Bennett, E. D. (2002). The role
of practice and automaticity in temporal and
nontemporal dual-task performance.
Psychological Research, 66, 80–89.

Chang, C-W. (2009). Efficacy of interaction

among college students in a web-based
environment. Journal of Educational

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 24

https://isedj.org/; https://iscap.info

Technology Development and Exchange,

2(1), 17-32.

Colvin, J. W. (2007). Peer tutoring and social
dynamics in higher education. Mentoring and

Tutoring, 15(2), 15-181.

Chang, C-W., Hurst, B., & McLean, A. (2015).
You’ve got mail: Student preferences of
instructor communication in online courses in
an age of advancing technologies. Journal of
Educational Technology Development and
Exchange, 8(1), 39-47.

Dawar, D., (2021). Towards Improving Student
Expectations in Introductory Programming
Course with Incrementally Scaffolded
Approach. Information Systems Education

Journal 19(4), 61-76.

Glover, J.A., Ronning, R.R. and Bruning, R.H.:

1990, Cognitive Psychology for Teachers,
Macmillan, New York.

Goold, A., and Rimmer, R. (2000). Factors
affecting performance in first-year
computing. SIGCSE Bulletin 32, 39–43.

Howles, T. (2009). A study of attrition and the use
of student learning communities in the

computer science introductory programming
sequence. Computer Science Education,
19(1), 1–13.

Kalchman, M., Moss, J., & Case, R. (2001).
Psychological models for the development of

mathematical understanding: Rational
numbers and functions. In S. M. Carver & D.

Klahr (Eds.), Cognition and instruction:
Twenty-five years of progress (pp. 1-38).
Mahwah, NJ, US: Lawrence Erlbaum
Associates Publishers.

Kalchman, M., Moss, J., & Case, R. (2001).
Psychological models for the development of

mathematical understanding: Rational
numbers and functions. In S. M. Carver & D.
Klahr (Eds.), Cognition and instruction:
Twenty-five years of progress (pp. 1-38).
Mahwah, NJ, US: Lawrence Erlbaum
Associates Publishers.

Kaplan, D. S., Liu, R. X., & Kaplan, H. B (2005).

School related stress in early adolescence and
academic performance three years later: The
conditional influence of self-expectations.
Social Psychology of Education, 8, 3-17.

Keller, J. M. (1983). Motivational design of
instruction. In Instructional-Design Theories
and Models: An Overview of their Current

Status, C. M. Reigeluth, Ed. Lawrence
Erlbaum Associates, pp. 383–434.

Kim, J. & Lerch, F. J. (1997). Why is programming

(sometimes) so difficult? Programming as
scientific discovery in multiple problem
spaces. Information Systems Research 8(1)

25–50.

Kim, K. R. & Seo, E. H. (2015). The relationship
between procrastination and academic
performance: A meta analysis. Personality
and Individual differences, 82, 26-33.

Kinnunen, P. & Malmi, L. (2006). Why students
drop out CS1 course?. In Proceedings of the

Second International Workshop on
Computing Education Research (pp. 97–108).
New York, NY: ACM.

Kuligowska, K. (2015). Commercial Chatbot:

Performance Evaluation, Usability Metrics and
Quality Standards of Embodied

Conversational Agents. Professionals Center
for Business Research, 2(02), 1-16.
doi:10.18483/pcbr.22

Li, L., Finley, J., Pitts, J., & Guo, R. (2010). Which
is a better choice for student faculty
interaction: Synchronous or asynchronous
communication? Journal of Volume 9, No. 1,

September, 2016 11 Technology Research, 2,
1-12.

Mendes, A. J., Paquete, L., Cardoso, A. & Gomes,
A. (2012). Increasing student commitment in
introductory programming learning. In
Frontiers in Education Conference (FIE) (pp.

1–6). New York, NY: IEEE.

Moors, A., & Houwer, J. D. (2006). Automaticity:
A Theoretical and Conceptual Analysis.
Psychol Bull, 132(2), 297-326.

Newman, R., Gatward, R. & Poppleton, M. (1970).
Paradigms for teaching computer
programming in higher education. WIT

Transactions on Information and
Communication Technologies, 7, 299–305.

Paas, F., Renkl, A., & Sweller, J. (2010). Cognitive
Load Theory and Instructional Design: Recent
Developments. Educational Psychologist, 38
(1), 1-4.

Robins, A. V., Rountree, J. & Rountree, N. (2003).

Learning and teaching programming: A
review and discussion. Computer Science
Education 13(2) pp. 137–172.

Rogalski J. & Samurçay R. (1990). Acquisition of
programming knowledge and skills. In J. M.
Hoc, T. R. G. Green, R. Samurçay & D. J.
Gillmore, eds., Psychology of Programming.

London: Academic Press, pp. 157–174.

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 25

https://isedj.org/; https://iscap.info

Scardamalia, M. and Bereiter, C. 1992. Text‐

based and knowledge‐based questioning by

children. Cognition and Instruction, 9: 177–
199.

Sheard, J. & Hagan, D. (1998). Our failing

students: a study of a repeat group. ACM
SIGCSE Bulletin, 30(3), 223–227.

Steel, P. (2007). The nature of procrastination: A
meta-analytic and theoretical review of
quintessential self-regulatory
failure. Psychological Bulletin, 133(1), 65–94.

Sweller, J. (1988). Cognitive load during problem

solving: Effects on learning. Cognitive
Science, 12(2), 257–285.

Sweller, J. (1994). Cognitive load theory, learning
difficulty, and instructional design. Learning
and Instruction, 4(4), 295–312.

Venkatesh, A., Khatri, C., Ram, A., Guo, F.,
Gabriel, R., Nagar, A., Raju, A. (2018). On

Evaluating and Comparing Conversational

Agents. ArXiv:1801.03625 [Cs].

Walker, M. A., Litman, D. J., Kamm, C. A., &
Abella, A. (1997). Paradise. Proceedings of

the 35th annual meeting on Association for
Computational Linguistics.

Watson, C. & Li, F. W. (2014). Failure rates in
introductory programming revisited. In
Proceedings of the 2014 Conference on
Innovation & Technology in Computer
Science Education (pp. 39–44). New York,

NY: ACM.

Weinberger, M. (2017). Why Amazon's Echo is
totally dominating - and what Google,
Microsoft, and Apple have to do to catch up.

Winslow L E (1996) Programming pedagogy – A
psychological overview. ACM SIGCSE

Bulletin, 28(3), 17–22.

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 26

https://isedj.org/; https://iscap.info

APPENDIX A

Table X: Increment in cognitive load with time

Assignment

No.

Description Concepts Tested Cognitive Load

1 Write a method printS that

takes a string as an input and
prints it to the console.

Rudimentary method

writing.

Low

2 Modify the above method
printS and enable it to take
another argument, an integer,
n. The method then prints the
string n times in a line.

Method writing, method
calling, method
modification.

Low

3 Reuse printS to print a user
entered string n×n times; i.e.,
a square with each element as
the string

User input, loops, method
writing, method calling

Medium

4 Reuse printS method to print a
right angle triangle in terms of
user entered string

User input, loops, method
writing, method calling,
Problem solving

Medium

5 Reuse printS to print a pyramid
in terms of user entered string

User input, loops, method
writing, method calling,
Problem solving

High

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 27

https://isedj.org/; https://iscap.info

APPENDIX B

Dialogflow Messenger Integration

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 28

https://isedj.org/; https://iscap.info

Telegram Integration

Expanded View - CASSA

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 29

https://isedj.org/; https://iscap.info

APPENDIX C

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 30

https://isedj.org/; https://iscap.info

Information Systems Education Journal (ISEDJ) 20 (2)
ISSN: 1545-679X April 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 31

https://isedj.org/; https://iscap.info

