

JOURNAL OF

INFORMATION SYSTEMS

APPLIED RESEARCH

Volume 15, Issue 3

October 2022

ISSN: 1946-1836

Special Issue: Data and Business Analytics

In this issue:

4. Using Analytics to understand Performance and Wellness for a Women’s

College Soccer Team

Christopher Njunge, California Lutheran University

Paul D. Witman, California Lutheran University

Patrick Holmberg

Joel Canacoo

13. Classification of Hunting-Stressed Wolf Populations Using Machine Learning

John C. Stewart, Robert Morris University

G. Alan Davis, Robert Morris University

Diane Igoche, Robert Morris University

24. A Cloud-based System for Scraping Data From Amazon Product Reviews at

Scale

Ryan Woodall, University of North Carolina Wilmington

Douglas Kline, University of North Carolina Wilmington

Ron Vetter, University of North Carolina Wilmington

Minoo Modaresnezhad, University of North Carolina Wilmington

35. Grounded Theory Investigation into Cognitive Outcomes with Project-Based

Learning

Biswadip Ghosh, Metropolitan State University of Denver

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://jisar.org/; https://iscap.info

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer

reviewed academic journal published by ISCAP, Information Systems and Computing

Academic Professionals. Publishing frequency is three to four issues a year. The first date of

publication was December 1, 2008.

JISAR is published online (https://jisar.org) in connection with CONISAR, the Conference on

Information Systems Applied Research, which is also double-blind peer reviewed. Our sister

publication, the Proceedings of CONISAR, features all papers, panels, workshops, and

presentations from the conference. (https://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

conference. At that point papers are divided into award papers (top 15%), other journal

papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are

subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the JISAR journal. Currently the target acceptance rate for the journal is under

38%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at

publisher@jisar.org. Special thanks to members of ISCAP who perform the editorial and

review processes for JISAR.

2022 ISCAP Board of Directors

Eric Breimer

Siena College
President

Jeff Cummings

Univ of NC Wilmington
Vice President

Jeffry Babb

West Texas A&M
Past President/

Curriculum Chair

Jennifer Breese
Penn State University

Director

Amy Connolly
James Madison University

Director

Niki Kunene
Eastern CT St Univ

Director/Treasurer

RJ Podeschi
Millikin University

Director

Michael Smith
Georgia Institute of Technology

Director/Secretary

Tom Janicki
Univ of NC Wilmington

Director / Meeting Facilitator

Anthony Serapiglia

St. Vincent College
Director/2022 Conf Chair

Xihui “Paul” Zhang

University of North Alabama
Director/JISE Editor

Copyright © 2022 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

https://conisar.org/

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://jisar.org/; https://iscap.info

Journal of

Information Systems Applied research

Editors

Scott Hunsinger

Senior Editor
Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

Biswadip Ghosh
Data Analytics

Special Issue Editor
Metropolitan State University of Denver

2022 JISAR Editorial Board

Jennifer Breese

Penn State University

Amy Connolly

James Madison University

Jeff Cummings

Univ of North Carolina Wilmington

Ranida Harris

Illinois State University

Edgar Hassler

Appalachian State University

Vic Matta

Ohio University

Muhammed Miah

Tennessee State University

Kevin Slonka

University of Pittsburgh Greensburg

Christopher Taylor

Appalachian State University

Hayden Wimmer

Georgia Southern University

Jason Xiong

Appalachian State University

Sion Yoon

City University of Seattle

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 4

https://jisar.org/; https://iscap.info

Technical Implementation Case

A Cloud-based System for Scraping Data

From Amazon Product Reviews at Scale

Ryan Woodall

Jrw5074@uncw.edu

Douglas Kline

klined@uncw.edu

Ron Vetter
vetterr@uncw.edu

Department of Computer Science

Minoo Modaresnezhad
modarsm@uncw.edu

Congdon School of Supply Chain, Business Analytics,

and Information Systems
University of North Carolina Wilmington

Wilmington, NC 28403

Abstract

Amazon product reviews can provide a rich source of data for natural language processing research. We
built a custom cloud-based system to support a related research project for obtaining Amazon product
reviews. A third-party cloud-based scraping service automatically retrieved scraping jobs, then notified
Azure Data Factory through an Azure Function. Raw scraping data was then transferred in batches to
Azure Data Lake Storage, then custom SQL transformed the data for convenient queries in an Azure
SQL database. The system obtained 17,962 product reviews and produced data sets in several formats.

This paper fully describes the system and offers lessons learned from the experience.

Keywords: Data Pipeline, Cloud, Amazon Reviews, Big Data, Azure.

1. INTRODUCTION

Modern companies struggle with big data
collection and processing, and it has become best
practice to accomplish this with data pipelines in
the cloud. These systems need to be
maintainable, adaptable, repeatable, and
scalable. To explore modern cloud-based data-

oriented system development, we created a

system to gather large numbers of Amazon
product reviews.

Amazon reviews are important for researchers
exploring natural language processing. Each
product has a distinctive dictionary, i.e., the
words used in reviews change for each product
category and each product. Reviews offer the

ability for researchers to evaluate methods across

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 5

https://jisar.org/; https://iscap.info

challenging situations such as dictionary, data

quantity, data quality, themes, sentiment, etc.

Several Amazon Review data sets are freely

available online. The data set used for McAuley,
et al. (2015) and He & McAuley (2016) was
primarily gathered for research relating the
review text to product images. This data set is
quite large, covering many categories and
products. However, it is somewhat dated (May
1996 - July 2014) and does not include some of

the review quality features implemented by
Amazon, e.g., verified purchases. A subsequent
dataset was collected by Ni, et al. (2019),
providing more recent reviews (through 2018),
but still lacks the newer review quality indicators
and details about the reviewer that can filter fake

reviews.

Amazon (2019) offers its own large review data
set, which includes whether the review was tied
to a verified purchase. This still leaves out many
data items that can be used to evaluate a review's
quality and reliability, such as reviewer name,

reviewer rating, reviewer social media names,
etc.

Web scraping of publicly accessible web content

has been contested in recent years. The data

analytics company HiQ filed a complaint against

LinkedIn's practice of restricting access to users'

profiles (Katrix & Schaul 2019). HiQ argued that

the practice was anti-competitive and violated

state and federal laws. LinkedIn argued that web

scraping violates the Computer Fraud and Abuse

Act (CFAA), which prohibits accessing a protected

computer without authorization. The court

favored HiQ, stating that users, rather than

LinkedIn, held the copyright of their own data and

that users clearly intended for their data to be

publicly accessible. Furthermore, giving

companies exclusive rights to users' data would

create "information monopolies" that harm the

public interest. This ruling was upheld in 2022

(Tse & Brian 2022).

A few for-pay services exist, providing
functionality similar to that created in this project.
However, the actual data pipeline is opaque, with

no visibility of the transformations occurring to
the data. Amazon itself has recently begun
offering a for-pay API for accessing their data.
However, API access tokens are given only to
developers from vetted companies, and we did
not explore this avenue.

Amazon reviews can be used for many natural

language processing (NLP) research purposes,
such as sentiment analysis, bot detection, theme
analysis, summarization, and recommender

systems. Furthermore, reviews are the primary
method for consumers to evaluate products for
purchase.

For a related research project (Gokce, et al.,
2021) we decided to collect a custom data set
that would be more current and include the

missing items identified above. We used this
opportunity to review modern methods for the
large-scale collection of data in the cloud. Rather
than filtering the existing massive data sets for
the needed data, we would create smaller
targeted sets for our tasks. Another concern we

had was that the actual processing steps
performed on the raw reviews are unclear and
perhaps not repeatable. Ni, et al. (2019) offers
their data in several forms with different levels of
"aggressive" removal of reviews for various
reasons. We took this opportunity to curate our
own data set in a fully auditable, repeatable

manner, where every data modification was
explicitly described by code.

To fully explore modern data pipeline methods,
we established the following goals:

• Cloud-based – the system should
entirely reside in the cloud

• Automated – the system should
orchestrate tasks without the in-

progress intervention
• Scalable – the system should be scalable
• Formats – the system should offer the

data set(s) in several formats

2. TECHNOLOGIES

In this section, we describe the technologies that
we used and why they were chosen. Many
vendors offer cloud-based services. To limit the
overwhelming options and align with our existing

technology skillsets, we used Azure cloud services
as much as possible. Generally, equivalent
services exist on most cloud provider platforms.

We used a third-party cloud-based web scraping
service called WebScraper (2020) because of its
convenient low-code nature and our prior

experience with its desktop-product. Scrape job
definitions can be authored in the Chrome web
browser and exported in JSON format. Scrape
jobs can traverse paginated web pages, drill-
down and up through pages, and gather related
data entities such as products, reviews,

reviewers, etc. Bot-detection-avoidance features
are included, such as pauses between page

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 6

https://jisar.org/; https://iscap.info

requests and the use of multiple IP addresses for

requests. In the cloud-based service, a full API is
provided for the programmatic definition of jobs.

Azure Data Lake Storage Gen2 was used to store
raw files and also as the storage area for the
Azure SQL instance. This service offers a
hierarchical namespace, high scalability, metered
fees, and can support map-reduce style
operations.

Azure Data Factory (ADF) integrates seamlessly
with Data Lake Storage and can be used to
orchestrate data workflows among various
locations and services in the cloud. Our initial
intent was to use ADF for the bulk of the data
operations, but ultimately, it was mainly used to

move data from one location to another.

An Azure SQL relational database instance was
used to deliver final data in an easily query-able
format. In addition, relational models offer a quite
compact representation of the data, reducing
storage costs, and improving performance.

Azure Functions were used to trigger events
across distributed components of the system.
With Azure Functions, a secure HTTPS endpoint
could be called with proper credentials, triggering
events in a remote system and/or passing data
between systems.

We planned to use Azure Key Vault to manage the

secrets needed for secure communication
between distributed system components. Secrets
we planned to keep in the Azure Key Vault
included connection strings, credentials

(username/password), and API tokens.
Ultimately, Azure Key Vault proved unwieldy for
our relatively small project and required a full
Azure Active Directory Domain and high-level
domain credentials. For expedience without
sacrificing security, secrets were stored in each
linked service defined in Azure Data Factory.

The many cloud services were declaratively
defined in Azure Resource Manager (ARM)
templates. ARM templates define the desired end

state of a collection of services and manage the
connections and security concerns among the
services. ARM templates are text-based and

declarative. With a system's ARM template, a
complete replica of a complex distributed set of
cloud services can be perfectly replicated.
Furthermore, the entire system can be versioned
in source control.

Even with the cloud-based services used, there
were places where programming code was

required. Transact SQL, Microsoft's procedural

scripting language, was used to transform data
from a staging table to relational tables in the
database. Python code was used in the Azure

function.

3. SYSTEM DESCRIPTION

This section demonstrates the system as it was
ultimately built. The System Overview diagram in
Appendix A gives a high-level view of the major

components. The Webscraper component was the
only non-Azure part. All other components are
Azure Data Factory workflows and were housed in
a single Azure Resource Group from which an
ARM template could be generated, completely
defining all components and their interactions.

The system operated as a set of Azure Data
Factory workflows:

• Start Jobs (periodic)
• Scrape Data (external)
• Record Completion (episodic)
• Retrieve Reviews (periodic)

• Create Tabular Data (periodic)
• Create Flat Data (periodic)

Each of the above workflows is decoupled from
the others so that work is "pulled" through the
system rather than "pushed." The workflows
marked as periodic are implemented via timers.

Each periodic workflow wakes up at defined
intervals and completes any waiting work.

Waiting work is recorded in the ScrapeJob and
ScrapeJob_Status tables (see the relational
schema in Appendix B). The only episodic
workflow, Record Completion, is implemented as

an Azure Function. This Azure Function is called
by the external Webscaper service to indicate that
a scraping job has been completed. Azure Data
Factory was mainly used to move data, record job
states, and orchestrate the process.

The Start Jobs workflow looks for new product

review scraping jobs and calls the external
scraping service to start them. New scrape jobs
are entered (by humans or otherwise) in the
ProductURLs.csv file in Azure Storage. The URL of

a product defines a scrape job on Amazon. The
same scrape definition is used on all products and
can be found in Appendix C. The Start Jobs

component is implemented as a periodic (every
15 minutes) azure data factory pipeline. A POST
is made to the WebScraper service API for every
URL in the file using secure credentials. Job-
status information is stored in the Azure SQL
tables and various files in Azure Storage. A single

record is inserted into the Product table. Appendix
D shows the actual ADF pipeline used for this

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 7

https://jisar.org/; https://iscap.info

component. This is a good example of a simple

ADF workflow. Similar simple workflows were
used throughout the system.

The Scrape Data operation is performed over time
by the WebScraper third-party service. When it is
complete, the WebScraper service POSTs to the
Record Completion, which is implemented as an
Azure Function, is exposed as an HTTP endpoint.
This message does not transfer the data but
merely indicates that the scrape job has been

completed. The Azure Function is implemented in
Python and simply records the completion of the
task in the SQL ScrapeJob_Status table in the
SQL database.

The Retrieve Reviews component is implemented

as a periodic azure data factory pipeline similar to
the Start Jobs component. Each completed scrape
job makes an API call to the WebScraper API for
the resulting data and metadata and moves the
data to Azure Storage. A single product produces
a single scrape job, which produces a single set
of reviews in a single file. This component places

a potentially large JSON file in Azure Storage and
creates related records in the ScrapeJob_status
table.

The Create Tabular Data takes as input the JSON
file from Azure Storage and inserts many records
into the Review and Reviewer tables. The ADF

activity diagram can be seen in Appendix E. This
component moves a file of reviews into a staging

table in the SQL database. The data is inserted
into the staging table via an efficient bulk-load
operation with no integrity checking. The data is
unmodified from the WebScraper component and

enters the staging table with all character-based
data types. A stored procedure written in
Transact-SQL transforms the data and inserts it
into the Product, Review, and Reviewer relational
tables. Notably, the star-rating is transformed
from prose ("one star out of five") to an integer
data type.

The Create Tabular Data component was initially
implemented using Azure Data Factory. We found
this to be slow, inefficient, and costly. The ADF

processes appear to be implemented as record-
at-a-time operations. ADF was still used to
orchestrate the component, with stored

procedures used strategically where efficient set-
at-a-time operations were possible.

Finally, the Create Flat Data component executes
straightforward SQL queries to produce a CSV flat
file, as well as a hierarchical JSON file. This is for

the convenience of users. Data Analytics
professionals normally consume data in these

formats. Because the data is in a relational

schema with a database, any subset of the data
can be readily produced in any format using
straightforward SQL.

4. IMPLEMENTATION

In this section, we describe what is happening in
the source code. URLs for Amazon product review
pages are stored in a CSV file in the data lake.

This file is regularly checked for new products
from within the data factory. Appendix D shows a
snapshot of the implementation in the data
factory. Each box represents an activity from a
menu of activities. Pipelines are built by simply
clicking the activity and dragging it into the

workspace. The pipeline that checks for new
product URLs utilizes lookup, if condition, and
execute pipeline activities. For data factory
activities to be able to connect with other
resources, linked services must be created. These
are created in the data factory by clicking on the
linked service and selecting to resource to be

connected. This project only requires the creation
of three linked services. Two are for the data lake
and database. The third linked service is different
in that it links to cloud storage outside of Azure.
This type of linked service is called a REST
service, where a GET request is configured to
retrieve data from the WebScraper service API.

Appendix E shows a snapshot of the most

involved pipeline responsible for taking the raw
data uploaded to the data lake and copying it into
a staging table in the database. Then a stored
procedure activity is called that performs any

necessary transformations while inserting the
data into the relational model. The stored
procedure can be found in Appendix I, and a
relational model diagram is in Appendix B. Each
box represents a type of activity selected from the
data factory activities menu. Dragging the activity
into the workspace and double-clicking it will

open a wizard for configurations. For example,
configurations for a copy data activity would
involve selecting the linked service for the source
and the target (these may use the same linked

service). The datasets for the source and sink will
also need to be selected as well. See Appendix H
for an example of a copy activity that copies data

from the data lake to the staging folder in the
database.

The python code for the azure function used for
the HTTP endpoint is in Appendix F. The purpose
of the endpoint is to receive a POST notification

from the Webscraper service API once a scraping
job has been completed. The function receives

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 8

https://jisar.org/; https://iscap.info

and parses the request body for the

scrapingjob_id. The event log is generated, and a
new blob is created in the data lake containing
the scrapingjob_id. The id is later used to retrieve

and store the scraped data. Three bindings are
configured in a function.json file. These bindings
are httpTrigger, blob, and http. The settings for
each binding are in Appendix G.

5. RESULTS & DISCUSSION

To test the system, reviews for 15 products
across nine subcategories in the Audio Books &
Originals category were collected. The
subcategories were:

• Bios & Memoires
• Self-Development

• Literature & Fiction
• Business & Careers
• Science Fiction & Fantasy
• Teen & Young Adult
• Health & Wellness
• Computers & Technology
• Kids

In total 17,962 reviews were collected and
processed through the pipeline, producing data in
CSV and JSON formats, as well as recording all
entity instances in the relational database. Each
form of the data was retained, providing a full
audit-trail of all changes to the data.

The Webscraper service made requests in three

parallel threads emanating from separate IP
addresses, with adjustable delays between page
requests. The number of reviews per product
ranged from 293 to 2690, and scrape times per

product ranged from 1.5 to 9.75 hours, with a
combined scraping time of 67.5 hours. The
number of records scraped per hour averages
approximately 266.

In general, we accomplished the goals set out at
the beginning of the project. The system can

produce large amounts of Amazon reviews in a
variety of formats in an automated manner.

By creating the system, we learned much and will

relate some opinions and advice for developers
implementing similar systems with these
technologies.

Azure Data Factory & Azure Functions
It became clear that Azure Data Factory (ADF)
and Azure Functions were not fully mature
products. In some cases, the products were
changed during the development of this system.

Specifically, overnight changes in features broke
the system multiple times during development,

requiring rewrites of code. Second, integrations

with products and languages were not complete.
For example, when using Python to write Azure
Functions, there was no direct access to Azure

SQL, while there was direct access to CosmosDB.

We found Azure Data Factory jobs difficult and
costly to debug, as well as expensive and
inefficient. Processing appears to be row-by-
agonizing-row, which was unnecessary in our
situation. Ultimately, some parts we intended to

write in Azure Data Factory were implemented as
set-at-a-time operations in SQL. We found this to
be more transparent, easier to write and debug,
and much faster than the ADF pipelines.

Third-Party Cost

We used the cloud-based WebScraper service for
its low-code approach and our familiarity with the
desktop product. However, this service was the
majority of the cost for producing reviews. The
cost structure does not scale to the level we want.
This is not critical of the service; it worked well,
as advertised, and required minimal effort.

We anticipate custom coding the review collection
component to continue collecting reviews at scale
with reasonable costs. There are several libraries
available, including python libraries Beautiful
Soup (2021) and Scrapy (2021). We would not
have to write a general-purpose full-featured

cloud-based web scraping tool with all features of
WebScraper, but could write code specific to our

needs. Implementing a custom scraper in one or
more virtual machines or containers or even in an
Azure Function appears feasible. A less elegant
approach would involve running the desktop

browser-based free version of WebScraper on
virtual desktops and collecting results as they are
produced.

Cloud-based Considerations
The cloud-based distributed architecture comes
with benefits and challenges. A distributed

architecture necessitates decoupling and defining
explicit interfaces between components, which
generally produces a very clear transparent
system. However, secure communication

becomes onerous compared to a monolithic
application. In systems with more components
and services, the need for secrets management

would be required through a product like Azure
Key Vault.

ARM templates provide the ability to persist the

exact definition of the web of services in a
complex system in a text-based, version-able
form. This opens the door to team development

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 9

https://jisar.org/; https://iscap.info

and change management that didn't exist pre-

cloud. However, each service we used was quite
complex in its own right, each imposing its own
learning curve. Ultimately, the logic of the entire

system was spread across many places. In this
cloud-based environment, it is very important to
have clear roles for each component and explicit
interface contracts to manage interactions.

6. ACKNOWLEDGEMENTS

We wish to recognize the support of the Congdon
School of Supply Chain, Business Analytics, and
Information Systems at the University of North
Carolina Wilmington.

7. REFERENCES

Amazon Web Services Open Data, 2019.
Multilingual Amazon Reviews Corpus
https://registry.opendata.aws/amazon-
reviews.

Beautiful Soup (2021)
https://www.crummy.com/software/Beautif
ulSoup/bs4/doc/.

Gokce, Y., Kline, D, Vetter, R., Cummings, J.
(2021) Automated Text Reduction:
Comparison of Reduced Reading List
Creation Methods. Annals of the Master of
Science in Computer Science and
Information Systems at UNC Wilmington,
15(1) paper 2.

http://csbapp.uncw.edu/data/mscsis/full.as

px.

He, R., & McAuley, J. (2016, April). Ups and
downs: Modeling the visual evolution of
fashion trends with one-class collaborative
filtering. In proceedings of the 25th

international conference on world wide web

(pp. 507-517).

Katrix, Basileios "Bill", & Schaul, Robert J (2019)
Data Scraping Survives! (At Least for Now)

Key Takeaways from 9th Circuit Ruling on the
HiQ vs LinkedIn case. The National Law
Review, 30 September 2019.

McAuley, J., Targett, C., Shi, Q., & Van Den
Hengel, A. (2015, August). Image-based
recommendations on styles and substitutes.
In Proceedings of the 38th international ACM

SIGIR conference on research and
development in information retrieval (pp.
43-52).

Ni, J., Li, J., & McAuley, J. (2019, November).
Justifying recommendations using distantly-

labeled reviews and fine-grained aspects. In

Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP) (pp. 188-197).

Scrapy (2021) https://scrapy.org/.

Tse, Shing, & Brian, Kristin (2022) HiQ vs

LinkedIn. The National Law Review, 19 April
2022.

Webscraper Documentation. (2020). Retrieved
September 5, 2020, from
https://webscraper.io/documentation

Woodall, R., Kline, D, Vetter, R., Modaresnezhad,
M. (2021) A Data Pipeline for Amazon

Review Collection and Preparation. Annals of
the Master of Science in Computer Science
and Information Systems at UNC
Wilmington, 15(1) paper 3.
http://csbapp.uncw.edu/data/mscsis/full.as
px.

https://webscraper.io/documentation

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 10

https://jisar.org/; https://iscap.info

Appendix A - A high-level view of the system components

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 11

https://jisar.org/; https://iscap.info

Appendix B - The relational schema

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 12

https://jisar.org/; https://iscap.info

Appendix C – A scrape job definition

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://jisar.org/; https://iscap.info

Appendix D – An Azure Data Factory workflow example: The data factory

job responsible for checking new product urls in the data lake

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://jisar.org/; https://iscap.info

Appendix E – An Azure Data Factory activity diagram

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://jisar.org/; https://iscap.info

Appendix F - Azure function for accepting the completion message from the

webscraper: The source code for the HTTP endpoint

__init__.py [function main]

import logging

import azure.functions as func

def main(req: func.HttpRequest, outputblob: func.Out[str]) -> func.HttpResponse:

 logging.info('Python HTTP jobCompletedNotification function processed a request.')

 req_body = req.get_body().decode('UTF-8')

 bodyList = req_body.split("&")

 scrapeParam = bodyList[0].split("=")

 scrapingjob_id = scrapeParam[1]

 siteParam = bodyList[2].split("=")

 sitemap_id = siteParam[1]

 logging.info("Scraping job id: " + scrapingjob_id)

 outputblob.set(f"{scrapingjob_id},{sitemap_id}")

 return func.HttpResponse(status_code=200)

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://jisar.org/; https://iscap.info

Appendix G - Azure function for accepting the completion message from the

webscraper: The source code for setting the bindings

function.json [Declares the bindings used in the function]

{

"scriptFile": " init .py",

"bindings": [

{

"authLevel": "anonymous",

"type": "httpTrigger",

"direction": "in",

"name": "req",

"methods": [

"get",

"post"

]

},

{

"type": "blob",

"direction": "out",

"name": "outputblob",

"path": "amazonreviewsdl/ScrapingJobIDs/{DateTime}.csv",

"connection": "AzureWebJobsStorage"

},

{

"type": "http",

"direction": "out",

"name": "$return"

}

]

}

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 24

https://jisar.org/; https://iscap.info

Appendix H - An example of a copy activity

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 25

https://jisar.org/; https://iscap.info

Appendix I - The data factory job responsible for calling the stored
procedure activity for inserting the data into the relational model

CREATE PROCEDURE [dbo].[PopulateReview]

(

 @productID INT OUTPUT

)

AS

BEGIN

 DECLARE @URL VARCHAR(500)

 DECLARE @lengthProductName INT

 DECLARE @locationASIN INT

 DECLARE @lengthASIN INT

 DECLARE @productName VARCHAR(100)

 DECLARE @ASIN CHAR(10)

 SET @URL = (SELECT TOP 1 [web-scraper-start-url] FROM Review_Staging)

 SET @lengthProductName = CHARINDEX('/',@URL,24)-24

 SET @locationASIN = (CHARINDEX('/',@URL,@lengthProductName + 25))+1

 SET @lengthASIN = (CHARINDEX('/',@URL,@locationASIN))-@locationASIN

 SET @productName = SUBSTRING(@URL,24,@lengthProductName)

 SET @ASIN = SUBSTRING(@URL,@locationASIN,@lengthASIN)

 INSERT INTO Product

 (

 [ASIN],

 productName,

 productURL

)

 VALUES

 (

 @ASIN,

 @productName,

 @URL

)

 SET @productID = @@IDENTITY;

 INSERT INTO Reviewer

 (

 reviewerURL,

 reviewerName,

 reviewerLocation,

 helpfulReviewCount,

 reviewCount,

 ideaListCount,

 reviewerRank,

 bio,

 hallOfFame,

 heartCount,

 reviewerTop1000,

 reviewerFB,

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 26

https://jisar.org/; https://iscap.info

 reviewerTwitter,

 reviewerInstagram,

 reviewerYoutube,

 reviewerLink,

 webScraperOrderID,

 productID

)

 SELECT

 CONCAT('https://amazon.com', Review_Staging.[reviewer_link-href]),

 Review_Staging.reviewer_name,

 Review_Staging.reviewer_location,

 (SELECT (CASE WHEN Review_Staging.reviewer_helpful_review_count LIKE '' THEN N

ULL

 ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_help

ful_review_count,1,LEN(Review_Staging.reviewer_helpful_review_count)),',',''))END)),

 (SELECT (CASE WHEN Review_Staging.reviewer_review_count LIKE '' THEN NULL

 ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_revi

ew_count,1,LEN(Review_Staging.reviewer_review_count)),',',''))END)),

 (SELECT (CASE WHEN Review_Staging.reviewer_idea_list_count LIKE '' THEN NULL

 ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_idea

_list_count,1,LEN(Review_Staging.reviewer_idea_list_count)),',',''))END)),

 (SELECT (CASE WHEN Review_Staging.reviewer_ranking LIKE '' THEN NULL

 ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_rank

ing,2,LEN(Review_Staging.reviewer_ranking) - 1),',',''))END)),

 Review_Staging.reviewer_bio,

 Review_Staging.reviewer_hall_of_fame,

 (SELECT (CASE WHEN Review_Staging.reviewer_heart_count LIKE '' THEN NULL

 ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_hear

t_count,1,LEN(Review_Staging.reviewer_heart_count)),',',''))END)),

 Review_Staging.reviewer_top_1000,

 Review_Staging.reviewer_fb,

 Review_Staging.reviewer_twitter,

 Review_Staging.reviewer_instagram,

 Review_Staging.reviewer_youtube,

 (SELECT SUBSTRING(Review_Staging.reviewer_link,11,CHARINDEX('>', Review_Stagin

g.reviewer_link, 1)-13)),

 Review_Staging.[web-scraper-order],

 @productID

 FROM Review_Staging

 INSERT INTO Review

 (

 productID,

 reviewerID,

 reviewURL,

 reviewTitle,

 reviewStars,

 locationDateString,

 verifiedPurchase,

 reviewText,

 helpfulCount,

 scrapingjob_id,

 reviewLinkText,

Journal of Information Systems Applied Research 15 (3)
ISSN: 1946-1836 October 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 27

https://jisar.org/; https://iscap.info

 starsString,

 reviewVerifiedStr,

 reviewHelpfulString,

 webScraperOrderID,

 reviewRetrievalDate

)

SELECT

 @productID,

 Reviewer.reviewerID,

 CONCAT('https://amazon.com',Review_Staging.[review_link-href]),

 Review_Staging.review_title,

 CONVERT(INT, SUBSTRING(review_stars,1,1)),

 Review_Staging.review_location_date,

 (SELECT (CASE WHEN review_verified LIKE 'Verified Purchase' THEN 1

 ELSE 0 END)),

 Review_Staging.review_text,

 (SELECT (CASE WHEN review_helpful_string NOT LIKE ''

 THEN (CASE WHEN (SUBSTRING(review_helpful_string,1,CHARINDEX(' '

,review_helpful_string, 1))) LIKE 'One'

 THEN 1

 ELSE CONVERT(INT, REPLACE(SUBSTRING((SUBSTRING(review

_helpful_string,1,CHARINDEX(' ',review_helpful_string, 1)-

1)),1,LEN((SUBSTRING(review_helpful_string,1,CHARINDEX(' ',review_helpful_string, 1)-

1)))),',',''))END)

 ELSE 0 END)),

 ScrapeJob.scrapingjob_id,

 Review_Staging.review_link,

 Review_Staging.review_stars,

 Review_Staging.review_verified,

 Review_Staging.review_helpful_string,

 Review_Staging.[web-scraper-order],

 ScrapeJob.scrapejobComplete_date

 FROM Review_Staging

 LEFT JOIN Reviewer ON Reviewer.webScraperOrderID = Review_Staging.[web-

scraper-order]

 JOIN Product ON Product.productURL = Review_Staging.[web-scraper-

start-url]

 JOIN ScrapeJob ON ScrapeJob.web_start_url = Review_Staging.[web-

scraper-start-url];

 DELETE

 FROM Review_Staging

END

