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Abstract  
 
Amazon product reviews can provide a rich source of data for natural language processing research. We 
built a custom cloud-based system to support a related research project for obtaining Amazon product 
reviews. A third-party cloud-based scraping service automatically retrieved scraping jobs, then notified 
Azure Data Factory through an Azure Function. Raw scraping data was then transferred in batches to 
Azure Data Lake Storage, then custom SQL transformed the data for convenient queries in an Azure 
SQL database. The system obtained 17,962 product reviews and produced data sets in several formats. 

This paper fully describes the system and offers lessons learned from the experience. 
 
Keywords: Data Pipeline, Cloud, Amazon Reviews, Big Data, Azure. 
 

 
1. INTRODUCTION 

 

Modern companies struggle with big data 
collection and processing, and it has become best 
practice to accomplish this with data pipelines in 
the cloud. These systems need to be 
maintainable, adaptable, repeatable, and 
scalable. To explore modern cloud-based data-

oriented system development, we created a 

system to gather large numbers of Amazon 
product reviews. 

 
Amazon reviews are important for researchers 
exploring natural language processing. Each 
product has a distinctive dictionary, i.e., the 
words used in reviews change for each product 
category and each product. Reviews offer the 

ability for researchers to evaluate methods across 



Journal of Information Systems Applied Research  15 (3) 
ISSN: 1946-1836  October 2022 

 

©2022 ISCAP (Information Systems and Computing Academic Professionals)                                            Page 5 

https://jisar.org/; https://iscap.info  

challenging situations such as dictionary, data 

quantity, data quality, themes, sentiment, etc.  
 
Several Amazon Review data sets are freely 

available online. The data set used for McAuley, 
et al. (2015) and He & McAuley (2016) was 
primarily gathered for research relating the 
review text to product images. This data set is 
quite large, covering many categories and 
products. However, it is somewhat dated (May 
1996 - July 2014) and does not include some of 

the review quality features implemented by 
Amazon, e.g., verified purchases. A subsequent 
dataset was collected by Ni, et al. (2019), 
providing more recent reviews (through 2018), 
but still lacks the newer review quality indicators 
and details about the reviewer that can filter fake 

reviews. 
 
Amazon (2019) offers its own large review data 
set, which includes whether the review was tied 
to a verified purchase. This still leaves out many 
data items that can be used to evaluate a review's 
quality and reliability, such as reviewer name, 

reviewer rating, reviewer social media names, 
etc. 

 
Web scraping of publicly accessible web content 

has been contested in recent years. The data 

analytics company HiQ filed a complaint against 

LinkedIn's practice of restricting access to users' 

profiles (Katrix & Schaul 2019). HiQ argued that 

the practice was anti-competitive and violated 

state and federal laws. LinkedIn argued that web 

scraping violates the Computer Fraud and Abuse 

Act (CFAA), which prohibits accessing a protected 

computer without authorization. The court 

favored HiQ, stating that users, rather than 

LinkedIn, held the copyright of their own data and 

that users clearly intended for their data to be 

publicly accessible. Furthermore, giving 

companies exclusive rights to users' data would 

create "information monopolies" that harm the 

public interest. This ruling was upheld in 2022 

(Tse & Brian 2022). 

 
A few for-pay services exist, providing 
functionality similar to that created in this project. 
However, the actual data pipeline is opaque, with 

no visibility of the transformations occurring to 
the data. Amazon itself has recently begun 
offering a for-pay API for accessing their data. 
However, API access tokens are given only to 
developers from vetted companies, and we did 
not explore this avenue.  

 

Amazon reviews can be used for many natural 

language processing (NLP) research purposes, 
such as sentiment analysis, bot detection, theme 
analysis, summarization, and recommender 

systems. Furthermore, reviews are the primary 
method for consumers to evaluate products for 
purchase. 
 
For a related research project (Gokce, et al., 
2021) we decided to collect a custom data set 
that would be more current and include the 

missing items identified above. We used this 
opportunity to review modern methods for the 
large-scale collection of data in the cloud. Rather 
than filtering the existing massive data sets for 
the needed data, we would create smaller 
targeted sets for our tasks. Another concern we 

had was that the actual processing steps 
performed on the raw reviews are unclear and 
perhaps not repeatable. Ni, et al. (2019) offers 
their data in several forms with different levels of 
"aggressive" removal of reviews for various 
reasons. We took this opportunity to curate our 
own data set in a fully auditable, repeatable 

manner, where every data modification was 
explicitly described by code. 
 
To fully explore modern data pipeline methods, 
we established the following goals: 

• Cloud-based – the system should 
entirely reside in the cloud 

• Automated – the system should 
orchestrate tasks without the in-

progress intervention 
• Scalable – the system should be scalable 
• Formats – the system should offer the 

data set(s) in several formats 

 
2. TECHNOLOGIES 

 
In this section, we describe the technologies that 
we used and why they were chosen. Many 
vendors offer cloud-based services. To limit the 
overwhelming options and align with our existing 

technology skillsets, we used Azure cloud services 
as much as possible. Generally, equivalent 
services exist on most cloud provider platforms. 
 

We used a third-party cloud-based web scraping 
service called WebScraper (2020) because of its 
convenient low-code nature and our prior 

experience with its desktop-product. Scrape job 
definitions can be authored in the Chrome web 
browser and exported in JSON format. Scrape 
jobs can traverse paginated web pages, drill-
down and up through pages, and gather related 
data entities such as products, reviews, 

reviewers, etc. Bot-detection-avoidance features 
are included, such as pauses between page 
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requests and the use of multiple IP addresses for 

requests. In the cloud-based service, a full API is 
provided for the programmatic definition of jobs. 
 

Azure Data Lake Storage Gen2 was used to store 
raw files and also as the storage area for the 
Azure SQL instance. This service offers a 
hierarchical namespace, high scalability, metered 
fees, and can support map-reduce style 
operations.  
 

Azure Data Factory (ADF) integrates seamlessly 
with Data Lake Storage and can be used to 
orchestrate data workflows among various 
locations and services in the cloud. Our initial 
intent was to use ADF for the bulk of the data 
operations, but ultimately, it was mainly used to 

move data from one location to another. 
 
An Azure SQL relational database instance was 
used to deliver final data in an easily query-able 
format. In addition, relational models offer a quite 
compact representation of the data, reducing 
storage costs, and improving performance. 

 
Azure Functions were used to trigger events 
across distributed components of the system. 
With Azure Functions, a secure HTTPS endpoint 
could be called with proper credentials, triggering 
events in a remote system and/or passing data 
between systems. 

 
We planned to use Azure Key Vault to manage the 

secrets needed for secure communication 
between distributed system components. Secrets 
we planned to keep in the Azure Key Vault 
included connection strings, credentials 

(username/password), and API tokens. 
Ultimately, Azure Key Vault proved unwieldy for 
our relatively small project and required a full 
Azure Active Directory Domain and high-level 
domain credentials. For expedience without 
sacrificing security, secrets were stored in each 
linked service defined in Azure Data Factory. 

 
The many cloud services were declaratively 
defined in Azure Resource Manager (ARM) 
templates. ARM templates define the desired end 

state of a collection of services and manage the 
connections and security concerns among the 
services. ARM templates are text-based and 

declarative. With a system's ARM template, a 
complete replica of a complex distributed set of 
cloud services can be perfectly replicated. 
Furthermore, the entire system can be versioned 
in source control. 
 

Even with the cloud-based services used, there 
were places where programming code was 

required. Transact SQL, Microsoft's procedural 

scripting language, was used to transform data 
from a staging table to relational tables in the 
database. Python code was used in the Azure 

function. 
 

3. SYSTEM DESCRIPTION 
 
This section demonstrates the system as it was 
ultimately built. The System Overview diagram in 
Appendix A gives a high-level view of the major 

components. The Webscraper component was the 
only non-Azure part. All other components are 
Azure Data Factory workflows and were housed in 
a single Azure Resource Group from which an 
ARM template could be generated, completely 
defining all components and their interactions. 

 
The system operated as a set of Azure Data 
Factory workflows: 

• Start Jobs (periodic) 
• Scrape Data (external) 
• Record Completion (episodic) 
• Retrieve Reviews (periodic) 

• Create Tabular Data (periodic) 
• Create Flat Data (periodic) 

 
Each of the above workflows is decoupled from 
the others so that work is "pulled" through the 
system rather than "pushed." The workflows 
marked as periodic are implemented via timers. 

Each periodic workflow wakes up at defined 
intervals and completes any waiting work. 

Waiting work is recorded in the ScrapeJob and 
ScrapeJob_Status tables (see the relational 
schema in Appendix B). The only episodic 
workflow, Record Completion, is implemented as 

an Azure Function. This Azure Function is called 
by the external Webscaper service to indicate that 
a scraping job has been completed. Azure Data 
Factory was mainly used to move data, record job 
states, and orchestrate the process. 
 
The Start Jobs workflow looks for new product 

review scraping jobs and calls the external 
scraping service to start them. New scrape jobs 
are entered (by humans or otherwise) in the 
ProductURLs.csv file in Azure Storage. The URL of 

a product defines a scrape job on Amazon. The 
same scrape definition is used on all products and 
can be found in Appendix C. The Start Jobs 

component is implemented as a periodic (every 
15 minutes) azure data factory pipeline. A POST 
is made to the WebScraper service API for every 
URL in the file using secure credentials. Job-
status information is stored in the Azure SQL 
tables and various files in Azure Storage. A single 

record is inserted into the Product table. Appendix 
D shows the actual ADF pipeline used for this 
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component. This is a good example of a simple 

ADF workflow. Similar simple workflows were 
used throughout the system. 
 

The Scrape Data operation is performed over time 
by the WebScraper third-party service. When it is 
complete, the WebScraper service POSTs to the 
Record Completion, which is implemented as an 
Azure Function, is exposed as an HTTP endpoint. 
This message does not transfer the data but 
merely indicates that the scrape job has been 

completed. The Azure Function is implemented in 
Python and simply records the completion of the 
task in the SQL ScrapeJob_Status table in the 
SQL database. 
 
The Retrieve Reviews component is implemented 

as a periodic azure data factory pipeline similar to 
the Start Jobs component. Each completed scrape 
job makes an API call to the WebScraper API for 
the resulting data and metadata and moves the 
data to Azure Storage. A single product produces 
a single scrape job, which produces a single set 
of reviews in a single file. This component places 

a potentially large JSON file in Azure Storage and 
creates related records in the ScrapeJob_status 
table. 
 
The Create Tabular Data takes as input the JSON 
file from Azure Storage and inserts many records 
into the Review and Reviewer tables. The ADF 

activity diagram can be seen in Appendix E. This 
component moves a file of reviews into a staging 

table in the SQL database. The data is inserted 
into the staging table via an efficient bulk-load 
operation with no integrity checking. The data is 
unmodified from the WebScraper component and 

enters the staging table with all character-based 
data types. A stored procedure written in 
Transact-SQL transforms the data and inserts it 
into the Product, Review, and Reviewer relational 
tables. Notably, the star-rating is transformed 
from prose ("one star out of five") to an integer 
data type.  

 
The Create Tabular Data component was initially 
implemented using Azure Data Factory. We found 
this to be slow, inefficient, and costly. The ADF 

processes appear to be implemented as record-
at-a-time operations. ADF was still used to 
orchestrate the component, with stored 

procedures used strategically where efficient set-
at-a-time operations were possible. 
 
Finally, the Create Flat Data component executes 
straightforward SQL queries to produce a CSV flat 
file, as well as a hierarchical JSON file. This is for 

the convenience of users. Data Analytics 
professionals normally consume data in these 

formats. Because the data is in a relational 

schema with a database, any subset of the data 
can be readily produced in any format using 
straightforward SQL. 

 
 

4. IMPLEMENTATION 
 
In this section, we describe what is happening in 
the source code. URLs for Amazon product review 
pages are stored in a CSV file in the data lake. 

This file is regularly checked for new products 
from within the data factory. Appendix D shows a 
snapshot of the implementation in the data 
factory. Each box represents an activity from a 
menu of activities. Pipelines are built by simply 
clicking the activity and dragging it into the 

workspace. The pipeline that checks for new 
product URLs utilizes lookup, if condition, and 
execute pipeline activities. For data factory 
activities to be able to connect with other 
resources, linked services must be created. These 
are created in the data factory by clicking on the 
linked service and selecting to resource to be 

connected. This project only requires the creation 
of three linked services. Two are for the data lake 
and database. The third linked service is different 
in that it links to cloud storage outside of Azure. 
This type of linked service is called a REST 
service, where a GET request is configured to 
retrieve data from the WebScraper service API. 

 
Appendix E shows a snapshot of the most 

involved pipeline responsible for taking the raw 
data uploaded to the data lake and copying it into 
a staging table in the database. Then a stored 
procedure activity is called that performs any 

necessary transformations while inserting the 
data into the relational model. The stored 
procedure can be found in Appendix I, and a 
relational model diagram is in Appendix B. Each 
box represents a type of activity selected from the 
data factory activities menu. Dragging the activity 
into the workspace and double-clicking it will 

open a wizard for configurations. For example, 
configurations for a copy data activity would 
involve selecting the linked service for the source 
and the target (these may use the same linked 

service). The datasets for the source and sink will 
also need to be selected as well. See Appendix H 
for an example of a copy activity that copies data 

from the data lake to the staging folder in the 
database. 
 
The python code for the azure function used for 
the HTTP endpoint is in Appendix F. The purpose 
of the endpoint is to receive a POST notification 

from the Webscraper service API once a scraping 
job has been completed. The function receives 
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and parses the request body for the 

scrapingjob_id. The event log is generated, and a 
new blob is created in the data lake containing 
the scrapingjob_id. The id is later used to retrieve 

and store the scraped data. Three bindings are 
configured in a function.json file. These bindings 
are httpTrigger, blob, and http. The settings for 
each binding are in Appendix G. 

 
5. RESULTS & DISCUSSION 

 

To test the system, reviews for 15 products 
across nine subcategories in the Audio Books & 
Originals category were collected. The 
subcategories were: 

• Bios & Memoires 
• Self-Development 

• Literature & Fiction 
• Business & Careers 
• Science Fiction & Fantasy 
• Teen & Young Adult 
• Health & Wellness 
• Computers & Technology 
• Kids 

 
In total 17,962 reviews were collected and 
processed through the pipeline, producing data in 
CSV and JSON formats, as well as recording all 
entity instances in the relational database. Each 
form of the data was retained, providing a full 
audit-trail of all changes to the data.  

 
The Webscraper service made requests in three 

parallel threads emanating from separate IP 
addresses, with adjustable delays between page 
requests. The number of reviews per product 
ranged from 293 to 2690, and scrape times per 

product ranged from 1.5 to 9.75 hours, with a 
combined scraping time of 67.5 hours. The 
number of records scraped per hour averages 
approximately 266. 
 
In general, we accomplished the goals set out at 
the beginning of the project. The system can 

produce large amounts of Amazon reviews in a 
variety of formats in an automated manner. 
 
By creating the system, we learned much and will 

relate some opinions and advice for developers 
implementing similar systems with these 
technologies. 

 
Azure Data Factory & Azure Functions 
It became clear that Azure Data Factory (ADF) 
and Azure Functions were not fully mature 
products. In some cases, the products were 
changed during the development of this system. 

Specifically, overnight changes in features broke 
the system multiple times during development, 

requiring rewrites of code. Second, integrations 

with products and languages were not complete. 
For example, when using Python to write Azure 
Functions, there was no direct access to Azure 

SQL, while there was direct access to CosmosDB.  
 
We found Azure Data Factory jobs difficult and 
costly to debug, as well as expensive and 
inefficient. Processing appears to be row-by-
agonizing-row, which was unnecessary in our 
situation. Ultimately, some parts we intended to 

write in Azure Data Factory were implemented as 
set-at-a-time operations in SQL. We found this to 
be more transparent, easier to write and debug, 
and much faster than the ADF pipelines. 
 
Third-Party Cost 

We used the cloud-based WebScraper service for 
its low-code approach and our familiarity with the 
desktop product. However, this service was the 
majority of the cost for producing reviews. The 
cost structure does not scale to the level we want. 
This is not critical of the service; it worked well, 
as advertised, and required minimal effort.  

 
We anticipate custom coding the review collection 
component to continue collecting reviews at scale 
with reasonable costs. There are several libraries 
available, including python libraries Beautiful 
Soup (2021) and Scrapy (2021). We would not 
have to write a general-purpose full-featured 

cloud-based web scraping tool with all features of 
WebScraper, but could write code specific to our 

needs. Implementing a custom scraper in one or 
more virtual machines or containers or even in an 
Azure Function appears feasible. A less elegant 
approach would involve running the desktop 

browser-based free version of WebScraper on 
virtual desktops and collecting results as they are 
produced. 
 
Cloud-based Considerations 
The cloud-based distributed architecture comes 
with benefits and challenges. A distributed 

architecture necessitates decoupling and defining 
explicit interfaces between components, which 
generally produces a very clear transparent 
system. However, secure communication 

becomes onerous compared to a monolithic 
application. In systems with more components 
and services, the need for secrets management 

would be required through a product like Azure 
Key Vault. 

 
ARM templates provide the ability to persist the 

exact definition of the web of services in a 
complex system in a text-based, version-able 
form. This opens the door to team development 
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and change management that didn't exist pre-

cloud. However, each service we used was quite 
complex in its own right, each imposing its own 
learning curve. Ultimately, the logic of the entire 

system was spread across many places. In this 
cloud-based environment, it is very important to 
have clear roles for each component and explicit 
interface contracts to manage interactions. 
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Appendix A - A high-level view of the system components 
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Appendix B - The relational schema 
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Appendix C – A scrape job definition 

 



Journal of Information Systems Applied Research  15 (3) 
ISSN: 1946-1836  October 2022 

 

©2022 ISCAP (Information Systems and Computing Academic Professionals)                                            Page 13 

https://jisar.org/; https://iscap.info  

Appendix D – An Azure Data Factory workflow example: The data factory 

job responsible for checking new product urls in the data lake 
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Appendix E – An Azure Data Factory activity diagram 
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Appendix F - Azure function for accepting the completion message from the 

webscraper: The source code for the HTTP endpoint 

 
__init__.py [function main] 

import logging 

import azure.functions as func 

 

def main(req: func.HttpRequest, outputblob: func.Out[str]) -> func.HttpResponse:  

 logging.info('Python HTTP jobCompletedNotification function processed a request.') 

 

 req_body = req.get_body().decode('UTF-8')  

 bodyList = req_body.split("&") 

 

 scrapeParam = bodyList[0].split("=")  

 scrapingjob_id = scrapeParam[1] 

 

 siteParam = bodyList[2].split("=")  

 sitemap_id = siteParam[1] 

 

 logging.info("Scraping job id: " + scrapingjob_id)  

 

 outputblob.set(f"{scrapingjob_id},{sitemap_id}")  

  

 return func.HttpResponse(status_code=200) 
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Appendix G - Azure function for accepting the completion message from the 

webscraper: The source code for setting the bindings 
 

 
function.json [Declares the bindings used in the function] 

{ 

"scriptFile": " init .py", 

"bindings": [ 

{ 

"authLevel": "anonymous", 

"type": "httpTrigger", 

"direction": "in", 

"name": "req", 

"methods": [ 

"get", 

"post" 

] 

}, 

{ 

"type": "blob", 

"direction": "out", 

"name": "outputblob", 

"path": "amazonreviewsdl/ScrapingJobIDs/{DateTime}.csv", 

"connection": "AzureWebJobsStorage" 

}, 

{ 

"type": "http", 

"direction": "out", 

"name": "$return" 

} 

] 

} 
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Appendix H - An example of a copy activity 
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Appendix I - The data factory job responsible for calling the stored 
procedure activity for inserting the data into the relational model 

 
 

CREATE PROCEDURE [dbo].[PopulateReview] 

( 

   @productID INT OUTPUT 

) 

AS 

BEGIN 

    DECLARE @URL                VARCHAR(500) 

    DECLARE @lengthProductName  INT 

    DECLARE @locationASIN       INT 

    DECLARE @lengthASIN         INT 

    DECLARE @productName        VARCHAR(100) 

    DECLARE @ASIN               CHAR(10) 

     

    SET @URL = (SELECT TOP 1 [web-scraper-start-url] FROM Review_Staging) 

    SET @lengthProductName = CHARINDEX('/',@URL,24)-24 

    SET @locationASIN = (CHARINDEX('/',@URL,@lengthProductName + 25))+1 

    SET @lengthASIN = (CHARINDEX('/',@URL,@locationASIN))-@locationASIN 

    SET @productName = SUBSTRING(@URL,24,@lengthProductName) 

    SET @ASIN = SUBSTRING(@URL,@locationASIN,@lengthASIN) 

 

    INSERT INTO Product 

    ( 

        [ASIN],  

        productName,  

        productURL 

    ) 

    VALUES 

    ( 

        @ASIN, 

        @productName, 

        @URL 

    ) 

     

    SET @productID = @@IDENTITY; 

 

    INSERT INTO Reviewer 

    ( 

        reviewerURL, 

        reviewerName,  

        reviewerLocation,  

        helpfulReviewCount, 

        reviewCount, 

        ideaListCount, 

        reviewerRank, 

        bio, 

        hallOfFame, 

        heartCount, 

        reviewerTop1000, 

        reviewerFB, 
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        reviewerTwitter, 

        reviewerInstagram, 

        reviewerYoutube, 

        reviewerLink, 

        webScraperOrderID, 

        productID 

    ) 

    SELECT  

        CONCAT('https://amazon.com', Review_Staging.[reviewer_link-href]), 

        Review_Staging.reviewer_name,  

        Review_Staging.reviewer_location,  

        (SELECT (CASE WHEN Review_Staging.reviewer_helpful_review_count LIKE '' THEN N

ULL 

                      ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_help

ful_review_count,1,LEN(Review_Staging.reviewer_helpful_review_count)),',',''))END)),  

     

        (SELECT (CASE WHEN Review_Staging.reviewer_review_count LIKE '' THEN NULL 

                      ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_revi

ew_count,1,LEN(Review_Staging.reviewer_review_count)),',',''))END)), 

        (SELECT (CASE WHEN Review_Staging.reviewer_idea_list_count LIKE '' THEN NULL 

                      ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_idea

_list_count,1,LEN(Review_Staging.reviewer_idea_list_count)),',',''))END)), 

        (SELECT (CASE WHEN Review_Staging.reviewer_ranking LIKE '' THEN NULL 

                      ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_rank

ing,2,LEN(Review_Staging.reviewer_ranking) - 1),',',''))END)), 

        Review_Staging.reviewer_bio, 

        Review_Staging.reviewer_hall_of_fame, 

        (SELECT (CASE WHEN Review_Staging.reviewer_heart_count LIKE '' THEN NULL 

                      ELSE CONVERT(INT, REPLACE(SUBSTRING(Review_Staging.reviewer_hear

t_count,1,LEN(Review_Staging.reviewer_heart_count)),',',''))END)), 

        Review_Staging.reviewer_top_1000, 

        Review_Staging.reviewer_fb, 

        Review_Staging.reviewer_twitter, 

        Review_Staging.reviewer_instagram, 

        Review_Staging.reviewer_youtube, 

        (SELECT SUBSTRING(Review_Staging.reviewer_link,11,CHARINDEX('>', Review_Stagin  

g.reviewer_link, 1)-13)), 

        Review_Staging.[web-scraper-order], 

        @productID 

    FROM    Review_Staging 

         

    INSERT INTO Review 

    ( 

        productID,  

        reviewerID, 

        reviewURL, 

        reviewTitle, 

        reviewStars, 

        locationDateString, 

        verifiedPurchase, 

        reviewText, 

        helpfulCount, 

        scrapingjob_id, 

        reviewLinkText, 
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        starsString, 

        reviewVerifiedStr, 

        reviewHelpfulString, 

        webScraperOrderID, 

        reviewRetrievalDate 

    ) 

SELECT  

        @productID, 

        Reviewer.reviewerID, 

        CONCAT('https://amazon.com',Review_Staging.[review_link-href]), 

        Review_Staging.review_title, 

        CONVERT(INT, SUBSTRING(review_stars,1,1)), 

        Review_Staging.review_location_date, 

        (SELECT (CASE WHEN review_verified LIKE 'Verified Purchase' THEN 1 

                      ELSE 0 END)), 

        Review_Staging.review_text, 

        (SELECT (CASE WHEN review_helpful_string NOT LIKE ''  

                      THEN (CASE WHEN (SUBSTRING(review_helpful_string,1,CHARINDEX(' '

,review_helpful_string, 1))) LIKE 'One'  

                                 THEN 1 

                                 ELSE CONVERT(INT, REPLACE(SUBSTRING((SUBSTRING(review

_helpful_string,1,CHARINDEX(' ',review_helpful_string, 1)-

1)),1,LEN((SUBSTRING(review_helpful_string,1,CHARINDEX(' ',review_helpful_string, 1)-

1)))),',',''))END) 

                      ELSE 0 END)), 

        ScrapeJob.scrapingjob_id, 

        Review_Staging.review_link, 

        Review_Staging.review_stars, 

        Review_Staging.review_verified, 

        Review_Staging.review_helpful_string, 

        Review_Staging.[web-scraper-order], 

        ScrapeJob.scrapejobComplete_date 

    FROM   Review_Staging 

        LEFT JOIN   Reviewer    ON Reviewer.webScraperOrderID = Review_Staging.[web-

scraper-order] 

        JOIN        Product     ON Product.productURL = Review_Staging.[web-scraper-

start-url] 

        JOIN        ScrapeJob   ON ScrapeJob.web_start_url = Review_Staging.[web-

scraper-start-url]; 

         

     

    DELETE  

    FROM Review_Staging 

END 

 

 

 

 

 

 
 


