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Abstract  
 
In North America, wolf populations have been relentlessly hunted and persecuted since Europeans 
landed in the new world.  In recent years, in an effort to restore the balance of flora and fauna in 
ecosystems, wolves have been reintroduced in some areas.  In other areas, wolf populations are still 
hunted, based upon the premise of “managing them.”  Prior studies have suggested that physiological 

indicators, specifically elevated hormone levels, are symptomatic of higher stress levels in individual 

wolf subjects in heavily-hunted populations. This stress has far-reaching implications for reproduction, 
social structure and pack dynamics.  The current study supports prior studies that used statistics to 
show elevated stress levels in hunted wolf populations and classification of individual wolf subjects as 
belonging to hunting-based stressed populations, based on physiological data, and by using machine 
learning.  
 

Keywords: Machine Learning, data mining, Support Vector Machines, physiological indicators, 
Classification, Data Analytics 
 
 

1. INTRODUCTION/LITERATURE REVIEW 
 

Human caused mortality of predator populations 
(from hunting) has resulted in collateral negative 
effects on the impacted population (Coltman, 
2003; Darimont 2009).  The longstanding 

traditional objective of hunting has been the 
search for, and killing of, the strongest and fittest 
of the group or population, thereby reducing the   

reproduction of the healthiest members of the 
population.  Evidence has shown that in the 
hunting of rams for trophies, there is a 
predominance of those of heavier weight and 
larger horn size (Festa-Bianchet et al., 2004, 
Coltman et al., 2003).  These rams are of stronger 
breeding stock.  Also, it was determined that they 

were of relative younger age, thereby having a 
negative impact on the reproduction rate of the 

populations (Coltman et al., 2002). 
 
The intricate and complex social structure of wolf 
populations leads to an extreme vulnerability to 

additional increases in mortality and a derailment 
of pack behavior dynamics as a result of human 
intervention (Haber, 1996).  Although wolf 

populations can recover from less severe and 
limited decreases in population, chronic pressures 
can negatively impact behavior, the foundation of 
social structure, and genetic capability.  This 
combination of factors may reduce the possibility 
of group and pack recovery to sustainable and 
thriving levels. (Rausch, 1967; Haber, 1996; 
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Jezdrzejewski et al. 2005; Sidorovich et al., 2007; 

Rutledge et al., 2010, 2012). 
 
Heavily-hunted wolf populations produce more 

female offspring (Sidorovich et al., 2007).  
Researchers have determined that genetic 
diversity in wolf populations is impacted by 
intense hunting (Jezdrzejewski et al., 2005).  The 
social dynamics of neighboring wolf populations 
can be affected by the harvesting of wolves 
outside these protected areas (Rutledge et al., 

2010).  The mortality of wolf pups can increase, 
leading to reductions in the rate of population 
growth (Rausch, 1967).  
 
The impact of hunting on population numbers can 
be easily determined, but accompanying 

physiological effects have not been measured or 
documented.   It has been concluded that levels 
of hormones, like cortisol, are an indicator of 
increased stress in hunted individuals (Bateson & 
Bradshaw 2007).   Also, stress can negatively 
affect the social behavior of a species population 
(Gobish et al., 2008). 

 
Testosterone is a required component to male 
reproduction capability, but also has an effect on 
behavior.   If an imbalance exists in the social 
structure, it is possible that testosterone may 
increase (Oliveria, 2004).   
 

A number of studies have concluded that elevated 
levels of the hormones cortisol, testosterone, and 

progesterone in pregnant females are a reflection 
of the reproductive activity in the population 
(Foley et al., 2001). A relationship between 
female testosterone levels and the social 

structure of the populations has also been 
determined (Albert et al., 1991 & Bryan, et al., 
2013). 
 
More recently, researchers have looked at the 
changes in hormone levels as an indication of 
physiological effects of hunting by humans.  One    

study has evaluated hormone levels in wolf 
populations to determine how human-caused 
mortality may impact group behavior, 
reproduction, and social dynamics. (Bryan et al., 

2015).  The researchers in this study concluded 
that elevated hormone levels can be found in 
subjects found in heavily-hunted wolf 

populations. Another study determined that, 
using machine learning, individual wolf subjects 
could be classified as belonging to either heavy or 
low hunting populations based on the level of 
these hormones (Stewart et al., 2021). 
 

2. RESEARCH METHODOLOGY 

 
In the current research we are attempting to 
further previous work to determine if additional 

machine learning methods might improve the 
accuracy of classification of wolf subjects based 
on hormone levels.  As in the prior work, we are 
classifying individual wolf subjects as belonging 
to a heavily-stressed population due to hunting, 
or as a member of a population with lower 
hunting pressure. The criteria for determining 

stress is the measurement of hormones and 
reproductive steroids in the wolf’s fur.   Similarly, 
we will evaluate the hormone levels of two 
separate wolf populations in Northern Canada 
studied previously (Bryan et al., 2015; Stewart et 
al., 2021).  

 
The differences in these two wolf populations in 
this dataset is marked by the level of hunting.  
Wolves in the tundra-taiga area were heavily 
hunted using snowmobiles and firearms.  Taiga is 
characterized by dense conifers, like spruce and 
pine.  Conversely, tundra regions lack any tree 

cover.   Wolves in the second area, boreal forests, 
had a lower level of mortality and were killed 
predominately by trapping.  Boreal forests consist 
of deciduous and conifer trees, and experience 
wide-ranging temperatures over the course of the 
year (Musiani, M. & Paquet, P.C., 2004). 
 

Bryan et al., (2015) concluded that elevated 
levels of stress and subsequent increased 

reproduction activity in the heavily hunted 
tundra-taiga wolves, were linked to high rates of 
hormone production (testosterone, progesterone, 
and cortisol).   The researchers in the 2015 study 

compared the tundra-taiga wolves to wolves in 
areas of lower hunting pressure (i.e., the boreal 
forest), concluding statistical difference exists. 
(Bryan et al., 2015).  In a prior work, we 
determined that classification of individual wolves 
in the same dataset was possible using machine 
learning, specifically k-nearest neighbor (Stewart 

et al., 2021).  In this current work, our research 
questions are:  1) Can we determine the 
population that individual wolves belong to, based 
on the level of stress-related hormones using 

Support Vector Machines (SVM)?, and 2) Is this 
an improved method over k-Nearest neighbor in 
our prior work? 

 
Sampling Method 
The samples (n=148) were collected in a prior 
study in Nunavut, Northwest Territories and 
Alberta, Canada (Musiani et al., 2007).  The 
samples (See Appendix, populations 1 and 2) 

consisted of wolf hair samples collected during 
the winter months.  The process of extracting the 
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hormones from the wolf hair, including quality 

control methodologies, is outlined in the Bryan et 
al., study (2015). 
 

Bryan et al., (2015) used statistical analysis to 
differentiate the tundra-taiga wolves from the 
boreal forest wolves.  The researchers used 
ANOVA and Welch’s t-tests to compare the two 
wolf populations, concluding that wolves from the 
more heavily hunted populations had increased 
levels of reproduction and stress related 

hormones.  They suggested that these 
physiological characteristics are in response to 
environmental factors, including human-induced 
mortality (Bryan et al., 2015).   
 
The researchers proposed that confounding 

factors, specifically, ecological and genetic-based 
differences that could explain the gap in the level 
of hormones in the two populations.   They 
concluded that the higher levels of cortisol in the 
tundra-taiga wolves could be attributed to long-
term shortages in the food supply in summer, 
when wolves must travel farther to catch up with 

migrating caribou.   Additionally, the massing of 
tundra-taiga wolf populations near caribou in 
summer causes interactions among wolves of 
different packs. (which could also explain the 
elevated levels of testosterone). The boreal 
wolves, conversely, have more traditional 
territories and stability, leading to fewer 

intergroup interactions (Walton, et al., 2001, 
Musiani et al., 2007). 

 
To test the influence of these confounding factors, 
the researchers used a control group of wolves 
(n=30) from a heavily-hunted population in a 

boreal forest region (See Appendix, population 
3).  The hormone samples in the control group 
showed higher levels of cortisol than in the boreal 
forest populations.  The wolves in the control 
group also had similar levels of cortisol as wolves 
in the heavily hunted northern tundra-taiga 
region.  Therefore, the researchers concluded 

that higher cortisol levels are the result of 
increased mortality rates, possibly coupled with 
some habitat related factors (Bryan et al., 2015). 
 

The current research seeks to determine and 
support the prior research on classification of the 
wolf subjects in this dataset.  Prior work has 

answered the question as to whether human-
exploited wolf populations are more heavily 
impacted physiologically (Bryan et al., 2015).  
And, an individual wolf can be classified to a 
population of hunted wolves by the level of 
specific hormones in the fur (Stewart et al., 

2021). The current work expands upon this 

previous study and attempts to classify wolf 

subjects using Support Vector Machines (SVM). 
 

Research Question 

The research question to be evaluated in this 
study is as follows: 
 
Can Individual wolves be classified into one of two 
populations, those belonging to a heavily- 
exploited population, or a member of a less-
hunted group, based on hormone levels using 

SVM?  SVM are a machine-learning methodology 
for classifying data points using an n-dimensional 
feature space (Cortes & Vapnik, 1995).  SVM can 
be used to support the results obtained by two 
previous studies (Bryan et al., 2015; Stewart et 
al., 2021).  That is, wolves can accurately be 

classified into one of two groups: 1) those with 
high levels of hunting-induced stress, and 2) 
those with less stress using SVM.  
 
The objective of the current study is to determine 
whether the physiological consequences of 
hunting (as determined by levels of stress and 

reproductive hormones in hair, an indicator of 
elevated endocrine activity), can be used to 
classify wolves as belonging to a highly-stressed 
group or a less-stressed group.  
 
To test our research question, we used data 
previously analyzed by Bryan et al., (2015) and 

SVM as the classification methodology to 
determine wolf membership in heavily stressed 

versus low stressed populations, based on 
hormone levels.  The 2015 dataset included 
subject wolves from two separate areas and 
environments.  The dataset contained 45 wolves 

from a lightly-hunted group in a northern boreal 
forest, and 103 wolves from a heavily-hunted 
Tundra-taiga forest area. 
 
All samples were taken as part of a prior study 
(Musiani et al., 2007). The samples consisted of 
hair from the wolf subjects. Cortisol, 

testosterone, and progesterone (females) levels 
were measured in each hair sample.   The data, 
listing population, gender, hair color, and levels 
of the three hormones can be found in the 

Appendix.  In this work, unlike the 2021 study, 
we included fur color and gender variables in the 
analysis.  

 
Support Vector Machines 
SVM was used to compare cortisol and 
testosterone levels in the two different 
populations, and to determine the accuracy in 
classifying each subject into one of the 

populations, based on its hormone levels.  Bryan 
et al., (2015) determined that higher levels of 
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cortisol and testosterone were found in the 

tundra-taiga wolves and concluded that this 
higher level may be an indicator of social 
instability.    

 
Due to the lower numbers of northern boreal 
forest wolves, stratified sampling was used.  In 
addition, the data were partitioned into 70% for 
training and 30% for testing.  A SVM linear model 
was developed using the Caret package in R, and 
10-fold cross validation was used to improve 

accuracy and reduce over-fitting.    
 
SVM algorithms are designed to find the optimum 
hyperplane in an N-dimensional space (N = the 
number of features) that separates, and most 
distinctly classifies, the data points (Figure 1). 

 
There are a number of possible hyperplanes that 
can separate the two classes of the target 
variable. The goal is to determine the plane that 
has the maximum margin, (i.e., the maximum 
distance between data points of the different 
classes. Maximizing the margin distance elicits a 

higher level of confidence in the classification of 
new data points (Boser et al., 1992).  The goal of 
classification using SVM then, is to determine the 
maximum separation between the possible 
outcomes of the classification of a target variable 
(i.e., two possible outcomes in this case).   
 

SVM is a powerful classification method with the 
potential for high accuracy compared to other 

classification methods.  It has wide application in 
classification, including cancer genomes (Huang et 
al., 2018), chemoinformatics and drug research 
(Rodríguez-Pérez, 2022), and even the 

classification of running technique between 
experienced and novice runners (Carter et al., 
2022).  

 
 
 
 

 
 
 
 

 
Figure 1: SVM determines the optimal 
hyperplane separating data points 

 
3. RESULTS AND DISCUSSION 

 
The results of our model yielded an accuracy of 
nearly 83% (as shown in Table 1).  Additionally, 
the accuracy value is substantially above the No 

Information Rate, which indicates that the model 
is superior to simply choosing the dominant class 

from the target variable.  Additionally, the Kappa 

(a measure of agreement between actual and 
predicted values, taking chance into account) is 
in a range that indicates good agreement. 

Considering all of the components in the 
aggregate, this suggests a markedly significant 
model with the capability of predicting the group 
an individual wolf subject belongs to, based upon 
the levels of cortisol and testosterone in the fur.  
 

Measurement Value  
Accuracy  0.8276 
Sensitivity 0.6667 
Specificity  0.9412 
Kappa 0.631 
No Information Rate 0.5862 

Table 1: Results of Classification of Wolf 
Subjects based on Cortisol and 
Testosterone Levels Using SVM 
 

4. CONCLUSIONS 
 

Past research on this topic has proposed that 
elevated levels of the hormones cortisol, 
testosterone, and progesterone in taiga-tundra 
wolves are explained by the synergistic effects of 
hunting pressures, the habitat, or sampling 
(Bryan et al., 2015).  In the Bryan et al., study, 
the researchers compared cortisol levels in the 

taiga-tundra wolves to those of a control group of 
30 wolf subjects (i.e., Little Smokey wolves) in a 
heavily-hunted boreal forest area in an effort to 

explain the differences in habitat and ecosystem 
characteristics.  The results of this study showed 
statistically higher cortisol levels in both the Little 
Smokey and taiga-tundra wolves, compared to 

the northern boreal forest wolves. 
 
Another study used the k-NN classification 
algorithm to show that individual wolves can be 
classified as belonging to heavily hunting-
pressured groups based on cortisol and 

testosterone levels (Stewart et al., 2021).  This 
classification was also shown to be at a highly-
accurate level.  That study also concluded that 
classification of female wolves (using the k-NN 
classifier) is possible with a favorable accuracy, 
based on the females’ levels of progesterone. 

 

Our results in the current work support the 
findings of Bryan et al., (2015) that showed 
statistically-significant differences in hormone 
levels between taiga-tundra and boreal forest 
wolf populations (i.e., heavily hunted vs. lightly 
trapped populations).   Our results also support 
the results of Stewart et al., (2021) showing 

classification with high accuracy is possible in 



Journal of Information Systems Applied Research  16 (1) 
ISSN: 1946-1836  March 2023 

©2023 ISCAP (Information Systems & Computing Academic Professionals)  Page 56 
https://jisar.org/; https://iscap.info 

classifying hunting-stressed wolf subjects based 

on hormone levels.  
 
Our findings support our suggestion that 

individual wolves can be classified as belonging to 
a heavily exploited population based on hormone 
levels using SVM.  The similar results to the prior 
study using k-NN supports the use of machine 
learning models to classify the wolf subjects in 
this small dataset despite the relative imbalance 
in the target variable.  

 
Prior studies have concluded that the potential 
implications of heavy human-caused mortality in 
wolves are substantive chronic stress, and 
diminished reproduction and breeding.  The 
negative effects on breeding, compared with non-

distressed populations are unclear.  However, 
predictable genetic outcomes, as in the case with 
in-breeding, lack of diversity, increased disease, 
along with an elevated danger of population 
extinction are potential long-term impacts of 
heavy hunting (Leonard et al., 2005). 
 

There are several implications revealed by the 
differences in hormone levels as determined by  
Bryan et al., 2015; Stewart et al., 2021), and this 
current work study.  First, reproduction rates may 
be altered (and the social structure, along with 
the reproduction rates) when there is no longer a 
dominant pair (or pack hierarchy), and additional 

pack members are also breeding.  The stability of 
the social group, characterized by a single litter 

per pack each year, is unbalanced (Haber, 1996).  
High levels of testosterone aid in any challenges 
an individual wolf may have within the social 
structure, where strength and dominance of the 

situation are necessary (Wingfield et al., 2001). 
 
With a link between stress levels in wolf 
populations and human-based hunting, aside 
from the impact on wolf populations, the effects 
on entire ecosystems could be impacted.   Wolves 
are recognized as a keystone species in their 

natural habitat (Boyce, 2018; Ripple & Beschta, 
2012).  Therefore, their absence or minimization 
can have far reaching impacts on entire 
ecosystems.  

 
Limitations of Study 
It should be noted that the sample size in this 

study was relatively small, particularly with the 
northern boreal forest wolves (i.e., n = 45).   
However, the research was unfortunately limited 
by the amount of available data.  Additional 
machine-learning techniques and models could 
be employed in future studies to improve the 

results using methods to address unbalanced 
small datasets.  These additional techniques 

might be used to determine whether we can 

improve the classification accuracy of wolf 
subjects, based on hormone levels as indicators 
of human-caused stress. 
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APPENDIX A 

Wolf Hair Data Collected during Musiani, et al. Study (2007) 
 
Individual Sex Population Colour Cpgmg Tpgmg Ppgmg 

1 M 2 W 15.86 5.32 NA 

2 F 1 D 20.02 3.71 14.37622 

3 F 2 W 9.95 5.3 21.65902 

4 F 1 D 25.22 3.71 13.42507 

5 M 2 D 21.13 5.34 NA 

6 M 2 W 12.48 4.6 NA 

7 M 1 W 26.78 4.58 NA 

8 M 1 D 15.41 9.27 NA 

9 F 1 D 33.87 4.81 19.9127 

10 F 2 W 17.29 5.07 34.59806 

11 F 1 W 9.43 4.47 25.88548 

12 F 1 W 8.84 3.75 15.86882 

13 F 1 D 34 4.76 33.08362 

14 F 1 D 14.3 6.06 24.82876 

15 M 1 D 12.16 5.75 NA 

16 M 1 D 22.43 6.15 NA 

17 F 2 W 26.26 4.93 25.00037 

18 M 2 W 15.8 5.24 NA 

19 M 1 W 7.93 4.14 NA 

20 M 1 D 4.75 3.34 NA 

21 M 2 W 9.17 4.02 NA 

22 M 2 W 21.52 4.91 NA 

23 M 1 W 10.79 3.91 NA 

24 F 2 W 22.69 6.47 21.50033 

25 F 2 W 22.17 4.28 31.8274 

26 F 2 W 15.34 5.53 34.0765 

27 F 1 W 20.48 5.06 20.21606 

28 F 1 W 16.19 4.79 18.29115 

29 F 1 W 24.05 3.7 21.29735 

30 M 2 W 16.45 6.09 NA 

31 F 2 W 21.91 4.19 36.40797 

32 F 2 W 32.24 6.94 40.92793 

33 F 2 W 23.99 5.97 45.9136 

34 F 2 W 27.82 7.76 47.2674 

35 F 2 W 19.83 6.55 40.93838 

36 F 2 W 12.16 4.34 26.65583 

37 F 2 W 19.05 6.34 23.90413 

38 F 2 D 13.91 4.72 26.36326 

39 F 2 D 17.16 9.25 34.64966 

40 F 1 W 30.16 6.8 19.61885 

41 F 2 W 24.38 5.49 28.12497 

42 F 2 D 10.14 3.81 NA 
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43 M 2 W 18.4 4.98 NA 

44 M 2 W 15.21 7.17 NA 

45 M 2 W 24.64 15.13 NA 

46 M 2 W 22.49 14.45 NA 

47 M 2 W 17.42 5.36 NA 

48 M 2 W 29.51 9.12 NA 

49 M 2 W 27.3 10.75 NA 

50 M 2 W 14.04 7.19 NA 

51 M 2 W 11.77 5.17 NA 

52 M 2 W 23.6 6.97 NA 

53 M 2 W 18.14 5.7 NA 

54 M 2 W 11.25 4.4 NA 

55 F 1 W 14.82 10.81 NA 

56 F 2 W 26.39 6.47 24.46521 

57 M 2 W 15.15 4.52 NA 

58 M 2 W 14.04 6.01 NA 

59 M 2 W 21.39 7.36 NA 

60 F 2 W 20.02 5.19 31.40929 

61 M 2 W 24.64 14.08 NA 

62 M 2 W 13.46 4.09 NA 

63 M 2 W 18.79 9.74 NA 

64 F 2 W 11.77 4.95 21.01472 

65 F 2 W 19.96 7.62 28.06955 

66 F 2 W 12.68 3.82 27.90797 

67 F 2 W 19.76 5.26 27.37918 

68 M 2 D 20.35 14.98 NA 

69 F 2 W 17.68 5.97 53.28191 

70 F 2 W 23.66 6.13 48.53432 

71 F 2 W 17.23 7.24 NA 

72 F 2 W 25.74 4.88 37.65696 

73 F 2 W 19.89 6.35 31.90467 

74 F 1 D 14.24 3.95 28.87637 

75 M 2 W 17.55 5.02 NA 

76 M 2 W 16.32 5.86 NA 

77 M 2 W 15.34 5.78 NA 

78 F 2 W 11.64 4.87 22.87393 

79 M 2 W 13.65 5.04 NA 

80 M 2 W 11.57 5.24 NA 

81 M 2 W 20.35 5.98 NA 

82 M 2 W 8.91 4.58 NA 

83 M 2 W 9.1 4.4 NA 

84 M 2 D 21.65 7.81 NA 

85 M 1 D 10.6 3.65 NA 

86 M 1 D 12.35 9.57 NA 

87 F 1 D 7.93 3.83 16.77475 

88 F 1 D 8 4.26 19.49892 
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89 F 1 D 7.61 4.24 22.56011 

90 M 1 W 11.96 5.62 NA 

91 M 1 D 14.82 5.35 NA 

92 F 1 W 14.43 5.08 34.81566 

93 F 1 D 19.57 6.81 16.67624 

94 F 1 W 12.55 3.25 13.19328 

95 F 1 D 12.61 3.54 13.62372 

96 F 1 D 10.21 4.49 18.52082 

97 M 1 D 15.99 5.82 NA 

98 F 1 D 32.24 4.8 25.20981 

99 M 1 D 15.41 5.68 NA 

100 M 1 D 13.98 5.45 NA 

101 M 1 D 16.32 6.65 NA 

102 M 1 D 6.37 3.31 NA 

103 M 1 W 8.19 3.81 NA 

104 M 1 W 12.29 3.95 NA 

105 F 2 W 12.16 4.37 13.17322 

106 F 2 W 16.19 4.43 26.32807 

107 F 2 W 11.83 3.48 16.40101 

108 F 2 W 10.47 3.9 17.56024 

109 F 2 W 21.13 5.09 29.29508 

110 F 2 W 18.59 4.49 21.51784 

111 F 2 W 12.09 3.96 28.49073 

112 F 2 W 13 3.83 30.98607 

113 F 2 W 12.09 4.65 28.62749 

114 F 2 W 13.26 4.48 25.66584 

115 F 2 W 12.03 4.32 19.28812 

116 F 2 W 17.36 5.01 30.00925 

117 F 2 W 18.14 3.56 12.7591 

118 F 2 W 15.93 4.65 22.72246 

119 F 2 W 12.29 5.01 23.24402 

120 F 2 W 17.42 4.38 18.35924 

121 F 2 W 13.2 5.3 18.88097 

122 F 2 W 14.5 5.01 21.06504 

123 F 2 D 11.44 4.04 16.154 

124 M 2 D 11.57 5.68 NA 

125 M 2 W 15.28 3.9 NA 

126 M 2 W 13.46 5.1 NA 

127 M 2 W 13.2 4.76 NA 

128 M 2 W 11.25 4.89 NA 

129 M 2 W 16.58 7.54 NA 

130 M 2 W 13.2 5.07 NA 

131 M 2 W 14.04 5.65 NA 

132 M 2 W 17.03 5.81 NA 

133 M 2 W 17.81 4.88 NA 

134 M 2 W 12.48 4.86 NA 
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135 M 2 W 11.44 4.34 NA 

136 M 2 W 40.43 9.13 NA 

137 M 2 D 14.3 4.53 NA 

138 M 2 W 14.89 4.32 NA 

139 M 2 W 16.77 4.4 NA 

140 M 2 D 9.95 4.31 NA 

141 M 2 W 10.34 4.36 NA 

142 M 2 W 20.54 8.06 NA 

143 F 1 W 12.81 6.25 26.73429 

144 F 1 W 16.51 4.62 28.10653 

145 M 1 D 11.12 6.71 NA 

146 M 1 D 11.64 4.51 NA 

147 M 1 W 18.92 7.57 NA 

148 M 2 W 19.89 5.35 NA 

149 U 3  9.69 4.23 NA 

150 U 3  19.37 4.26 NA 

151 U 3  19.76 4.56 NA 

152 U 3  11.31 7.73 NA 

153 U 3  11.25 3.81 NA 

154 U 3  13.85 4.28 NA 

155 U 3  17.62 4.54 NA 

156 U 3  22.82 4.34 NA 

157 U 3  18.14 10.33 NA 

158 U 3  13.52 8.12 NA 

159 U 3  21.58 5.79 NA 

160 U 3  8.91 29.74 NA 

161 U 3  9.17 3.14 NA 

162 U 3  14.17 10.32 NA 

163 U 3  12.09 6.7 NA 

164 U 3  54.47 61.79 NA 

165 U 3  10.4 4.2 NA 

166 U 3  50.31 5.48 NA 

167 U 3  33.74 9.61 NA 

168 U 3  14.76 8.94 NA 

169 U 3  22.3 6.16 NA 

170 U 3  23.21 10.59 NA 

171 U 3  19.24 5.66 NA 

172 U 3  13.07 4.4 NA 

173 U 3  49.14 6.21 NA 

174 U 3  73.19 6.41 NA 

175 U 3  37.05 4.75 NA 

176 U 3  16.45 7.29 NA 

177 U 3  43.81 6.09 NA 

178 U 3  14.89 3.53 NA 
 


