

CyberSecurity pedagogy

& Practice Journal

Volume 2, No. 2

 September 2023
ISSN: 2832-1006

In this issue:

4. A Chatbot for Teaching Secure Programming: Usability and Performance

Evaluation Study

James Walden, Northern Kentucky University

Nicholas Caporusso, Northern Kentucky University

Ludiana Atnafu, Northern Kentucky University

17. Teaching Case

Applied Steganography: An Interesting Case for Learners of all Ages

Johnathan Yerby, Mercer University

Jennifer Breese, Penn State Greater Allegheny

28. A Case Study in Identifying and Measuring Skills Honed from a Cybersecurity

Competition

Ron Pike, Cal Poly Pomona

Jasmine Weddle, Cal Poly Pomona

Sydney Duong, Cal Poly Pomona

Brandon Brown, Coastline College

39. IoT Security Vulnerabilities Analysis by Reverse Engineering: A Face-

recognition IoT Application-based Lab Exercises

Sam Elfrink, Southeast Missouri State University

Mario Alberto Garcia, Southeast Missouri State University

Xuesong Zhang, Southeast Missouri State University

Zhouzhou Li, Southeast Missouri State University

Qiuyu Han, Hellongjiang University

68. Recommendations for Developing More Usable and Effective Hands-on

Cybersecurity Education Materials Based on Critical Evaluation Criteria

Ahmed Ibrahim, University of Pittsburgh

Vitaly Ford, Arcadia University

82. Utilizing Discord-based Projects to Reinforce Cybersecurity Concepts

 Marc Waldman, Manhattan College

 Patricia Sheridan, Manhattan College

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://cppj.info/; https://iscap.info

The Cybersecurity Pedagogy and Practice Journal (CPPJ) is a double-blind peer-

reviewed academic journal published by ISCAP (Information Systems and Computing

Academic Professionals). Publishing frequency is two times per year. The first year of

publication was 2022.

CPPJ is published online (https://cppj.info). Our sister publication, the proceedings of the

ISCAP Conference (https://proc.iscap.info) features all papers, panels, workshops, and

presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the ISCAP

conference. At that point, papers are divided into award papers (top 15%), and other accepted

proceedings papers. The other accepted proceedings papers are subjected to a second round

of blind peer review to establish whether they will be accepted to the journal or not. Those

papers that are deemed of sufficient quality are accepted for publication in the CPPJ journal.

While the primary path to journal publication is through the ISCAP conference, CPPJ does

accept direct submissions at https://iscap.us/papers. Direct submissions are subjected to a

double-blind peer review process, where reviewers do not know the names and affiliations of

paper authors, and paper authors do not know the names and affiliations of reviewers. All

submissions (articles, teaching tips, and teaching cases & notes) to the journal will be refereed

by a rigorous evaluation process involving at least three blind reviews by qualified academic,

industrial, or governmental computing professionals. Submissions will be judged not only on

the suitability of the content but also on the readability and clarity of the prose.

Currently, the acceptance rate for the journal is under 35%.

Questions should be addressed to the editor at editorcppj@iscap.us or the publisher at

publisher@iscap.us. Special thanks to members of ISCAP who perform the editorial and

review processes for CPPJ.

2023 ISCAP Board of Directors

Jeff Cummings
Univ of NC Wilmington

President

Anthony Serapiglia

Saint Vincent College
Vice President

Eric Breimer
Siena College
Past President

Jennifer Breese

Penn State University
Director

Amy Connolly
James Madison University

Director

RJ Podeschi
Millikin University
Director/Treasurer

Michael Smith

Georgia Institute of Technology

Director/Secretary

David Woods
Miami University (Ohio)

Director

Jeffry Babb
West Texas A&M University

Director/Curricular Items Chair

Tom Janicki
Univ of NC Wilmington

Director/Meeting Facilitator

Paul Witman
California Lutheran University

Director/2023 Conf Chair

Xihui “Paul” Zhang
University of North Alabama

Director/JISE Editor

Copyright © 2023 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to editorcppg@iscap.us.

mailto:editorcppj@iscap.us
mailto:publisher@iscap.us

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://cppj.info/; https://iscap.info

Cybersecurity

Pedagogy and Practice

 Journal

Editors

Anthony Serapiglia
Co-Editor

Saint Vincent College

Jeffrey Cummings
Co-Editor

University of North Carolina
Wilmington

Thomas Janicki
Publisher

University of North Carolina
Wilmington

2023 Review Board

Etezady Nooredin
Nova Southern University

Li-Jen Lester
Sam Houston State

University

Jamie Pinchot
Robert Morris University

Samuel Sambasivam
Woodbury University

Kevin Slonka
Saint Francis University

Geoff Stoker
University of North Carolina

Wilmington

Paul Wagner
University of Arizona

Paul Witman
California Lutheran

University

Jonathan Yerby
Mercer University

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 4

https://cppj.info/; https://iscap.info

A Chatbot for Teaching Secure Programming:

Usability and Performance Evaluation Study

James Walden

waldenj1@nku.edu

Nicholas Caporusso

caporusson1@nku.edu

Ludiana Atnafu
atnaful1@nku.edu

Department of Computer Science

College of Informatics
Northern Kentucky University

Highland Heights, KY (USA)

Abstract

Security is a fundamental aspect of programming. However, even experienced developers find it difficult
to always write secure code or overlook key security flaws. Therefore, it is crucial to provide additional

guidance to students who are learning to program in a new language or environment, so that they can
understand how to use and write secure code. The goal of our work is to create a chatbot with an
authoritative knowledge base on secure programming to help teach student developers how to write
secure code, instead of having them rely on common sources of readily available help on the Internet

such as tutorials and question and answer sites, which often teach insecure practices and provide
example code containing vulnerabilities. To this end, in the first part of our work, we designed,
implemented, and evaluated a novel chatbot with a knowledge base covering secure programming in
PHP using the Rasa framework, we evaluated the user experience with the chatbot, and compared
students' intent to adopt chatbots in comparison with other information sources such as question and
answer sites. Participants solved secure web programming problems in a custom web application
developed for the experiment with the aid of either the chatbot or their choice of Internet resources. In

the second part of our study, we compared the performance of our novel chatbot with that of GPT-3 in
terms of comprehension of students' questions, correctness, completeness, and security of the answers.
Our findings about the overall user experience suggest that chatbots can be utilized as a more
convenient support tool with respect to other systems, such as search engines. In our comparison of

the novel chatbot with GPT-3, we found that while GPT-3 performed better in terms of understanding
students' questions, our chatbot outperformed it in terms of correctness and security of the answers.

Keywords: Secure programming, software security, chatbots, user experience, GPT-3, OpenAI.

1. INTRODUCTION

Learning to create web applications involves

acquiring multiple skills simultaneously, including
writing source code in a new programming

language, using a development environment for
the first time, and ensuring the security of the
code and the data being stored. The latter aspect

is especially important in the development of
server-side and full-stack applications, where

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 5

https://cppj.info/; https://iscap.info

novice programmers and students are faced with

the additional challenge of exposing their code
and users' data to a larger audience and greater
cybersecurity risks.

Unfortunately, security often is considered among
the least important skills by students, because
the impact of insecure code is not immediately
evident to them. While it is easy to test the
functionality of a feature in a web application
(e.g., adding an item to its database), students

need additional knowledge and skills to verify that
the application performs functions securely.

Even if security is considered equal in importance
to functional requirements, it can be difficult to
learn secure programming due to the problem of

identifying accurate sources of information about
security, the difficulty of using Application
Programming Interfaces (APIs) securely (Green &
Smith, 2016; Olivera et al., 2018) the complexity
of testing security flaws in software (Tahaei &
Vaniea, 2019), and the evolution of new types of
vulnerabilities in web applications (Hiesgen et al.,

2022). While incorrect information on security
topics is often associated with online sources like
Stack Overflow (Fischer et al., 2017; Rahman et
al., 2019; Zhang et al., 2021), even college
textbooks contain insecure code examples
(SANS, 2008).

Helping students avoid sources of code with
security flaws has become an even more urgent

challenge with the recent introduction of
generative AI tools, such as ChatGPT (ChatGPT,
2022), GPT-3 (Brown et al., 2020), and GitHub
CoPilot (GitHub, 2022). While ChatGPT and GPT-

3 are based on large language models, both tools
can generate source code and answer questions
about programming. CoPilot on the other hand is
a powerful code autocompletion tool. However, as
CoPilot's very large training dataset includes both
secure and insecure source code, its output can
also contain security vulnerabilities (Asare et al.,

2022; Pearce et. al, 2022).

Our goal is to provide students with tools that can
help them learn secure web development from

reliable and secure code. In the first part of our
work, we created a chatbot to answer their secure
programming questions. The chatbot has a

curated knowledge base with accurate
information and secure code snippets for web
programming in PHP and for connecting to and
querying a MySQL database. Designing a chatbot
specific to our web programming course enabled
us to address both problems associated with

learning secure programming. The knowledge
base was focused on the security issues and APIs

that students encountered in their class, and it

was created with accurate information about
security issues.

The chatbot was initially introduced in a web
development course in the Spring semester of
2021, when we designed an initial experiment
and collected data about the overall design of the
tool and its integration within a custom website
that was used as a learning and development
environment. Data from our first study were

utilized to evaluate the appropriateness of the
system, improve the knowledge base (e.g., add
code snippets), and improve the learning
environment and its integration into the course.
After revising the chatbot and learning
environment based on our students' feedback, we

tested the revised version with a group of
students enrolled in a web programming course
in Fall 2021. We reported our findings in a
previous study (Walden et al., 2022), where we
discussed user experience and adoption
dynamics.

OpenAI released ChatGPT, their GPT-enabled
chatbot on November 30, 2022, only a few weeks
after we presented our study at EDSIGCON. The
release of ChatGPT inspired us to compare the
performance of our custom secure programming
chatbot with that of large language models. As
news about ChatGPT was reported widely, the

number of users soared and the chatbot became
difficult and unreliable to access due to high

demand, frequently producing errors or failing to
work in the middle of a session. Therefore, we
decided to use OpenAI's API to access the
underlying GPT-3 language model on which

ChatGPT was built for our comparison. We
evaluated the performance of our custom chatbot
and GPT-3 in terms of comprehension,
correctness, completeness, and security. We used
the same student queries from our original study
to evaluate the performance of GPT-3.

In this paper, we present the results of our
complete work. The contributions of our work are
as follows:
1. The development of a custom chatbot to

support learning secure programming
practices in PHP.

2. The evaluation of how effective the chatbot is

in helping students write secure code.
3. An analysis of the correctness and security of

answers provided by GPT-3 in comparison
with a chatbot trained with a custom
knowledge base.

This journal paper is an extension of our original
conference paper (Walden et al., 2022), adding

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 6

https://cppj.info/; https://iscap.info

the comparison of answers provided by our

custom secure programming chatbot with
answers provided by GPT-3. Sections 3 through 5
of this journal paper are taken verbatim from the

original conference paper. The Related Work
section is also taken from the conference paper,
except for the subsection on GPT-3. The new
section 6 focuses on the comparison of our secure
programming bot with GPT-3. The introduction
and conclusion have been rewritten to include the
comparison with GPT-3.

2. RELATED WORK

Resources for Learning Secure Coding
Acar et al. studied the effect of developers' use of
different information sources on the functionality

and security of the code they produced (Acar et
al., 2016). The authors divided developers in their
experiment into four groups. The first three
groups had access to single sources of
information: books only, official Android
documentation only, and Stack Overflow only,
while the fourth group had free choice of

information sources. Developers restricted to only
using Stack Overflow produced significantly less
secure code than developers using the official
documentation or books. However, developers
using only official documentation produced
significantly less functional code than those using
only Stack Overflow.

Stack Overflow is the most popular question and

answer site for software developers, including
students. Multiple studies have found insecure
answers and code snippets in answers for
questions on a variety of programming languages

and environments on the site (Fischer et al.,
2017; Meng et al., 2018; Chen et al., 2019;
Fischer et al., 2019; Verdi et al., 2020). One
study found that insecure answers received more
up votes, comments, favorites, and views than
secure answers (Chen et al., 2019).

Automated Tools for Learning Secure Coding
Automated tools can also make it easier for
instructors to incorporate cybersecurity into their
classes and can provide knowledge and feedback

at the precise point in time when students need
that. While there are a variety of tools used to
assist developers in finding security

vulnerabilities through static or dynamic analysis,
there are few automated tools designed to help
teach students about secure programming.
CrypTool has been widely used to assist in the
teaching of cryptography (Adamovic et al., 2018),
but the focus of the tool is teaching how

cryptography works rather than teaching how to
write code to securely use cryptographic APIs.

CryptoExplorer is a web search application that

can provide insecure and secure examples of
cryptographic API use, but it is aimed at
professional developers (Hazhirpasand et al.,

2020).

Plugins for Integrated Development
Environments (IDEs) can provide secure
programming assistance to students in the same
environment in which they are writing their code.
Whitney et al. incorporated secure Java web

programming instruction into an Eclipse plugin
called Educational Security in the Integrated
Development Environment (ESIDE) (Whitney et
al., 2018). ESIDE adds warning icons in Eclipse
when problematic code patterns are detected.
When students click on the warning, ESIDE

provides multiple information options with short
explanations and a link to a page that provides a
detailed explanation of the potential security
issue. ESIDE was based on an earlier plugin,
ASIDE, created for professional developers (Xie et
al., 2011). Nguyen et al. created a plugin to help
professional developers write secure mobile code

in Android Studio called FixDroid (Nguyen et al.,
2017). While FixDroid was not designed for
educational purposes, it would be used for that
purpose.

Chatbots for Teaching and Learning
The use of chatbots in education for a wide variety

of purposes from providing deadlines to delivering
course content is rapidly expanding (Okonkwo &

Ade-Ibijola, 2021). A recent survey of chatbots in
education found that chatbots serve in four
pedagogical roles: learning, assisting, and
mentoring (Wollny et al., 2021). The focus of this

study is on the learning role. Educational chatbots
have been used to help students learn a variety
of skills, including computer programming. Both
Python-bot (Okonkwo & Ade-Ibijola, 2020) and
APIHelper (Zhao et al., 2020) were designed to
help students learn how to program.

Evaluation measures for tool adoption
Security tools generally see poor adoption by
professional developers, who usually prefer to
look up information on the Internet, by visiting

developer communities (e.g., Stack Overflow)
(Tahaei & Vaniea, 2019), tutorials, and, more
recently, videos on YouTube (MacLeod et al.,

2015). Xiao et al. interviewed professional
developers, exploring how security tool adoption
was affected by social environments and
communication channels (Xiao et al., 2014). They
used the diffusion of innovation theory to
evaluate the role of social influence and found

that dynamics such as acceptance within the
developers’ community are among the leading

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 7

https://cppj.info/; https://iscap.info

factors that promote the adoption of tools that

address security.

Previous studies focusing on the adoption of

chatbots in healthcare (Abd-Alrazaq et al., 2020)
and finance (Sugumar & Chandra, 2021) found
that user experience is a key factor and outlined
a variety of technical measures that could be used
to assess users' willingness to employ
conversational agents. Almahri et al. (Almahri et
al., 2020) utilized a revised version of the UTAUT

(i.e., UTAUT2), to analyze the specific user
dynamics that affect the acceptance, adoption,
and use of chatbots in universities in the United
Kingdom. They found the performance of the
chatbot to be the main predictor of the behavioral
intention to use this type of technology.

Furthermore, the authors of two studies
(Sugumar & Chandra, 2021; Ling et al., 2021)
highlighted that when users know that they are
entertaining a conversation with a chatbot, their
interaction tends to be more opportunistic and
utilitarian with respect to their goal and less
influenced by aspects that are more typical of a

conversation with a human agent (e.g.,
empathy).

New language models
GPT-3 is the third-generation language prediction
model of the Generative Pre-trained Transformer
(GPT) model series (Brown et al., 2020). It was

the largest language model, with 175 billion
parameters (compared to 1.5 billion for GPT-2),

when it was released by OpenAI in 2020. Given
an initial text prompt, GPT-3 will generate text
that would continue that prompt. When given a
question as a prompt, the model will typically

continue the prompt by providing an answer that
question.

On November 30, 2022, OpenAI released a GPT-
3 enabled chatbot called ChatGPT (ChatGPT,
2022) that has quickly become popular in many
contexts, including education, where its

promising applications to improving student
writing and coding also raises significant concerns
about plagiarism and academic integrity (Zhai,
2022).

While the output of large language models like
GPT-3 is syntactically correct and GPT responses

can be difficult to distinguish from humanly
written text (Brown et al., 2020), it is important
to note that GPT-3 does not have any semantic
understanding of its input or output. GPT-3 is an
unreliable author, that can generate text that is
not factual as well as text that is biased. It can

even hallucinate facts and references that do not
exist in its training data (Maynez et al., 2020).

While GPT-3 is unreliable, it can still be useful in

a variety of contexts if a human is kept in the loop
to validate its output (Dale, 2021).

GPT-3 can also generate source code in multiple
programming languages. While GitHub released a
dedicated tool called CoPilot (GitHub, 2022), a
tool to autocomplete code snippets, GPT-3 and
ChatGPT are both capable of producing source
code output in response to queries.
Unfortunately, studies of CoPilot have shown that

generated source code in security relevant
contexts frequently contains vulnerabilities
(Asare et al., 2022; Pearce et. Al, 2022).

3. DESIGN AND IMPLEMENTATION OF THE

CHATBOT

We developed a chatbot (SPbot) to assist
students to write secure code in their course on
web application development. The purpose of the
chatbot was to provide an authoritative source of
correct information on secure programming that
was also easy to use. The server-side

programming language used in the course was
PHP, so we wrote all code examples in PHP. The
chatbot was deployed as a web widget in a
custom web application that presented web
application security problems for students to
solve.

SPbot was based on the Rasa chatbot framework,
an open-source project written in Python. Rasa

includes both natural language understanding
and dialog management capabilities. The major
tasks in creating a chatbot are designing
conversation flow, creating a knowledge base,

and training the bot to associate questions with
the correct answers in the knowledge base. The
conversation flow was simple for the secure
programming chatbot, tying single questions to
single answers.

During our development and testing process, the

Rasa framework changed rapidly, including both
API and data format changes. After starting
development using version 1 of Rasa, we found it
impossible to deploy the chatbot to new

machines, because it became impossible to install
the required dependencies from our saved conda
environment. This combination of dependency

problems and lack of security updates for Rasa
1.x led us to update the bot's code and data to
use version 2 of the Rasa framework before
performing the experiment.

We designed the secure coding knowledge base

to include aspects of secure coding that were
directly relevant to the topics students were

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 8

https://cppj.info/; https://iscap.info

learning in the web development course,

including authentication, input validation, cross-
site scripting, and SQL injection. In addition to
answering conceptual questions, the bot could

also provide code examples when asked. For
example, one answer included example code
showing students how to perform SQL queries
with prepared statements. Figuring out how to
include code snippets in Rasa's data files required
some trial and error, as the documentation did
not support this use case and the data file format

changed from JSON to YAML between versions 1
and 2 of the framework.

The final step to creating the secure programming
bot was training it to answer secure programming
questions. The authors interacted with the bot

repeatedly, asking the same questions in a
variety of ways to build the initial version of the

bot. Once the bot was working, we focused
training on teaching the bot to distinguish
between similar questions. For example,
password security could refer to HTML form input
fields, transmitting passwords over HTTPS, or
securely storing passwords in a database. While
training data for most question and answer pairs

consisted of a couple dozen example questions,
training data for related topics required
approximately twice as many examples to ensure
the bot could reliably provide the desired answer.

4. EXPERIMENTAL STUDY: USABILITY

ANALYSIS

Materials and methods
We realized an experimental study that evaluated
perceived user experience and effectiveness of
the chatbot in supporting students and beginner
programmers in learning key cybersecurity
concepts in client- and server-side web
development, including well known security

issues in web applications, such as cross-site
scripting and SQL injection.

To this end, we designed a custom web
application in which users could interact with the
chatbot while practicing with code challenges
consisting in analyzing and fixing existing code
snippets containing cybersecurity flaws.

Screenshots of the web application can be seen in
Figure 1.

The web application contains five challenges,
each addressing a key cybersecurity problem in a
web authentication workflow. Participants were
required to complete all five challenges.
1. Front-end and web forms: use of correct input

fields to prevent over-the-shoulder attacks
when typing a password; HTTP requests and
client-server communication (e.g., use of

correct and secure HTTP methods and

protocols to prevent man-in-the-middle
attacks or information leaks).

2. Server-side data processing: proper handling

of data submitted via HTML forms to prevent
missing input and code injection attacks.

3. Password security: secure password validation
and storage using hashing algorithms.

4. SQL injections: use of prepared statements
and other mechanisms for preventing
potential database attacks.

5. Cross-site scripting: use of systems for
preventing phishing attacks and injection of
scripts and snippets.

For each challenge, the website provided
participants with a description of the topic that

the challenge focused on and a small piece of
source code that contained security flaws.

Subjects were required to complete an
experimental task organized into three parts as
follows:
1. Topic and code review: participants were

invited to learn more about the topic and
analyze the content of the code snippet.

1. Code analysis: subjects were asked to identify

and submit a short report in which they
described the security flaws.

2. Bug fixing: the experimental software showed
the original snippet and provided subjects with
an editor in which they could write a revised
version of the source code.

Before starting the experiment, subjects were

asked to complete a pre-survey to collect
information about the participants, including their
experience with cybersecurity and web
development. Participants were given a
maximum of 15 minutes to complete each of the
three sections (i.e., 45 minutes total for one
challenge). During this time, they could work on

each of the three parts of the section with the help
of either the chatbot or other information
resources.

Participants were split into experiment and
control groups as follows. Group A was provided
with the chatbot for challenges one, three, and
five, whereas Group B was provided with the

chatbot for challenges two and four (see Figure
2). By dividing the participants into two groups,
we provided subjects with the opportunity of
using the chatbot as well as other resources in the
experimental sections. Conversely, subjects did
not get access to the chatbot in control sections.
By doing this, they could compare their learning

and programming experience and evaluate the
value of the chatbot as a learning tool.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 9

https://cppj.info/; https://iscap.info

Figure 1. The experiment website

Figure 2. Chatbot widget

After participants completed each challenge, the
website provided them with a short

questionnaire. At the end of the entire
experiment, after completing all challenges,
participants were asked to evaluate their overall
experience with the chatbot and to compare it
with other resources they used during the
experiment.

Specifically, in our study, we analyzed intrinsic
and extrinsic aspects that characterize user
experience and the willingness to adopt and use
technology. To this end, we utilized the UTAUT
model, a widely adopted user experience
framework that utilizes the five dimensions
indicated below as predictors of the intention to

adopt and use technology.
− Performance expectancy. This aspect refers to

the belief that the use of a particular
technology will enhance the performance of
an individual or will produce some advantage
in realizing a task.

− Effort expectancy. This is a two-fold measure:
on the one hand, it refers to the perceived
skillset required to be able to utilize a system
and the expected learning curve (human-
machine co-evolution). Simultaneously, it
relates to the extent of convenience perceived
in using the system.

− Social influence. This component refers to the
user’s perception of beliefs or impressions
that the product will generate in others (their

milieu, their social group, or the external
community). This includes the ability of a
device to improve the social status of an
individual or to create a desired social image.

Moreover, this measure involves social
acceptance of technology in each context of
reference.

− Facilitating conditions. Extrinsic factors, such
as battery life, device compatibility, and
availability of product accessories and

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 10

https://cppj.info/; https://iscap.info

features that render the product more

versatile might be a driver for adoption. Also,
the presence of technical support and a user’s
guide might increase the likelihood of

acquiring products. Switching costs and
longevity are additional aspects that
contribute to this dimension.

− Hedonic motivation. Intrinsic factors that are
not related to product experience are
associated with individuals’ conditions or
beliefs, social background, and education. As

this often is a multifaceted aspect, we
included open-ended questions to elicit
participants’ comments and feedback.

Participants
A total of 20 individuals volunteered to participate

in the experiment. Participants were recruited
from a server-side web development course that
taught PHP and MySQL. Subjects were aged 19-
32 (21 on average), 18 were males and 2
females. Six were sophomores, eight were
juniors, and six were seniors. They all had from
one to three years of experience with

programming, though they were not familiar with
PHP and MySQL prior to the course and had never
utilized a chatbot as a learning resource, though
they were familiar with chatbot technology in
other contexts.

5. RESULTS

Bot chat analysis

We collected 25 student conversations with the
chatbot. The number of conversations is greater
than the number of participants, because
students could exit the chatbot in one section

then restart it in a different section of the
experiment application. These conversations
included 305 questions, 165 questions asked by
students in group A and 140 asked by students in
group B. We manually analyzed the questions and
their answers to determine if questions were
related to secure programming and whether the

bot provided relevant answers to the questions.

We found that 215 out of the 305 questions
students asked the bot were related to secure

programming. The remaining 30% of questions
included technical questions about PHP,
JavaScript, or SQL that were not related to

security, greetings like ”hello”, tests of the bot
like ”are you secretly a human?”, and general chit
chat.

The bot answered 213 (70%) questions correctly,
including both secure programming and non-

programming questions like requests for
information about the bot. Out of the 92

questions answered incorrectly, 26 were not

questions about secure programming. Incorrect
answers for questions about secure programming
questions fell into four categories: nonspecific

questions (10), questions about topics not in the
bot’s knowledge base (33), questions where the
bot provided a wrong answer (22), and questions
consisting solely of source code (1).

Five of the nonspecific questions were requests
for more information on the question that the bot

had just answered. As the bot does not retain
context, it is impossible for it to answer such
questions. Other nonspecific questions including
asking for code examples without specifying a
topic and completely open questions like ”How?”
Student questions included 688 words. The bot

responded to these questions with 13,893 words.
The top twenty most common words used by the
students and the bot are listed in Table 1, while
the word cloud diagram (see Figure 3) visualizes
the frequency of student word use.

User
word

User
word
count

Bot
word

Bot
word
count

password 42 code 723

secure 34 password 521

validate 31 input 393

html 26 user 275

email 20 data 218

php 20 web 216

code 18 php 211

passwords 18 validation 183

cross 16 passwords 172

scripting 15 hash 165

site 14 email 163

forms 13 application 144

sql 12 secure 144

form 11 sql 136

server 11 output 120

xss 10 post 109

get 9 filter 108

input 9 function 108

protect 9 length 107

Table 1. Top 20 words

Figure 3. Word cloud of chatbot interactions

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 11

https://cppj.info/; https://iscap.info

The 26 conversations that students had with the

chatbot consisted of 688 words. The bot
responded to these conversations with 13,893
words. The top twenty most common words used

by the students and the bot are listed in Table 1,
while the word cloud diagram below (see Figure
3) visualizes the frequency of student word use.
The three most common words (password,
secure, and validate) are all relevant to security
queries, indicating student concerns about how to
use and store passwords and how to validate user

input.

Survey Analysis
A total of 19 participants completed the
experiment and responded to the surveys. One
subject only finished two sections and, thus, we

did not include their data in our analysis. First, we
analyzed the overall perceived level of interaction
with all the available resources, which is shown in
Figure 4. Compound data from surveys about
sections from one to five show that, when
subjects were provided with it, the chatbot was
the first type of resource used, as it represented

35% of the queries. Search engines were the
second preferred resource, utilized in 30% of the
cases. Developer communities were ranked third
in terms of preference, with 17% usage rate,
followed by tutorials (9%), YouTube video (4%),
other resources (3%), and books (2%). No
statistically significant trends, differences, or

training effects were found between individual
sections, which shows that subjects did not

increase or decrease the use of a specific resource
throughout the experiment.

Although our data show that subjects preferred to

interact with the chatbot even if they were
allowed to use other types of materials, students
commented that they sometimes had to use
additional resources to complete the challenge.
This could be due to a lack of familiarity with
interacting with such a chatbot and to the
inherent switching cost with respect to systems

that they already are familiar with and use.

Subsequently, we analyzed participants’
responses with respect to the specific User

Experience dimensions defined by the UTAUT
model. As shown in Figure5, it is possible to
identify two groups of resources based on

participants’ responses. Search engines, the
chatbot, and developer communities received
very high scores in terms of adoption metrics,
with average results of 74%, 78%, and 70%,
respectively. On the contrary, the other types of
materials were ranked lower. Specifically,

tutorials, YouTube videos, other resources, and
books, had an average of 51%, 48%, 35%, and

23%, respectively.

Data about individual user adoption dimensions
indicate that the chatbot was perceived as having

a lower performance expectancy (67%) with
respect to search engines (80%) and developer
communities (70%). This could be due to the lack
of familiarity with the system and how to query
the knowledge base. Also, this could be caused by
the content of the knowledge base itself, which
can be improved. Tutorials, YouTube videos,

other resources, and books were ranked lower,
with 60%, 55%, 40%, and 14% preference.

Based on previous studies (Almahri et al., 2020),
performance expectancy is a critical aspect in the
adoption and use of chatbot technology. Thus,

our results suggest that further work is needed
before using the chatbot more consistently in web
programming courses, because its current
perceived performance expectancy might be a
cause of discontinuation.

As far as effort expectancy is concerned, the

chatbot ranked first (87%) compared to search
engines (73%), other resources (61%),
developer communities (55%), YouTube videos
(49%), tutorials (22%), and books (12%).
Students indicated that the chatbot was the most
convenient resource to gain an initial
understanding of the topic. Although this could be

because the chatbot was integrated into the
website, participants’ comments mostly report

the ease of typing questions in natural language
and the responsiveness of the system, which
returned either relevant results or answers that
were clearly inaccurate. On the contrary, other

systems require students to evaluate the
response, identify the significant portion within a
larger block of text or code, or filter out solutions
that are imprecise or did not address the security
requirements mentioned in the challenge.

Figure 4. Interactions per resource type

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 12

https://cppj.info/; https://iscap.info

Figure 5. Perceived User Experience by
Resource Type

6. PERFORMANCE EVALUATION: SPBOT VS

GPT-3

Soon after the presentation of our original
conference paper, OpenAI released their GPT-3
enabled chatbot, ChatGPT, on November 30,
2022. The provision of a user-friendly web-based
chatbot interface resulted in skyrocketing growth
of awareness of the capabilities of large language
models. ChatGPT quickly became popular among

software developers due to its ability to answer
programming questions and providing users with
code examples and snippets.

The appearance of ChatGPT inspired us to
evaluate the performance of a large language

model in answering secure programming
questions and compare its performance with that
of our custom secure programming chatbot. Due
to the tremendous demand for ChatGPT, it was
often inaccessible or would error out during chats,
so we performed a comparison of our chatbot with
the underlying GPT-3 model using OpenAI's API.

GPT-3 is orders of magnitude larger than our
custom chatbot and was trained on 499 billion
tokens (Dale, 2021). Our secure programming
bot was trained on slightly more than 16,000
tokens. While the tremendous size difference
might suggest that GPT-3 should perform far
better than our custom chatbot, the restriction of

the domain of interest to secure programming in

PHP reduces that advantage. Furthermore, large
language models like GPT-3 have well known
flaws (Brown et al., 2020), including bias, errors
in factualness, and a tendency to hallucinate text
that was not in their training data (Maynez et al.,

2020).

The objective of our study was to compare the
performance of SPbot and GPT-3 in answering
questions on secure programming. We evaluated

both systems using the 215 questions related to

secure programming that were asked by the
students in our first experimental study (see
Section 5) We ignored chitchat and other student

questions that were not relevant to the topic of
secure programming. We already had answers to
the questions from SPbot from our original study.
We use OpenAI's API to ask GPT-3 the same
questions using the latest version of the model,
text-davinci-003, which contains improvements
designed to provide software developers with

more accurate answers.

Pre-existing chatbot evaluation frameworks focus
on Turing tests and usability studies or present
different approaches for analyzing chatbots
(similar to our usability study described in Section

4) (Maroengsit et al., 2019), while we wanted to
evaluate the performance of chatbots in the
domain of learning secure programming.
Therefore, we created a rubric that enabled us to
specifically take into consideration four key
performance factors, which we considered the
most relevant for helping students learn to write

secure web applications:
− Comprehension: this measure evaluates

whether the system was able to understand
the question asked by the student. To this
end, we score how well the answer of the
system aligns with the question.

− Correctness: the degree to which the answer

provided by the system is correct. In addition
to evaluating the presence of errors, this

considers the ability of SPbot and GPT-3 to
output a response relevant to secure
programming in the domain of web
development.

− Completeness: this dimension evaluates how
detailed the answer is, based on aspects that
are left out, presence of code examples, and
reference to additional resources.

− Security: this dimension evaluates whether
the answer and code provided by the system
contain any security flaws or overlooks or

disregards important cybersecurity
considerations.

The answers from GPT-3 and SPbot were

independently graded by two experts in
cybersecurity and full-stack development who
graded each aspect using a 5-point Likert scale.

Our chatbot and GPT-3 were both evaluated with
an overall average score of 4.2 out of 5, which
indicates that they generally performed well in
understanding the questions asked by the
students, answering them correctly and
completely, and addressing security aspects

appropriately.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://cppj.info/; https://iscap.info

However, an analysis of the individual dimensions

(see Figure 6) shows that SPbot and GPT-3
performed very differently. In the dimension of
comprehension, SPbot scored 3.6/5, whereas

GPT-3 scored 4.4/5, which indicates that
OpenAI's system had better understanding of the
questions asked by the students. SPbot's
comprehension scored the lowest (i.e., 1/5) on
25% of the questions. On the contrary, GPT-3
failed understanding the questions in 12% of the
cases only. GPT-3's huge training data set gives

it a level of language fluency that SPbot cannot
match.

In terms of correctness, SPbot and GPT-3
achieved the same score, that is, 4.4. Their
highest and lowest performances are also

comparable. However, SPbot scored 4.4 in
completeness and performed better than GPT-3
(which scored 3.9). SPbot and GPT-3 performed
the lowest in 6% and 9% of the cases,
respectively. Finally, as far as security is
concerned, SPbot outperformed GPT-3, with a
score of 4.6 and 3.9, respectively. GPT-3's score

was impacted by the fact that it scored the lowest
in 15% of the cases, whereas SPbot failed to
provide a secure answer in 6% of the cases.

The difference between the two systems is
statistically significant at an alpha level of .005
for the dimensions of comprehension,

completeness, and security, whereas there is not
a statistically significant difference between SPbot

and GPT-3 for correctness.

We also examined the 15 code examples provided
by GPT-3. While all code examples provided by

SPbot were written in PHP, 5 of the code
examples provided by GPT-3 were written in
JavaScript and 3 were written in Java. Of the 7
code examples written in PHP, all but one were
responses to queries that either contained the
word PHP or contained bits of PHP code.

Based on our findings, we can conclude that the
effectiveness of GPT-3's language model in
understanding users' questions is an appealing
feature that immediately increases the degree of

perceived usability, especially in terms of
performance expectancy. This ability might be
one of the primary reasons for its popularity and

increasing user adoption. Even when provided
with partial questions, GPT-3 was able to
understand the context, complete the question,
and answer it correctly.

Conversely, language fluency was SPbot's

weakest point. From an educational standpoint,
one of the pros of GPT-3's language model is that

even if a student does not exactly know how to

formulate the right question, they will be provided
with an answer that is somewhat relevant to their
prompt. On the contrary, SPbot requires students

to have a preliminary understanding of the
subject such that they can use key terms
appropriately. However, these weaknesses could
also be an incentive for students to learn the
theory so they can use the correct terms when
interacting with the chatbot.

We did not expect SPbot and GPT-3 to score
similarly in terms of correctness, considering the
differences in complexity of the two language
models. In this regard, both systems could be an
effective alternative for education, though
SPbot's limited yet focused knowledge base

represents a more efficient alternative to GPT-3.
However, the statistically significant differences
in the average scores achieved by the two
systems regarding completeness and security
raise the most concerns about the adoption of
GPT-3 as a tool for teaching students how to
develop secure software.

Figure 6. Performance of SPbot and GPT-3

Although the overall user experience with
OpenAI's language model might be more

appealing to a novice programmer who wants to
achieve a basic and more general understanding
of a topic, OpenAI's use of publicly available
source code without any control or quality
assurance process in place results in a superficial
knowledge base that often outputs answers that
expose applications and data to significant

consistency issues, including code examples in

programming languages other than PHP and
security flaws. Consequently, using GPT-3 as a
teaching tool could be harmful for students who
would learn concepts from correct answers that
do not address the topic thoroughly, overlook key
cybersecurity aspects, or produce source code

that contains security vulnerabilities. For
instance, in several cases, GPT-3's answers
contained code examples that are vulnerable to
SQL injection, store password values without

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://cppj.info/; https://iscap.info

hashing them, or do not securely validate user

input.

As a result, although GPT-3 is a significant

milestone, we would not encourage its adoption
for teaching secure software development.
Nevertheless, its compelling user experience
could be leveraged for introducing students
programming topics for the first time and
providing them with the opportunity to initially
explore and understand concepts. Subsequently,

after an first exposure, students could use more
reliable systems based on language models
trained ad hoc, with code examples from
reputable sources, and with a more rigorous
approach to the information in the knowledge
base.

6. CONCLUSION

In this paper, we detailed the design, use, and
user experience evaluation of a chatbot aimed at
teaching secure programming concepts to
students enrolled in web development courses.

Our objective is to provide students with a user-
friendly learning environment that simultaneously
is a reputable source of information. Our findings
align with previous studies (Abd-Alrazaq et al.,
2020), which found that user experience is one of
the key adoption factors of chatbots. Therefore,
in our experiment, we focused on evaluating the

overall user experience of the system based on
the dimensions defined in the Unified Theory of

Acceptance and Use of Technology (UTAUT)
(Venkatesh et al., 2003. In contrast to other
studies, including (Abd-Alrazaq et al., 2020;
Mokmin & Ibrahim, 2021), which evaluated

whether users enjoyed the conversational aspect
of chatbot, we focused on the performance of the
chatbot in providing accurate answers and on
user experience metrics directly related with the
goal of learning key aspects of secure
programming via inductive reasoning guided by
coding challenges.

We found that students interacted with the
chatbot throughout the experiment more than
with other information sources to learn about

security topics and solve web programming
challenges. Although the perceived performance
of the chatbot was lower than other systems,

such as search engines, its effort expectancy was
ranked as a higher factor for adoption.
Furthermore, although search engines and
developer communities provide materials that
were perceived as more accurate, users reported
that screening resources requires additional effort

in addition to the uncertainty of the quality.
Furthermore, quantitative and qualitative data

from our survey show that participants

considered their user experience with the chatbot
as extremely positive, which also suggests that
the chatbot can be utilized as a convenient

teaching, learning, and support tool for novice
programmers.

We compared our secure programming chatbot
with GPT-3. Quantitative data from our
performance evaluation show that both systems
were able to address most questions correctly,

though GPT-3's language model was more
effective in understanding the questions asked by
the students. However, we also found a
statistically significant difference in SPbot
outperforming GPT-3 in providing more complete
and secure answers. Therefore, we would

conclude that chatbots built using a more reliable
knowledge base should be preferred to systems
that leverage publicly available data sets without
adequate information quality assurance
processes.

In the future, we plan to expand the bot's

knowledge base to answer secure programming
questions asked by students that currently have
no answer. We also plan to improve the bot's
training using the data provided by the students
during the experiment. To help students with
requests for additional information on a question,
we plan to add suggestions for additional

questions that the bot can answer in answers
provided by the bot. We may also look at using a

large language model as a foundation model to
build a secure programming focused model,
which could enable a chatbot to both have the
language fluency of GPT-3 and the accuracy and

security of our custom chatbot.

7. REFERENCES

Abd-Alrazaq, A., Safi, Z., Alajlani, M., Warren, J.,

Househ, M., Denecke, K., et al. (2020).
Technical metrics used to evaluate health

care chatbots: Scoping review. Journal of
medical Internet research, 22 (6), e18301.

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek,
M. L., & Stransky, C. (2016). You get where

you’re looking for: The impact of information
sources on code security. 2016 IEEE
Symposium on Security and Privacy (SP),

289–305.

Adamovic, S., Sarac, M., Stamenkovic, D., &
Radovanovic, D. (2018). The importance of
the using software tools for learning modern
cryptography. International Journal of
Engineering Education, 34 (1), 256–262.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://cppj.info/; https://iscap.info

Almahri, F. A. J., Bell, D., & Merhi, M. (2020).

Understanding student acceptance and use of
chatbots in the United Kingdom universities:
A structural equation modelling approach.

2020 6th International Conference on
Information Management (ICIM).
https://doi.org/10.1109/icim49319.2020.24
4712

Asare, O., Nagappan, M., & Asokan, N. (2022). Is
GitHub’s Copilot as bad as humans at
introducing vulnerabilities in code? ArXiv

Preprint ArXiv:2204. 04741.

Brown, T., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J. D., Dhariwal, P., … Others. (2020).
Language models are few-shot learners.
Advances in Neural Information Processing

Systems, 33, 1877–1901.

ChatGPT: Optimizing Language Models for
Dialogue. (2022, November). OpenAI.
Retrieved from
https://openai.com/blog/chatgpt/

Chen, M., Fischer, F., Meng, N., Wang, X., &
Grossklags, J. (2019). How reliable is the
crowdsourced knowledge of security

implementation? 2019 IEEE/ACM 41st
International Conference on Software
Engineering (ICSE), 536–547.

College software texts found to teach insecure
coding. (2008). SANS.
https://web.archive.org/web/202101271720

18/

https://www.sans.org/newsletters/newsbites
/x/57#313

Dale, R. (2021). GPT-3: What’s it good for?
Natural Language Engineering, 27(1), 113–
118.

Fischer, F., Böttinger, K., Xiao, H., Stransky, C.,

Acar, Y., Backes, M., & Fahl, S. (2017). Stack
Overflow considered harmful? the impact of
copy&paste on Android application security.
2017 IEEE Symposium on Security and
Privacy (SP), 121–136.

Introducting GitHub CoPilot: your AI pair
programmer. (2022, June). GitHub. Retrieved

from https://github.blog/2021-06-29-
introducing-github-copilot-ai-pair-
programmer/

Green, M., & Smith, M. (2016). Developers are
not the enemy!: The need for usable security
APIs. IEEE Security & Privacy, 14 (5), 40–46.

Hazhirpasand, M., Ghafari, M., & Nierstrasz, O.

(2020). CryptoExplorer: An interactive web
platform supporting secure use of

cryptography APIs. 2020 IEEE 27th

International Conference on Software
Analysis, Evolution and Reengineering
(SANER), 632–636.

Hiesgen, R., Nawrocki, M., Schmidt, T. C., &
W¨ahlisch, M. (2022). The race to the
vulnerable: Measuring the log4j shell
incident. arXiv preprint arXiv:2205.02544.

Ling, E. C., Tussyadiah, I., Tuomi, A., Stienmetz,
J., & Ioannou, A. (2021). Factors influencing
users’ adoption and use of conversational

agents: A systematic review. Psychology
Marketing.

MacLeod, L., Storey, M.-A., & Bergen, A. (2015).
Code, camera, action: How software

developers document and share program
knowledge using youtube. 2015 IEEE 23rd

International Conference on Program
Comprehension, 104–114.

Maroengsit, W., Piyakulpinyo, T., Phonyiam, K.,
Pongnumkul, S., Chaovalit, P., &
Theeramunkong, T. (2019). A survey on
evaluation methods for chatbots. Proceedings
of the 2019 7th International Conference on

Information and Education Technology, 111–
119.

Maynez, J., Narayan, S., Bohnet, B., & McDonald,
R. (2020). On Faithfulness and Factuality in
Abstractive Summarization. Proceedings of
the 58th Annual Meeting of the Association for

Computational Linguistics, 1906–1919.

Meng, N., Nagy, S., Yao, D., Zhuang, W., &
Argoty, G. A. (2018). Secure coding practices
in Java: Challenges and vulnerabilities.
Proceedings of the 40th International
Conference on Software Engineering, 372–
383.

Mokmin, N. A. M., & Ibrahim, N. A. (2021). The
evaluation of chatbot as a tool for health
literacy education among undergraduate
students. Education and Information
Technologies, 1–17.

Nguyen, D. C., Wermke, D., Acar, Y., Backes, M.,
Weir, C., & Fahl, S. (2017). A stitch in time:

Supporting Android developers in writing
secure code. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and
Communications Security, 1065–1077.

Okonkwo, C. W., & Ade-Ibijola, A. (2020).
Python-Bot: A chatbot for teaching python
programming. Engineering Letters, 29 (1).

Okonkwo, C. W., & Ade-Ibijola, A. (2021).
Chatbots applications in education: A

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://cppj.info/; https://iscap.info

systematic review. Computers and

Education: Artificial Intelligence, 2, 100033.

Oliveira, D. S., Lin, T., Rahman, M. S., Akefirad,
R., Ellis, D., Perez, E., Bobhate, R., DeLong,

L. A., Cappos, J., & Brun, Y. (2018). Api
blindspots: Why experienced developers
write vulnerable code. Fourteenth
Symposium on Usable Privacy and Security
(SOUPS 2018), 315–328.

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B.,
& Karri, R. (2022). Asleep at the keyboard?

assessing the security of GitHub Copilot’s
code contributions. 2022 IEEE Symposium on
Security and Privacy (SP), 754–768. IEEE.

Rahman, A., Farhana, E., & Imtiaz, N. (2019).

Snakes in paradise?: Insecure python-related
coding practices in stack overflow. 2019

IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), 200–
204. IEEE.

Sugumar, M., & Chandra, S. (2021). Do I desire
chatbots to be like humans? exploring factors
for adoption of chatbots for financial services.
Journal of International Technology and

Information Management, 30 (3), 38–77.

Tahaei, M., & Vaniea, K. (2019). A survey on
developer-centred security. 2019 IEEE
European Symposium on Security and Privacy
Workshops (EuroS&PW), 129–138.

Venkatesh, V., Morris, M. G., Davis, G. B., &
Davis, F. D. (2003). User acceptance of

information technology: Toward a unified
view. MIS quarterly, 425–478.

Verdi, M., Sami, A., Akhondali, J., Khomh, F.,
Uddin, G., & Motlagh, A. K. (2020). An
empirical study of C++ vulnerabilities in
crowd-sourced code examples. IEEE

Transactions on Software Engineering.

Walden, J., Caporusso, N., & Atnafu, L. (2022). A

Chatbot for Teaching Secure Programming.
Proceedings of the EDSIG Conference. ISCAP.

Whitney, M., Lipford, H. R., Chu, B., & Thomas,

T. (2018). Embedding secure coding
instruction into the IDE: Complementing
early and intermediate CS courses with
ESIDE. Journal of Educational Computing
Research, 56 (3), 415–438.

Wollny, S., Schneider, J., Di Mitri, D., Weidlich, J.,
Rittberger, M., & Drachsler, H. (2021). Are we

there yet?-a systematic literature review on
chatbots in education. Frontiers in artificial
intelligence, 4.

Xiao, S., Witschey, J., & Murphy-Hill, E. (2014).

Social influences on secure development tool
adoption: Why security tools spread.

Proceedings of the 17th ACM conference on
Computer supported cooperative work &
social computing, 1095–1106.

Xie, J., Chu, B., Lipford, H. R., & Melton, J. T.
(2011). ASIDE: IDE support for web
application security. Proceedings of the 27th
Annual Computer Security Applications

Conference, 267–276.

Zhai, X. (2022). ChatGPT user experience:
Implications for education. Available at SSRN
4312418.

Zhang, H., Wang, S., Li, H., Chen, T.-H., &

Hassan, A. E. (2021). A study of c/c++ code
weaknesses on stack overflow. IEEE

Transactions on Software Engineering, 48(7),
2359–2375.

Zhao, J., Song, T., & Sun, Y. (2020). Apihelper:
Helping junior android programmers learn api
usage. IAENG International Journal of
Computer Science, 47 (1), 92–9

Editor’s Note:

This paper was selected for inclusion in the journal as an ISCAP 2022 Distinguished Paper. The
acceptance rate is typically 7% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2022.

