

CyberSecurity pedagogy

& Practice Journal

Volume 2, No. 2

 September 2023
ISSN: 2832-1006

In this issue:

4. A Chatbot for Teaching Secure Programming: Usability and Performance

Evaluation Study

James Walden, Northern Kentucky University

Nicholas Caporusso, Northern Kentucky University

Ludiana Atnafu, Northern Kentucky University

17. Teaching Case

Applied Steganography: An Interesting Case for Learners of all Ages

Johnathan Yerby, Mercer University

Jennifer Breese, Penn State Greater Allegheny

28. A Case Study in Identifying and Measuring Skills Honed from a Cybersecurity

Competition

Ron Pike, Cal Poly Pomona

Jasmine Weddle, Cal Poly Pomona

Sydney Duong, Cal Poly Pomona

Brandon Brown, Coastline College

39. IoT Security Vulnerabilities Analysis by Reverse Engineering: A Face-

recognition IoT Application-based Lab Exercises

Sam Elfrink, Southeast Missouri State University

Mario Alberto Garcia, Southeast Missouri State University

Xuesong Zhang, Southeast Missouri State University

Zhouzhou Li, Southeast Missouri State University

Qiuyu Han, Heilongjiang University

68. Recommendations for Developing More Usable and Effective Hands-on

Cybersecurity Education Materials Based on Critical Evaluation Criteria

Ahmed Ibrahim, University of Pittsburgh

Vitaly Ford, Arcadia University

82. Utilizing Discord-based Projects to Reinforce Cybersecurity Concepts

 Marc Waldman, Manhattan College

 Patricia Sheridan, Manhattan College

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://cppj.info/; https://iscap.info

The Cybersecurity Pedagogy and Practice Journal (CPPJ) is a double-blind peer-

reviewed academic journal published by ISCAP (Information Systems and Computing

Academic Professionals). Publishing frequency is two times per year. The first year of

publication was 2022.

CPPJ is published online (https://cppj.info). Our sister publication, the proceedings of the

ISCAP Conference (https://proc.iscap.info) features all papers, panels, workshops, and

presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the ISCAP

conference. At that point, papers are divided into award papers (top 15%), and other accepted

proceedings papers. The other accepted proceedings papers are subjected to a second round

of blind peer review to establish whether they will be accepted to the journal or not. Those

papers that are deemed of sufficient quality are accepted for publication in the CPPJ journal.

While the primary path to journal publication is through the ISCAP conference, CPPJ does

accept direct submissions at https://iscap.us/papers. Direct submissions are subjected to a

double-blind peer review process, where reviewers do not know the names and affiliations of

paper authors, and paper authors do not know the names and affiliations of reviewers. All

submissions (articles, teaching tips, and teaching cases & notes) to the journal will be refereed

by a rigorous evaluation process involving at least three blind reviews by qualified academic,

industrial, or governmental computing professionals. Submissions will be judged not only on

the suitability of the content but also on the readability and clarity of the prose.

Currently, the acceptance rate for the journal is under 35%.

Questions should be addressed to the editor at editorcppj@iscap.us or the publisher at

publisher@iscap.us. Special thanks to members of ISCAP who perform the editorial and

review processes for CPPJ.

2023 ISCAP Board of Directors

Jeff Cummings
Univ of NC Wilmington

President

Anthony Serapiglia

Saint Vincent College
Vice President

Eric Breimer
Siena College
Past President

Jennifer Breese

Penn State University
Director

Amy Connolly
James Madison University

Director

RJ Podeschi
Millikin University
Director/Treasurer

Michael Smith

Georgia Institute of Technology

Director/Secretary

David Woods
Miami University (Ohio)

Director

Jeffry Babb
West Texas A&M University

Director/Curricular Items Chair

Tom Janicki
Univ of NC Wilmington

Director/Meeting Facilitator

Paul Witman
California Lutheran University

Director/2023 Conf Chair

Xihui “Paul” Zhang
University of North Alabama

Director/JISE Editor

Copyright © 2023 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to editorcppg@iscap.us.

mailto:editorcppj@iscap.us
mailto:publisher@iscap.us

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://cppj.info/; https://iscap.info

Cybersecurity

Pedagogy and Practice

 Journal

Editors

Anthony Serapiglia
Co-Editor

Saint Vincent College

Jeffrey Cummings
Co-Editor

University of North Carolina
Wilmington

Thomas Janicki
Publisher

University of North Carolina
Wilmington

2023 Review Board

Etezady Nooredin
Nova Southern University

Li-Jen Lester
Sam Houston State

University

Jamie Pinchot
Robert Morris University

Samuel Sambasivam
Woodbury University

Kevin Slonka
Saint Francis University

Geoff Stoker
University of North Carolina

Wilmington

Paul Wagner
University of Arizona

Paul Witman
California Lutheran

University

Johnathan Yerby
Mercer University

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 39

https://cppj.info/; https://iscap.info

IoT Security Vulnerabilities Analysis by

Reverse Engineering: A Face-recognition
IoT Application-based Lab Exercises

Sam Elfrink
selfrink3s@semo.edu

Mario Alberto Garcia

mgarcia@semo.edu

Xuesong Zhang

xzhang@semo.edu

Zhouzhou Li
zli2@semo.edu

Department of Computer Science

Southeast Missouri State University
Cape Girardeau, MO, US

Qiuyu Han

2003138@hlju.edu.cn
Heilongjiang University

Harbin, Heilongjiang, CN

Abstract

The rapid growth of the Internet users and the proliferation of IoT devices in recent years has created
a significant need for vulnerability detection and mitigation in these devices and their applications.
Exposing computer science and cybersecurity students to these skills can help them strengthen their
competencies in the industry. One approach that can be used to achieve this objective is reverse
engineering, which involves gaining a thorough understanding of the relationship between the individual
components of an IoT application. This paper presents lab exercises that teach students the concepts

and practical techniques of reverse engineering for the purpose of detecting and mitigating
vulnerabilities in IoT devices. The lab exercises are based on a real facial recognition web application
hosted on a small IoT device, and they use both manual exploration and automated tools to provide
students with a systematic and comprehensive understanding of reverse engineering. These well-
designed, hands-on labs can meet the practical needs of cybersecurity education and inspire heuristic
learning on difficult cybersecurity topics such as reverse engineering.

Keywords: Cybersecurity, Reverse Engineering, Internet of Things, Artificial Intelligence, Face
Recognition, Re-engineering.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 40

https://cppj.info/; https://iscap.info

1. INTRODUCTION

In recent years, the number of users with access
to the Internet has increased dramatically. An

estimated one million new users join the Internet
every day. And six billion people are projected to
be connected to the Internet by the end of 2022,
a 1 billion increase from the 5 billion people in
2020 (Morgan, 2020). Internet of Things (IoT)
are also becoming prevalent. In 2015, regarding
the number of connected devices by 2020, the

low estimate was 18 billion, the most bullish
forecast stated 50 billion devices (Lueth, 2015).
Reputable companies such as Cisco, Intel, IDC,
Gartner, etc., provide similar and higher
estimates recently.

This substantial growth of Internet users and
Internet capable devices has increased the risk of
cyberattacks. Cybercrime costs are estimated
over six trillion USD globally in 2021, and that
number is expected to grow 15 percent each year,
reaching 10.5 trillion USD in 2025 (Morgan,
2020). Because of this increase in both users and

attacks, the need for security vulnerability
analysis has never been more vital, especially for
web applications. According to a global threat
analysis report produced by Radware, the
average number of blocked malicious web
application requests increased by 88% from 2020
to 2021, with 75 percent of those attacks

performed via broken access control and injection
(Radware, 2022).

The massive increase in Internet access has also
led to large increases in the quantity and diversity
of Internet capable devices. The term “Internet of

Things” (IoT) has been used to describe this
phenomenon. Shwartz, Mathov, Bohadana,
Elovici, & Oren (2018) define IoT as “a network of
smart electronic devices with Internet
connectivity.” Nowadays a home containing a
variation of IoT devices (also known as smart
devices) that provide a variety of functions to the

consumer is common. The introduction of these
devices also introduces new security concerns
and vulnerabilities.

As cybercrime and security vulnerabilities
increase, Cybersecurity and Computer Science
professionals need the skills to mitigate threats to

software applications. They must be proactive in
detecting and patching vulnerabilities before
malicious actors can exploit the system.

As students graduate and enter the industry,
vulnerability detection and mitigation skills will be

invaluable to corporations, as patching
vulnerabilities before they are exploited can save

corporations millions of dollars as well as their

reputation as a reliable company. While some
software engineers can be tasked with creating
new systems, many are tasked with maintaining,

testing, reusing, and integrating existing systems
(Canfora & Penta, 2007). New hires probably will
be asked to work on systems that are already
established, thus the ability to adapt and
understand code that is not their own and test it
for vulnerabilities is an important skill to possess.
In order to accomplish this, they must be able to

identify and comprehend the different
components in a system and understand the
relationship between them. However, most
curricula only focus on designing software
applications from scratch without regarding the
common situation in the industry.

There are a variety of tools and methods that can
be used for software vulnerability detection, such
as automated dynamic scanning (tool-based),
static analysis (tool-based), and Reverse
Engineering. While tools can be useful, their ease
of use and quick results can lead to a lack of a

holistic understanding of how a piece of software
operates. Thus, courses that only utilize tools can
run the risk of focusing on teaching how to use
the tools instead of how to understand the
underlying security and software principles.

Reverse Engineering can be defined as “the

process of analyzing a subject system to identify
the system’s components and their

interrelationships and create representations of
the system in another form or at a higher level of
abstraction” (Chikofsky & Cross, 1990). It has a
vast number of goals, such as managing system

complexity, creating alternate views, recovering
lost understanding of a system, and existing
software maintenance. It can also be used to
audit the security and vulnerabilities of an
application (this is a unique step in Secure
Software Development, so it is not equivalent to
software maintenance).

From an offensive perspective, in many cases
attackers or pen-tester have limited or
incomplete access to the application’s entire

framework. For instance, an attacker or pen-
tester may be able to view the front-end source
code of an application but will not easily be aware

of the backend code. However, through the
process of Reverse Engineering, the attacker or
pen-tester can gain an understanding of how the
entire application operates.

There are three basic approaches on how to

Reverse Engineer a system. The first is white box
analysis, which is a static approach that does not

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 41

https://cppj.info/; https://iscap.info

require running the application (Ali, 2005). This

approach is often used when all the systems
components are easily available. The second
approach is black box analysis, which uses inputs

to check the behavior of the application/program.
This approach is used when the user has less
access to the backend of the system and must
use inputs to determine the hidden components
of the system. Finally, gray-box analysis utilizes
both white box and black box in unison to
evaluate the system, using each approach on

various parts of the system.

Real-world software systems are in constant need
of modification and improvement due to new user
requirements, modified business models, and
changing legislation (Canfora, Penta, & Cerulo,

2011). When applied to IoT-based web
application security, Reverse Engineering can be
used to develop a detailed understanding of how
the application is constructed and how it
operates. An IoT device hosting a web application
can be broken down into 5 simplified layers: the
physical, link, network, transport, and web app

layers (Fig. 1). To have a complete understanding
of a system's vulnerabilities, each layer of the
application must be considered. Each layer has
different attack surfaces and capabilities, and
together their specific vulnerabilities can be
combined to form a complete picture of the
application’s potential security concerns.

Fig. 1. Layer Diagram of Web Application

There are several challenges to effectively
creating a teaching curriculum for Reverse
Engineering an IoT-based web application. First,
the application and device must be at an
appropriate level of complexity to match the
abilities and knowledge of the students. Because

Reverse Engineering often requires making
inferences about the structure of an application
and complicated analysis of the system, many
applications are too complex to suit a curriculum

for beginners. In addition, the IoT device used in

the curriculum must be affordable and easily
accessible so that faculty members and students
can use them effectively. Lastly, the testing

environment must be easily assembled so that
entry into the exercises is not too difficult.

The purpose of this paper is to provide a
curriculum that students can utilize to gain
hands-on experience with Reverse Engineering
on a real-world IoT-based web application that

integrates a face-recognition Artificial Intelligence
(AI) model. This is accomplished by providing
general background information on the topics
discussed to promote a better understanding,
followed by 5 hands-on labs that identify a variety
of vulnerabilities of a facial recognition web

application hosted by the ESP32-CAM IoT device.
The vulnerabilities encompass multiple layers of
the application and are discovered and mitigated
through the process of Reverse Engineering and
re-engineering. Thus, giving students the
opportunity to practice these vital industry skills
on a real application.

The remainder of this paper is organized as
follows. In the ‘Literature Review’ section, we
review the current courseware or labs designed
for teaching Reverse Engineering. In the
‘Background’ section, the Internet of Things (IoT)
device-based face recognition Web platform will

be introduced, and its advantages will be
explained. In the ‘Vulnerabilities Found by

Reverse Engineering’ section, the specific
vulnerabilities identified in the course will be
discussed followed by an outline of the step-by-
step processes taken to assess each vulnerability

that was identified. A summary of what areas can
be improved and expanded is provided in the
‘Future Work’ section, and the ‘Conclusion’
section provides a general summary of the
paper’s contents and findings.

2. LITERATURE REVIEW

The concept of Reverse Engineering system
began to get traction in the beginning of the
1990s and a variety of methods and approaches

have been proposed as systems have shifted to
web-based user interfaces (Müller, Jahnke,
Smith, Storey, Tilley, & Wong, ,2000). Early

papers provide a helpful summary of the history
of Reverse Engineering and the different methods
and approaches involved. However, they only
provide conceptual information and do not
provide any sort of tutorial to learn Reverse
Engineering.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 42

https://cppj.info/; https://iscap.info

Shwartz et al. (2018) provides a detailed

methodology and tutorial for Reverse Engineering
and security vulnerability evaluation of what are
considered “full stack OS devices” that contain a

modern operating system such as Linux. These
devices divide execution into kernel mode and
user mode. However, this method does not
address partial stack OS devices that have
specially designed real-time operating systems,
or devices that execute compiled instructions
directly with no operating system. It provides a

narrow focus of Reverse Engineering from a
physical access perspective, dealing with device’s
firmware memory images rather than the
applications that are hosted by the devices as
well.

Ali (2015) gives a detailed argument for the
importance of Reverse Engineering for
undergraduate software engineering students.
While Reverse Engineering can be difficult and
time consuming, the process itself is very
informative and gives students the ability to
understand a system more rapidly and

effectively. In addition, it points out that
traditionally students are often given the task of
designing and implementing new systems in the
classroom. While this is a valuable skill, it is also
crucial that they be able to understand code
written by other programmers and improve upon
existing software. Often in industry, companies

already have legacy software and are interested
in improving it rather than creating an entirely

new product. Thus, Reverse Engineering skills are
tremendously important. However, the paper
merely emphasizes the importance of Reverse
Engineering, and does not provide tutorials for

students to use to achieve a better understanding
of these concepts.

Bellettini et al. outlines the usage of an automatic
tool for creating UML (Unified Modeling Language)
models for web applications called WebUml
(Bellettini, Marchetto, & Trentini, 2004.) It

describes how the tool can be used for Reverse
Engineering by utilizing the rich information that
the extracted UML models provide. It provides the
source code for a simple XML node construction

application that can be used to test the
effectiveness of WebUml. Thus, while this
provides a simple use case for learning to use the

tool for Reverse Engineering, the scope of the
paper is limited to producing UML diagrams.

Taylor & Collberg (2016) also proposed a tool for
teaching Reverse Engineering. It notes that the
current instruction materials regarding Reverse

Engineering code have a lack of easy tools for
students to use. It also notes that students take

a substantial amount of time to configure and set

up an environment that has the tools necessary
to practice Reverse Engineering. The solution
provided is an automated code obfuscator tool

called Tigress that is combined with a web
application. The application allows the instructor
to generate custom target programs, which can
then be obfuscated with a set level of complexity.
The application then creates virtual machines that
have the necessary Reverse Engineering tools
selected by the instructor. The paper provides two

example C programs that can be used, one that
checks the current time and prints the variable,
and an additional one that adds a password check
to the first. A group of students were given this
exercise and then polled at the end. While most
students reported that the difficulty of solving the

challenge was hard, a good percentage also
indicated that it was easy, indicating that the
student’s previous experience could be a large
factor. In addition, most students were able to
finish the assignment in a reasonable time,
indicating that the proposed application was
effective in creating a comfortable environment to

practice Reverse Engineering skills.

This paper provides an in-depth framework for
students to follow to get hands on experience of
Reverse Engineering through the purposes of
vulnerability detection and mitigation that to our
best knowledge has not been provided by existing

works. The application that is examined is hosted
by a IoT device with a compact operating system,

and the vulnerabilities addressed are not just at
the physical layers but encompass multiple layers
and incorporate analysis of the applications code
and the devices firmware. While automated tools

can be helpful aids in Reverse Engineering,
relying on them too much keeps students from
understanding the process in depth. This paper
provides a mixture of automated tools and
manual exploration to provide students with a
more systematic approach to Reverse
Engineering.

3. BACKGROUND

As technology has advanced in recent years, the

availability and usefulness of IoT devices has
increased dramatically. While smart devices such
as Amazon Alexa or smart appliances are popular,

IoT devices can also be used for facial recognition
purposes as well. Facial recognition is of
particular interest because it can be used for a
variety of purposes. For instance, IoT devices
with facial recognition capabilities can be used for
security purposes where authorized individual’s

faces are scanned into the system and all other
faces considered hostile. In addition, it could be

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 43

https://cppj.info/; https://iscap.info

used for recreational home use, such as identify

what individuals are in a home to adjust the
experience accordingly.

The ESP32-CAM (Wikipedia contributors, 2022)
IoT device (Fig. 2) integrates a member of the
most popular IoT SoCs, the ESP series (Li, Ren,
Chou, Liu, & McAllister, 2022), which offers a
good introduction to the concept of IoT device-
based face recognition by integrating an AI Model
with the IoT device. The ESP32-CAM interfaces

with the computer via micro-USB connection. It
can be purchased for $5 to $10 per device
depending on the vendor. The inexpensive cost of
the device and the ease of deployment makes it
a suitable option for introductory exploration into
the concepts of IoT device-based face

recognition.

Fig. 2. ESP32-CAM IoT Device

The device contains a dual-core 32-bit ESP32-S
CPU, 520 KB of SRAM, and 4M of PSRAM (Fig. 2).
Furthermore, it has an 802.11b/g/n Wi-F0 BT/BLE
System on Chip (SoC) module and a camera that
supports OV2640 and OV7670, giving it both Wi-
Fi and image capability.

There are a variety of pre-prepared programs
that can be easily implemented on the device,
including a face recognition web platform (Li,
Chou, & McAllister, 2022). The web application
provides the user with the ability to register faces
to the application and then recognize registered
users when they come into the view of the

camera. The device sends a continuous stream of

video footage back to the application, acting as a
live feed security camera as well.

The application also allows the user to modify a
variety of settings for the camera display, such as
saturation, brightness, and the frame size of the

stream. The program is also designed to log the
facial details of recognized individuals. The logs
are transported via USB connection and are
displayed in the serial monitor, recording the ID

of individuals that have come into the view of the

device’s camera.

The benefits of the web platform for facial

recognition are apparent, as the user can easily
access the application on any Internet capable
device and can access it from any location if they
have access to the network and knowledge of the
web application’s IP address. In addition to being
deployed on an existing local network, the
device's code can be easily modified to create a

unique Wi-Fi AP that has its own SSID and
password credentials.

However, the ability for the device to connect the
facial recognition and streaming capabilities to a
web application presents some unique challenges

for security as well. This paper aims to address
these security vulnerabilities and demonstrate
how students can learn essential security
principles by evaluating and mitigating the
vulnerabilities that are exposed. Although it may
appear simple because of the ease of deployment,
the facial recognition web application offers

significant depth. Fig. 3 is a model created by
Microsoft’s STRIDE application that shows the
data flow and trust boundaries during the device’s
operation.

Fig. 3. STRIDE (Microsoft) Data Flow Model

for the Face-Recognition Web Application

In addition to the devices, there are a variety of
common items and tools that will need to be

assembled to reproduce the methods and
concepts introduced in this paper. Fig. 4 outlines
required hardware and tools in detail. ESP32-CAM
is the target IoT device hosting a face-recognition
Web App. Its camera can take photo of the user
and send the user’s face image to an AI model for

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 44

https://cppj.info/; https://iscap.info

analysis. Then the AI model can conduct face

detection and face recognition (if the user
registered before). The USB cable is used to
connect the IoT device to the computer, where

the Arduino IDE (Fezari & Al, 2018) is installed to
prepare, compile, and upload the face-recognition
application to the device. Also, the computer is
the output peripheral of the device, where the
device log can be printed out. cscope is the tool
used to build the code database including the
App’s source code (4 files) and thousands library

files. cscope must work with a text editor to fully
function. Finally, the Micro STRIDE tool will be
used to do threat modeling (Fig. 3).

Fig. 4. Curriculum Hardware and Software

Requirements

4. VULNERABILITIES FOUND BY REVERSE

ENGINEERING

Through Reverse Engineering, five categories of
vulnerabilities were found hidden in ESP32-CAM
IoT devices when they are programmed with the

example face recognition application. To set up a
proper lab environment to host the web
application, follow the instructions detailed in the
attached “Lab Environment Setup” document.
The following sections provide detailed steps for
the vulnerabilities that were detected and
mitigated with Reverse Engineering and re-

engineering.

Figure out the hard-coded credential
This lab demonstrates how physical access to the
UART/USB port on the IoT device can be exploited
by an attacker to gain access to the hardcoded

credentials. Students will need to Reverse
Engineer the application upload process (from a
development host to the IoT device) to figure out
the tools for them to fetch the binary image from
the IoT device (in reverse direction). Then, the

students will need to Reverse Engineer the binary

image to figure out where the hardcoded
credential was saved. The Arduino IDE is simply
a wrapper that provides a graphical user interface

for ease of use, but at the core it calls a code
compiler and uploader to upload the binary
executable to the device. The attacker can upload
code to a similar device with a verbose log output
to understand what tools the program is using.
Through Reverse Engineering, the program tools
used for flashing to the device can be discovered.

Then, further exploration can be done to
determine the parameters of the tool to discover
how it can read the flash as well. Then with the
correct parameters for the flash reader, contents
of the flash can be copied to a file and examined
for hard-coded credentials and sensitive

information.

The SSID and password are hard coded into the
application’s code. If physical access to the device
is gained, these sensitive credentials could be
compromised through analysis of the binary code.
We know that the binary code was cross compiled

in the Arduino IDE and flashed to the device via
USB port. The same uploading tool could be used
to extract the binary code from the device, thus
reversing the direction and exploiting the hard-
coded credential vulnerability. Here are the steps:

1. In the Arduino IDE, navigate to File ->

Preferences, and make sure that verbose
output is checked for compilation and

uploading (Fig. 5).

Fig. 5. Arduino IDE Preference Settings

2. Compile and upload the program, look at
the verbose log to see what underlying
tools are called to upload the compiled
program to the IoT device and where they
are installed. From the output, we can see
that

“D:\Documents\ArduinoData\packages\e
sp32\tools\esptool_py\2.6.1/esptool.exe
” is the uploading tool (Fig. 6).

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 45

https://cppj.info/; https://iscap.info

Fig. 6. Verbose Output for Uploading

3. Locate “esptool.exe” and the underlying
esptool.py (Fig. 7).

Fig. 7. Esptool.py File Location

4. Run the esptool.py to see the options and

get more information. The write_flash

option was used to upload the compiled
program to the IoT device. To download
the active image from the device (in a

reverse direction), note the “read_flash”

parameter (Fig. 8).

Fig. 8. Esptool.py Parameters

5. Run the “esptool.py” (Fig. 9) again with

the “read_flash” parameter to see the
sub-options. ‘address’, ‘size’, and
‘filename’ are mandatory sub-options.

6. Enter in the parameters “-b 921600
read_flash 0 0x400000 targetImg”. The

‘-b’ option will set the USB
communication’s baud rate to 921600,
which is the maximum speed. ‘0’ is the
starting address of the image download.
‘0x400000’ is the image size – ESP32-
CAM has a 4MB flash. And the

“targetImg” option specifies the image

output filename (Fig. 10).

Fig. 9. Esptool.py read_flash Parameters

Fig. 10. Esptool.py Running Results

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 46

https://cppj.info/; https://iscap.info

7. Once it has finished running, we can now

navigate back to the folder containing
“esptool.py” and should see the
“targetImg” file that was generated (Fig.

11).

Fig. 11. Downloaded ESP32-CAM Image

8. Take the targetImg file and upload it to a
Kali Linux VM. Using a terminal, navigate
to the folder that contains the file and
type the command “strings targetImg” to
derive all readable strings from the binary
image (Fig. 12).

Fig. 12. Commands to Derive Strings from a
Binary Image

9. So many strings are derived from the
“targetImg” file (Fig. 13).

Fig. 13. Embedded Strings in targetImg

10. The SSID can be scanned by a cell phone.
The idea is if we can find the SSID string
embedded in targetImg, we probably will

be able to find its password around it. The
grep command along with the context

searching options (2 lines ‘B’efore and 2

lines ‘A’fter the keyword ‘SSID’) can be
used to search for strings around the
SSID string (Fig. 14). This will

Fig. 14. Narrow down the Password

Searching by “grep”

11. Thus, by Reverse Engineering the

compiler and uploader that are called by
the Arduino IDE, secrets hardcoded on
the device can be extracted.

Trigger the application corruption by a

buffer overflow
Front-end code of a Web application is usually the
start point for attackers to perform Reverse
Engineering against the application. Testing a
variety of inputs can help discover vulnerabilities.
Through the process of black box Reverse
Engineering, a buffer overflow vulnerability in the

framesize input variable can be detected. White
box Reverse Engineering can then be used to

inspect the code and find the area that pertains
to the handling of the control variables of the
application.

In addition, discovering this vulnerability
demonstrates the importance of manual
exploration, as an automated scan for
vulnerabilities would not have necessarily
discovered this vulnerability.

Here are the steps taken to discover the

vulnerability:
1. Manually explore the web application.

Note that the applications control panel
offers a variety of user preferences that

can be adjusted such as resolution,
quality, brightness, etc. (Fig. 15).

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 47

https://cppj.info/; https://iscap.info

Fig. 15. Web Application Control Panel

2. Click the “Resolution” drop-down menu

and select the largest setting. Then click
“Start Stream”. You should see that the
stream window size is now much larger
than the default (Fig. 16).

Fig. 16. Web Application Large Frame
size

3. Now that we know that users can send
control requests to the backend code that
modifies aspects of the application, an
analysis of the backend code can be
performed to look for vulnerabilities.

4. By a quick look through the code, we can

see that the “app_httpd.cpp” file contains
all the handlers for the application:
“stream_handler(),” “cmd_handler(),”

“status_handler(),”, “capture_handler()”,
and “index_handler().”

5. The handlers are initialized by the

function “startCameraServer()”. Fig. 17
shows the code fragment of the
startCameraServer() function.

Fig. 17. Code fragment of
“startCameraSever()” Function

6. From the names of the handlers, the
“cmd_handler()” function should control
the user commands on the control panel.
Inspecting the code inside of the handler
confirms this as it contains all the
different control panel variables (Fig. 18).

Fig. 18. Code Fragment of
“cmd_handler()” Function

7. By looking at the code, we can see there

is no input validation for the “framesize”
variable in the cmd_handler() function. It
simply uses the value of the “val”
parameter that is passed from the user
request. So, what if the user tries setting

the framesize to a negative number?

int val = atoi(value);

sensor_t * s = esp_camera_sensor_get();

int res = 0;

if(!strcmp(variable, "framesize")) {

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 48

https://cppj.info/; https://iscap.info

 if(s->pixformat == PIXFORMAT_JPEG) {

 res = s->set_framesize(s, (framesize_t)val);

 }

}

8. From this block of code, the “/control”

URL via a HTTP_GET request can be used
to trigger the “cmd_handler()” function
(Fig. 19).

Fig. 19. Code Fragment of
“startCameraServer()” Function

9. With this information, we can conclude
that we can bypass the drop-down menu
of the application and enter in the request
directly into the webpage’s search box by
combining the designation for the
command handler, the control variable,
and the control value. Thus, the attack

vector
http://{IP}/control?var=framesize&val=
x where the “IP” is replaced with the IP
address of the App and the “x” can be
replaced with any value. This will allow for
values outside of the drop-down box

parameters to be input into the system.

10. Go to the application and click “start
stream” and verify it is working properly.
Note the size of the stream window (Fig.
20).

Fig. 20. Web Application Stream

11. Enter the attack vector with “x” being set
to the value 10. A blank page will load,
click back to the application. You should
see that the window is bigger, indicating

that request was successful in modifying

the application’s frame size (Fig. 21).
Now a variety of strange inputs can be
tried to test the application for bugs.

Fig. 21. Web Stream Enlarged

12. Try a negative value for the parameter.
The application fails to display a window
at all, revealing a successful attack to the

system (Fig. 22).

Fig. 22. Web Stream Broken

13. Try a ridiculous big value for the
parameter. You should see that this
request causes the stream to be
unresponsive and timeout. A look at the
serial monitor logs reveals that it has

caused an exception and the system is
continually rebooting (Fig. 23).

Fig. 23. Serial Monitor Error Log

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 49

https://cppj.info/; https://iscap.info

14. Try a smaller value that is still larger than

10. You should see that the stream is
broken and full of unintelligible bars (Fig.
24). In this case since 12 appears to be

just slightly over the given threshold, the
overflow resulted in just the stream data
being corrupted and did not crash the
entire application.

Fig. 24. Frame size Buffer Overflow

15. Try to enter in a decimal value next, such
as 5.5. The display should simply round
the number and display the appropriate
rounded value (Fig. 25).

Fig. 25. Decimal Value for Frame size

16. Thus, the proper parameters for the
framesize variable can be inferred: do not
include negative numbers or numbers
greater than 12. However, we do not yet

know how large the numbers can be.

Fig. 26. cscope Findings

17. We can use the ‘cscope’ tool to collect
library code installed for Arduino IDE and
ESP32 add-on. Along with the 4 source
files, we can build a code database, where

we can use vi to search for all the
occurrences of an interesting variable
through the code database. Then, we can
get more information about that variable.
For example, by searching for the
keyword ‘framesize’, we can find a struct,
where the valid values per that variable

are shown in the comments (Fig. 26).

18. Thus, the valid inputs for the framesize

parameter are between 0-10. Negative
numbers cause a display failure and
values greater than 10 cause the stream
data to be corrupted due to a buffer

overflow.

5. FUTURE WORK

While this paper identifies a variety of
vulnerabilities in the face-recognition Web App for

the ESP32-CAM IoT device, further exploration of
the code and additional testing could reveal
additional vulnerabilities that were not identified
in this paper. E.g., we will cover “vulnerability
detected by auto scan: X-frame options header
not set”, “AI model vulnerability”, and “3rd party

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 50

https://cppj.info/; https://iscap.info

library vulnerability” lab exercises in another

paper. In addition, the “Data Corruption” and “AI
Model Manipulation” vulnerabilities were not
patched as the solutions are beyond the scope of

this paper. Future work could include an in-depth
analysis of the AI model used for facial
recognition and detection to prevent the model
from accepting manipulated user input such as
printed photos and sunglasses. Furthermore,
tests could be performed on the AI model and
devices to determine what made some of the

photos cause the system to crash. Also, we plan
to add a multimedia supplement walking through
the exercises.

6. CONCLUSIONS
It has become increasingly crucial for
Cybersecurity and CS students to possess the

skills needed to understand the different
components of a software application and how
they relate to one another in the system. The
process of Reverse Engineering can provide
students with these skills. This paper provides an
IoT-based framework to accomplish this goal,
developing various labs to enhance students’

competency on vulnerability analysis by Reverse
Engineering.

7. REFERENCES

Ali, M. (2005). Why teach Reverse Engineering.
In ACM SIGSOFT Software Engineering Notes

(pp. 1–4). ACM Digital Library.
https://doi.org/10.1145/1082983.1083004

Bellettini, C., Marchetto, A., & Trentini, A. (2004).
WebUml: Reverse Engineering of web
applications. In SAC '04: Proceedings of the
2004 ACM symposium on Applied computing

(pp. 1662-1669). ACM Digital Library.
https://doi.org/10.1145/967900.968231

Canfora, G., & Penta, M. (2007). New Frontiers of
Reverse Engineering. In Future of Software
Engineering, FOSE 2007 (pp. 326-341). IEEE
Xplore.
https://doi.org/10.1109/FOSE.2007.15

Canfora, G., Penta, M., & Cerulo, L. (2011).
Achievements and challenges in software
Reverse Engineering. In Communications of

the ACM (pp. 142-151). ACM Digital Library.
https://doi.org/10.1145/1924421.1924451

Chikofsky, E., & Cross J. (1990). Reverse
engineering and design recovery: a

taxonomy. In IEEE Software (pp. 13-17).
IEEE Xplore.
https://doi.org/10.1109/52.43044

Fezari, M. & Al Dahoud, A. (2018). Integrated
Development Environment "IDE" For Arduino.

Research Gate.

https://www.researchgate.net/publication/3
28615543_Integrated_Development_Environ
ment_IDE_For_Arduino

Li, Z., Chou, E., & McAllister, C. (2022). An IoT
Based New Platform for Teaching Web
Application Security. CYBERSECURITY
PEDAGOGY & PRACTICE JOURNAL.

Li, Z., Ren, H., Chou, E., Liu, X., & McAllister, C.
D. (2022). Retrieving Forensically Sound
Evidence from the ESP Series of IoT Devices.

IEEE Internet of Things Journal.

Lueth, K. L. (2015). IoT market analysis: Sizing
the opportunity. IoT Analytic Report. March.

Morgan, S. (2020, Nov. 13). Cybercrime To Cost

the World $10.5 Trillion Annually by 2025. In
Cybercrime Magazine.

https://cybersecurityventures.com/cybercri
me-damages-6-trillion-by-2021/

Müller, H., Jahnke, J., Smith, D., Storey, M.,
Tilley, S., & Wong, K. (2000). Reverse
engineering: a roadmap. In ICSE '00 (47-60).
ACM Digital Library.
https://doi.org/10.1145/336512.336526

Patel, R., Coenen, F., Martin, R., & Archer, L.
(2007). Reverse Engineering of Web
Applications: A Technical Review.

Potter, B. (2009). Microsoft SDL threat modelling
tool. Network Security, 2009(1), 15-18.

Radware (2022). Global Threat Analysis Report.
https://www.radware.com/getattachment/3

d26f50b-f2a7-4ffa-9a84-
1b5a598a0b27/2021-2022-Global-Threat-
Analysis-Report_2022-FINAL-V2.pdf.aspx

Shwartz, O., Mathov, Y., Bohadana, M., Elovici,
Y., & Oren, Y. (2018). Reverse Engineering
IoT Devices: Effective Techniques and

Methods. In IEEE Internet of Things Journal
(pp. 4965-4976). IEEE Xplore.
https://doi.org/10.1109/JIOT.2018.2875240

Taylor, C., & Collberg, C. (2016). A tool for
teaching Reverse Engineering. In 2016
USENIX Workshop on Advances in Security

Education, ASE 2016. USENIX.

https://www.usenix.org/conference/ase16/w
orkshop-program/presentation/taylor

Wikipedia contributors. (2022, July 5). ESP32. In
Wikipedia, The Free Encyclopedia. Retrieved
19:04, July 15, 2022, from
https://en.wikipedia.org/w/index.php?title=
ESP32&oldid=1096637291

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://www.radware.com/getattachment/3d26f50b-f2a7-4ffa-9a84-1b5a598a0b27/2021-2022-Global-Threat-Analysis-Report_2022-FINAL-V2.pdf.aspx
https://www.radware.com/getattachment/3d26f50b-f2a7-4ffa-9a84-1b5a598a0b27/2021-2022-Global-Threat-Analysis-Report_2022-FINAL-V2.pdf.aspx
https://www.radware.com/getattachment/3d26f50b-f2a7-4ffa-9a84-1b5a598a0b27/2021-2022-Global-Threat-Analysis-Report_2022-FINAL-V2.pdf.aspx
https://www.radware.com/getattachment/3d26f50b-f2a7-4ffa-9a84-1b5a598a0b27/2021-2022-Global-Threat-Analysis-Report_2022-FINAL-V2.pdf.aspx
https://en.wikipedia.org/w/index.php?title=ESP32&oldid=1096637291
https://en.wikipedia.org/w/index.php?title=ESP32&oldid=1096637291

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 51

https://cppj.info/; https://iscap.info

Appendix: Set up the lab environment

It is assumed that cybersecurity students participating in the course understand how to set-up a

Kali Linux Virtual Machine using tools such as Virtual Box. The screenshots taken for this

tutorial are on a Windows machine, but the entire curriculum could be performed on a Kali

Linux VM.

1. Download the latest Arduino IDE

1. Go to https://www.arduino.cc/en/software

2. Select the appropriate download option for your operating system. For the purposes

of this paper and for simplicity, we recommend starting with the Windows operating

system

3. Once the installer has been downloaded, follow the installation instructions

4. Open the Arduino IDE via the start menu or desktop shortcut

It should look like this:

https://www.arduino.cc/en/software

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 52

https://cppj.info/; https://iscap.info

5. Navigate to File->Preferences->AdditionalBoardsManagerURLS:

6. Paste this URL into the indicated textbox and click “ok”:

https://dl.espressif.com/dl/package_esp32_index.json

https://dl.espressif.com/dl/package_esp32_index.json

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 53

https://cppj.info/; https://iscap.info

7. Navigate to tools->Board->Boards Manager-> and type “esp32” in the search bar. If

the additional package was added in the previous step, you should see esp32 as an

option:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 54

https://cppj.info/; https://iscap.info

8. In the right corner, select the 1.0.3 option and click install

9. Wait for the add-on to download. When it is finished you should see that it is

installed:

10. Plug in the device to your computer via a USB cable. The cable must support data

transportation, not just power.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 55

https://cppj.info/; https://iscap.info

11. Navigate to Tools->Port. You should see a selected COM port available.

12. If “Port” is grayed out, then you will need to install the proper UART driver for the

device. Download the driver available at this link:

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

1. Select the version compatible with your OS:

2. Wait for the folder to download and extract the contents

3. Go to your start menu and type in device manager. Locate the device in the

“Other devices” section. This indicates that the device is not being recognized by

the proper driver

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 56

https://cppj.info/; https://iscap.info

4. Navigate to the extracted driver folder, right click on the “silabser.inf” file and

click install

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 57

https://cppj.info/; https://iscap.info

5. Wait for the install to complete, then re-open device manager. You should see the

device listed under “Ports (COM & LPT)”

13. Once the proper driver is installed, re-open the Arduino IDE. Navigate to Tools ->

Ports. Select the COM option available if it is not already selected.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 58

https://cppj.info/; https://iscap.info

14. Then go to Tools -> Board -> ESP32 Arduino -> AI Thinker ESP32-CAM. The result

should look like this (the COM port may be different):

2. Find CameraWebServer Application and Flash to ESP32-CAM Device:

a. The Arduino IDE with the esp32 package installed comes with several

example programs. Navigate to File -> Examples -> ESP32 -> Camera ->

CameraWebServer.

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 59

https://cppj.info/; https://iscap.info

b. Load the program, it should look like this:

c. Comment out the ” define CAMERA_MODEL_WROVER_KIT” line, and

uncomment the “#define CAMERA_MODEL_AI_THINKER”. Replace the

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 60

https://cppj.info/; https://iscap.info

“ssid” and “password” variables with your choice of ssid and password. Your

code should now look something like this:

d. Click File -> Save to save the modifications. You may be prompted to save

the sketch in a folder of your choosing.

e. Click the check mark in the top left to compile the code. If it compiles

successfully, the output at the bottom of the IDE should look something like

this:

f. Next, click the arrow just to the right of the check mark to upload the code to

the Device. Once again, make sure the proper COM port is selected and the

proper device type is selected as well. If the code is uploaded properly, you

should see something like this at the bottom of the IDE:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 61

https://cppj.info/; https://iscap.info

g. To access the IP address information for the web application, you must use the

serial monitor. Click Tools -> Serial Monitor and set the baud rate to 115200

baud. Then click the RST button on the device. You should see something like

this as an output:

h. Finally, use a device connected to the same Wi-Fi network that matches the

SSID and password in the code. Open a web browser and type in the address

IP displayed in the serial monitor. You should be directed to a webpage like

this:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 62

https://cppj.info/; https://iscap.info

i. Toggle on the “Face Detection” and “Face Recognition” features and click

“Start Stream”. A video stream of the device’s camera should appear. If this

works correctly, you are ready to start the reverse and re-engineering process

on the application!

3. Install OWASP ZAP on Kali Linux VM

1. Start your Kali Linux VM. Visit this webpage: https://www.zaproxy.org/download/.

Click the “Linux Installer” download option:

https://www.zaproxy.org/download/

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 63

https://cppj.info/; https://iscap.info

2. Save the file when prompted and click “OK”

3. Open a terminal and navigate your downloads folder. Verify the

“ZAP_2_11_1_unix.sh” file is there with he “ls” command. Enter “chmod u+x

ZAP_2_11-1_unix.sh” to change the file to an executable. Then run the command

“sudo ./ZAP_2_11_1_unix.sh” to run the installer:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 64

https://cppj.info/; https://iscap.info

4. A dialog box will pop up, click next and agree to the terms of agreement:

5. Click “Finish” to finish the installation:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 65

https://cppj.info/; https://iscap.info

6. Click the menu in the top left corner and type Zap. You should see ZAP installed on

your machine. Click the application to run it:

7. Select no for the persistent ZAP session and click start:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 66

https://cppj.info/; https://iscap.info

8. A manager add on box may pop up. If so, select the “Fuzzer” option and then click

“Update Selected”:

Cybersecurity Pedagogy & Practice Journal 2 (2)

2832-1006 September 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 67

https://cppj.info/; https://iscap.info

9. Now the OWASP ZAP tool should be ready to use, and it should look something like

this:

10. With this installed, students should be read to follow the detailed instructions outline

in the paper to practices the vulnerability detection via reverse engineering and re-

engineering.

