

JOURNAL OF

INFORMATION SYSTEMS

APPLIED RESEARCH

Volume 16, No. 2

July 2023

ISSN: 1946-1836

In this issue:

4. Influence of Reporting Structure and Perception of Role of Information

Technology on Decision-Making: A Qualitative Study

Amit Pandey, Robert Morris University

Sushma Mishra, Robert Morris University

14. Impact of Emergent Technologies on US Workforce: Exploratory Analysis

Katarzyna Toskin, Connecticut State University

21. A Predictive Unmanned Aerial Vehicle Maintenance Method: Using Low-Code

and Cloud-Based Data Visualization

Taejin Kim, City University of Seattle

Ahreum Ju, City University of Seattle

Brian Maeng, City University of Seattle

Sam Chung, City University of Seattle

28. Measuring Analytics Maturity and Culture: The LDIS+™ Analytics Impact

Framework

Jonathan Fowler, Logicle Analytics

Samuel Sambasivam, Woodbury University

42. How Firms Can Impact IT Project Continuation Intentions: A Human Capital

Perspective

Stephanie Totty, Middle Tennessee State University

Sam Zaza, Middle Tennessee State University

Timothy Greer, Middle Tennessee State University

Melinda Korzaan, Middle Tennessee State University

54. A Comparative Analysis of Web Application Vulnerability Tools
Susana Paola Lainez Garcia, University of Texas at Dallas
Amy S. Abraham, University of Texas at Dallas

Kristina Kepic, University of Texas at Dallas

Ebru Celikel Cankaya, University of Texas at Dallas

61. Information Worth: Investigating the Differences in the Importance and

Value of Personally Identifiable Information

Jeffrey P. Kaleta, Appalachian State University

Lakshman Mahadevan, Florida Gulf Coast University

Russell Thackston, ThackApps

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://jisar.org/; https://iscap.info

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer

reviewed academic journal published by ISCAP, Information Systems and Computing

Academic Professionals. Publishing frequency is three to four issues a year. The first date of

publication was December 1, 2008.

JISAR is published online (https://jisar.org) in connection with CONISAR, the Conference on

Information Systems Applied Research, which is also double-blind peer reviewed. Our sister

publication, the Proceedings of CONISAR, features all papers, panels, workshops, and

presentations from the conference. (https://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

conference. At that point papers are divided into award papers (top 15%), other journal

papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are

subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the JISAR journal. Currently the acceptance rate for the journal is approximately

35%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at

publisher@jisar.org. Special thanks to members of ISCAP who perform the editorial and

review processes for JISAR.

2023 ISCAP Board of Directors

Jeff Cummings

Univ of NC Wilmington
President

Anthony Serapiglia

Saint Vincent College
Vice President

Eric Breimer
Siena College
Past President

Jennifer Breese

Penn State University

Director

Amy Connolly
James Madison University

Director

RJ Podeschi
Millikin University

Director/Treasurer

Michael Smith
Georgia Institute of Technology

Director/Secretary

David Woods
Miami University (Ohio)

Director

Jeffry Babb
West Texas A&M University

Director/Curricular Items Chair

Tom Janicki

Univ of NC Wilmington
Director/Meeting Facilitator

Paul Witman

California Lutheran University
Director/2023 Conf Chair

Xihui “Paul” Zhang

University of North Alabama
Director/JISE Editor

Copyright © 2023 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

https://conisar.org/

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://jisar.org/; https://iscap.info

Journal of

Information Systems Applied research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

2023 JISAR Editorial Board

Edgar Hassler

Appalachian State University

Muhammed Miah

Tennessee State University

Karthikeyan Umapathy

University of North Florida

Hayden Wimmer

Georgia Southern University

Jason Xiong

Appalachian State University

Xihui (Paul) Zhang

University of North Alabama

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 54

https://jisar.org/; https://iscap.info

A Comparative Analysis of
Web Application Vulnerability Tools

Susana Paola Lainez Garcia

 susana.lainezgarcia@utdallas.edu

Amy S. Abraham
amy.abraham@utdallas.edu

Kristina Kepic

Kristina.kepic@utdallas.edu

Ebru Celikel Cankaya

ebru.cankaya@utdallas.edu

Department of Computer Science
University of Texas at Dallas

Richardson 75080, TX, USA

Abstract

Considering the perpetual need for security in network platforms, this study investigates various

penetration testing tools in the abundance of options when it comes to network security. This study
presents the experimental run results of select penetration testing tools on deliberately vulnerable
network traffic, as well as the comparison of those tools. We test three vulnerability assessment tools:
ZAP, Vega and Arachni as part of this research in the hope to provide current and practical data for the
research community in the network security field. Our choice of vulnerability testing tools is based on
the following criteria: being current, usability, reliability (stability), and performance w.r.t speed. Our
results demonstrate that each vulnerability assessment tool depicts its own advantages and

disadvantages by being better at one or more criteria than the others, but not prevailing in all. This, in
turn, suggests that choosing a penetration tool to employ for testing the vulnerability web applications
is a challenging decision that should consider multiple parameters, rather than being merely
straightforward.

Keywords: Vulnerability Assessment, Penetration Testing, Web Applications, SQL Injection, Cross-Site

Scripting (XSS).

1. INTRODUCTION

In today's society, many companies are faced
with security threats, particularly through the use

of third-party web-applications. As a result, it is
imperative for them to find the security
vulnerabilities in their systems that can be
exploited by black-hat hackers in order to
determine whether such applications can be used

by their employees. We propose the use of
security penetration tools, specifically open-
source security testing tools for web applications.

There is a wide array of tools available on the
market. Ultimately, we selected tools that were
ubiquitous, free, open-source, and easy to use as
this can be particularly beneficial for smaller
companies, which are quite abundant. So, we

mailto:susana.lainezgarcia@utdallas.edu
mailto:amy.abraham@utdallas.edu
mailto:Kristina.kepic@utdallas.edu
mailto:ebru.cankaya@utdallas.edu

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 55

https://jisar.org/; https://iscap.info

ultimately decided to analyze and compare the

tools ZAP (Owasp Zap”), Vega (Vega Vulnerability
Scanner), and Arachni (Web application security
scanner framework).

Our goal is to contribute to the field of data
security and privacy with an in-depth analysis and
comparison of free, open-source security testing
tools that can aid a company in making the
decision for the tool that would work best for their
specific cybersecurity needs. With ever-

increasing interconnectivity through third-party
web applications, this research provides the
means to fill the gap of a need for companies to
instill tougher security guidelines since those web
applications can so easily be exploited by
attackers.

2. BACKGROUND AND RELATED WORK

Background
Penetration testing simulates an attack by an
ethical hacker and is used for evaluating the
security of a network or computer system. The

ultimate goal of penetration testing is to increase
the data security for a given party, whether that
be an individual or a company. Penetration tests
are typically done with a license and requires a
signed contract with a company. The output of
the penetration testing is provided as a report to
disclose the weakness found in the system. It is

very important for companies to have high data
security since their data is one of their most

valuable assets. In addition, with the rise of
internet usage in various fields like medicine,
finance, and the military, web security has
become an increasing concern. As a result,

penetration tools for web applications are
especially critical when it comes to maintaining
data security (Mirjalili, Nowroozi, & Alidoosti,
2013).

Penetration Tools
This study explores three free, open-source

penetration tools named Zap, Vega, and Arachni
for vulnerability assessment purposes. Zap is a
free, open-source, GUI-based application that can
be used on Windows, Linux, and Mac (“Owasp

zap”). It is officially called the Owasp Zap. Zap
can be used to test the security of web
applications with penetration testing. It can also

be used to find security vulnerabilities such as
Cross-Site Scripting, SQL injections, and
information leaks. Zap has an automated scanner
and monitors the responses to requests it sends
to the web application to find vulnerabilities. The
application was programmed using a combination

of Java, JavaScript, HTML, Python, and PHP. We
ran Zap on a Windows OS computer and supplied

it with the Spotify Web Player and a deliberately

vulnerable target website with the URL
http://testphp.vulnweb.com.

Vega is also a free, open-source, GUI-based web
security scanner and testing platform that tests
web application security (“Vega Vulnerability
Scanner”). Vega can find vulnerabilities such as
Cross-Site Scripting (XSS), SQL injection, and
inadvertently disclosed information. Vega has an
automated scanner for fast tests and an

intercepting proxy to observe the interaction
between clients and servers. The operating
system that we ran Vega on is Windows, but it
can be run on Linux and MAC OS as well.

The last tool we examined was Arachni (“Web

application security scanner framework”). In
regard to the Operating System, we present
results for the Arachni tool running on the
Windows platform, but it can be run on Linux and
Mac OS X as well. Arachni is an open-source,
modular web application security scanner
framework. It focuses on identifying, classifying,

and logging vulnerabilities in web applications. It
is licensed under the Arachni Public Source
License v1.0. It is important to note that for
commercialization a non-free license is required.
It also requires 2GB of memory and 10 GB of
available disk space. Furthermore, the distributed
architecture of Arachni allows remote control of

the scan. This is done by deploying agents on
remote servers.

Related Work
In Mirjalili et al. (2014), authors introduce various
types of penetration tools based on the

parameters as whether the tool is manual or
automatic, and whether it offers black-box,
white-box, or grey-box testing. Furthermore, this
paper explains different web vulnerabilities like
injection, broken authentication, session
management, and cross-site scripting (XSS). The
authors look specifically at black-box web

vulnerability scanners, both open-source and
commercial. Some of such tools are Websecurity,
Wapiti, ZAP, and Acunetix. The paper compares
whether those tools are GUI based or not, and

rate how good their configuration, usability,
stability, and performance are. Similar to this
paper, we too compare different penetration tools

for web applications. However, we focus more on
comparing the results of three different tools:
Vega, Arachni, and ZAP. Additionally, we analyze
their vulnerability results and how they compare
to one another.

In Fonseca, Vieira, & Madeira (2007), authors
delineate how different penetration tools produce

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 56

https://jisar.org/; https://iscap.info

different results, which is also verified by our

study. In addition, they also explain how several
vulnerabilities were missed by some of the
penetration tools they tested, and oftentimes

they tended to have a significant rate of false
positives.

Khera, Kumar, Sujay, & Garg (2019) discusses
and analyzes the VAPT (vulnerability assessment
and penetration tools) and life cycle. Some of the
assessment tools that this paper explores for

network security include Wire shark, Nmap, and
Metasploit. A case study is shown where Nmap is
used to target the Metasploitable virtual machine,
which is a vulnerable version of Linux Ubuntu
designed for testing purposes. In addition, Khera
et al. discuss both the advantages and

disadvantages of VAPT as a cyber defense
technology. In our study, we also discuss
different vulnerability assessment tools, but focus
on those targeting web applications, as opposed
to network security like Khera et al. In addition,
we too have a case study where we use a
vulnerable web application, but instead of testing

it using a single tool such as Nmap, we test three
tools Vega, ZAP, and Arachni and compare the
results.

Zakaria, Phin, Mohmad, Ismail, Kama, & Yusop
(2019) explains how there is no standardized
format of penetration testing reports. As a result,

they analyze eight different penetration testing
reports found online in order to compare their

similarities and patterns to aid them in creating a
standardized format of the report. This format
focuses on catering to both security personnel
and upper management of the organization. This

lack of standardization is important to note since
in our case study we witness three very different
reports from three different tools for a single web
application.

In Abu-Dabaseh & Alshammari (2018), the
authors discuss the standards for penetration

testing tools. A detailed comparison of automated
versus manual penetration testing techniques is
provided in this paper. The paper compares the
current methodologies used to build an

automated penetration testing system. These
methodologies target HTTP/TCP/IP and SIP
attacks, all protocols and services, and

databases. The different tools, phases, methods
of implementation, and aim of the methodologies
are considered. Tools such as ZAP and Metasploit
are referenced in this paper as well. Lastly, the
importance of automating the process of
penetration testing is discussed. Those presented

in Abu-Dabaseh & Alshammari (2018) all
contribute as a basis framework for our paper.

Nagpure & Kurkure (2017) discusses the different

vulnerabilities of web applications. The attacks
discussed in this paper include SQL injection,
Session Hijacking, Cross-Site Request Forgery,

Security Misconfigurations, Buffer over Flows,
Privilege Escalation, Cross-Site Scripting (and the
different types), etc. The paper reviews and
compares two testing methods: automated vs.
manual testing. Lastly, a comparison of three
penetration testing tools of web applications is
presented. The paper compares the features of

ZAP, Acunetix, and Burpsuit.

Kang, Lee, Kim, & Kim (2016) discusses how
penetration testing can be implemented into
businesses within the financial sector to make
them more secure. The model put forth in this

article gives practical steps companies can take
to implement penetration testing tools into their
security testing. It also gives the definitions of
SQL Injections and Cross-Site Scripting. These
are both vulnerabilities we focus on in our paper.

In Muñoz, Armas Vega, & Villalba (2016), the

efficiency and false positive rates of multiple
penetration testing tools are examined. This
article examined both OWASP ZAP and Arachni,
but it did not examine Vega. OWASP ZAP was
found to be more time efficient than Arachni.
However, Arachni generates more requests to the
server. In this test OWASP ZAP had one

vulnerability that was found by the application’s
requests but was not reported to the user.

Arachni did not have any false positive reports
during this experiment. We use those results for
comparing with our results.

3. METHODOLOGY

ZAP
Upon opening the application, the Automated
Scan button is pressed to start the scan. The URL
to test must be given. Once the web application
URL has been entered the attack button is

pressed. The scan tests the website and any
associated URL to find vulnerabilities. Once the
scan is completed, the alerts section will be
populated with any vulnerabilities found. By going

to the alerts section, details about each
vulnerability can be analyzed.

Vega
The first step for running a Vega Scan is clicking
the “Scan” tab and creating a new scan. Then we
select which modules to enable for this scan (we
leave the default selections). We then press the
“Finish” button so that the scan can start.

Furthermore, each vulnerability of the web
application can be clicked on for a further

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 57

https://jisar.org/; https://iscap.info

explanation of the vulnerability.

Arachni
In order to run Arachni, the folder

\arachni-1.6.1-0.6.1-windows-x86_64\bin must
be opened. Inside the folder, arachni_web.bat file
must be run by double-clicking the file. The file
will open the command line that displays the
address it’s listening on. The address can then be
copied and pasted onto a web browser which will
prompt the log-in screen. The default parameters

can be found in the Arachni documentation. This
then opens the Arachni web interface. A new scan
can be started by clicking the Scans tab and then
selecting New Scan. The URL for the web
application can then be inserted. Clicking the Go
button will then begin the scan. The

vulnerabilities are then shown, where each one
can be selected for further inspection.

4. EXPERIMENTAL WORK

In our study, we tested three vulnerability
assessment tools: ZAP, Vega and Arachni.

Specifically, each tool ran a vulnerability
assessment of the same malicious test website
called Acuart (“Acunetix Web Vulnerability
Scanner - test websites”) and we furthered
compared the results of one another. It is
important to note that Acuart is one of several
vulnerable test websites provided by Acunetix.

The results of this test are shown below.

ZAP Tool Results
As seen in Figure 1, Zap found three types of
high-risk vulnerabilities. Two of these are
different types of Cross-Site Scripting, DOM

Based and Reflected. The other high-risk
vulnerability found were SQL Injections. Further
information can be found on each case by clicking
on the requests in the drop-down menu for each
category. There were four types of medium-risk
vulnerabilities found. There were seven instances
of .htaccess Information Leaks, 47 cases of CSP

Headers not being set, 40 cases of an Absence of
Anti-CSRF Tokens, and 44 cases of Missing Anti-
Clickjacking Headers. In total 138 medium-risk
vulnerabilities were found. Two different types of

low-risk vulnerabilities were found by Zap. There
were 62 cases of Server Leaks found and 67 X-
Content-Type-Options. In total 129 different low-

risk vulnerabilities were found. For each
vulnerability found, information on the exact call
that exposed the vulnerability can be found under
the vulnerability for each one. The right side of
the screen gives additional information on
vulnerabilities.

Vega Tool Results

The results shown in Figure 2 for the test website
display a total of 36 vulnerabilities. These
vulnerabilities are categorized into high, medium,

low, and info alerts. There was a total of 21 high
alerts, 6 medium alerts, 2 low alerts, and 7 info
alerts.

Figure 1: ZAP Interface with the
Vulnerability Alerts for the Test Website
Shown

For each alert, an explanation of what the
vulnerability is, the request, resource content, a
discussion, impact, and resources are available.
The high-level alerts include 2 cleartext password

over HTTP alerts, 10 Cross-Site Scripting alerts, 3
MySQL Error Detect- Possible SQL Injection, and

6 SQL Injection alerts. The medium-level alerts
include 6 Local Filesystem Paths Found alerts. The
low-level alerts include 2 Form Password Fields
with Autocomplete Enabled alerts. The info-level
alerts include 2 Possible AIAX Code detected, 4
Character Set Not Specified, and 1 Blank Body
detected.

Arachni Tool Results
In the results shown in Figure 3, we see that it
found a total of 69 alerts where 37 were of high
risk, 7 medium risk, 10 low risk, and 24 that are
informational. In regard to the high-risk alert, the

largest number of alerts fall under the category of

Cross-Site Scripting (XSS). XSS can make the
system vulnerable where clients can inject scripts
into a request and the server then returns in the
response the script to the client. Another high-
risk vulnerability found in this malicious web
application by Arachni is SQL injection. Web

applications use SQL queries to retrieve data from
databases. SQL injections occur when a value
from the client’s request is used in the SQL query
without sanitization. This makes it vulnerable to

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 58

https://jisar.org/; https://iscap.info

attackers executing arbitrary SQL code to steal

data or even take control of more server
components by exploiting the additional
functionalities of the database server. It is

important to note that this is one of the most
common web application vulnerabilities. This
specific vulnerability was detected by Arachni by
causing the server to respond to a request with a
database-related error. Some of the medium risk
alerts include common directory and unencrypted
password form, while the low-level risks include

common sensitive file and password fields with
auto-complete.

Figure 2: Vega Interface with the
Vulnerability Alerts for the Test Website
http://testphp.vulnweb.com

Figure 3: Arachni Interface with the
Vulnerability Alerts for the Test Website
http://testphp.vulnweb.com

Tool Comparison

Below we have constructed a table that compares
the vulnerabilities of ZAP, Vega, and Arachni:

 ZAP Vega Arachni

Total

Vulnerabilities

341 36 69

High Alerts 41 21 37

Medium Alerts 138 6 7

Low Alerts 129 2 10

Table 1: Comparison of the Total
Vulnerabilities and Types of Vulnerabilities
for the Test Website in Each of the Tools

From Table 1 above, we can see that ZAP has a

total of 341 vulnerabilities that it detects. This is
significantly higher than both Vega and Arachni,
which have 36 and 69 vulnerabilities,
respectively. Additionally, ZAP has a larger
number of high, medium, low, and information
alerts in comparison to the other tools. When

comparing Vega and Arachni, Arachni detected
more vulnerabilities in total and in each of the
types of vulnerabilities.

 ZAP Vega Arachni

SQL Injection 7 6 5

XSS 34 10 29

Table 2: Comparison of the Two Different
Vulnerabilities Present in the Test Website

for Each of the Tools

Table 2 shows the comparison of the two different
vulnerabilities present in each of the tools: SQL
injection and Cross-Site Scripting (XSS). ZAP
found the most SQL injections and Cross-Site

Scripting vulnerabilities. ZAP found 7 SQL

injections and 34 Cross-Site Scripting
vulnerabilities, 18 of which were DOM-based and
16 that were reflections. In comparison, Arachni
found 29 Cross-Site Scripting vulnerabilities and
only 5 SQL injections, 2 of which were Blind SQL
injections. Lastly, Vega found 10 Cross-Site

Scripting vulnerabilities, which is considerably
lower than its counterparts, and 6 SQL injections
and 3 possible SQL injections. Altogether, ZAP
showed the most proficiency in finding SQL
injections and Cross-Site Scripting vulnerabilities.

 ZAP Vega Arachni

Interface
Platform

Yes Yes For the
most part

Ease of Use Simple Very

Simple

Complex

Performance Med (4-
5 min)

High
(2-3
min)

Low (8-9
min)

Stability High Low Very Low

Table 3: Comparison of Penetration Tool
Characteristics

Table 3 shows a comparison of the tool

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 59

https://jisar.org/; https://iscap.info

characteristics such as the interface, ease of use,

performance, and stability. ZAP and Vega had
great interfaces, and Arachni has a good interface
but involves additional work from the command

line to start the application.

Vega was the easiest tool to use because it only
involved downloading the software and inputting
the URL of the application we needed to scan. ZAP
was also simple to use as it also only involved
downloading the software and inputting the URL

of the application we needed to scan. However,
ZAP was a little more difficult to use versus Vega
in that assessing the results wasn't as simple.
Arachni was the hardest to use because we
needed to download the software, run a .bat file,
which opened the command line, and had to copy

a URL from the command line that is used in order
to access Arachni’s GUI. After the GUI was
opened, a password and email were needed from
Arachni’s documentation that would allow us to
use the tool. Then we could input the URL of the
application we needed to scan and assess the
vulnerabilities.

Furthermore, Vega’s performance was the
highest with the scan running in 2-3 minutes. ZAP
had the next best performance, taking 3-4
minutes. Arachni had the lowest performance and
took about 8-9 minutes to run. We also assess
the tool’s stability. ZAP was a very stable tool as

it did not give us any problems when running.
Vega, on the other hand, would not work on a

public Wifi and affected our computer’s internet
access as well. Arachni had the worst stability as
it also did not work on the university Wifi and
crashed multiple times.

As a result, from this analysis, ZAP is the best
penetration testing tool for web applications when
compared to Vega and Arachni. This is the tool
that we expected to be the best of the three tools
based on our initial research. Other previous
works compare ZAP to other tools, and these

other tools may have a better implementation
than ZAP and have the potential to find more
vulnerabilities. However, ZAP does a decent job
for a free, open-source tool available to everyone.

We show that ZAP is the best penetration testing
tool for web applications when compared to Vega

and Arachni. This can be seen in our results as
ZAP found the most vulnerabilities, and
specifically, more SQL injection and Cross-Site
Scripting vulnerabilities when compared to its
counterparts. ZAP was also simple to use, had a
great interface, had a performance time of 3-4

minutes, and was a very stable tool as it did not
give us any problems when running.

5. CONCLUSION AND FUTURE WORK

Considering the everlasting request for reliable,
current, and fast network penetration testing

tools in the hope to provide current and practical
reference for researchers and practitioners, this
work presents the results and comparison of test
running three vulnerability assessment tools for
web appications: ZAP, Vega and Arachni. While
selecting those tools the criteria we considered
were being current, usability, reliability

(stability), and performance measured in speed.
The comprehensive test run of these 3 tools yields
the fact that each vulnerability testing tool
possesses its own advantages and deficiencies,
rendering each unique tool being better at one or
more criteria than the others, but not prevailing

in all parameters.

The span of network vulnerability tools is large
and is expanding even more, thanks to constant
developments in network and PC technologies.
Hence, to be more inclusive, we plan to explore
more penetration tools for testing purposes and

provide a comparative study on a wider span of
such tools as part of future work. In particular,
we intend to include Vulcan (Vulcan), Invicti
(Invicti), Intruder (Intruder), and BeyondTrust
(BeyondTrust) as our next step of expanding this
research for a more comprehensive analysis and
comparison of network vulnerability assessment

tools.

6. REFERENCES

“What I Should Do If No Author Listed.” (2022).

New England Online Education 7(12).

Retrieved March 19, 2022 from
http://giveaddress.com/xyz

Vega Vulnerability Scanner. (n.d.). Retrieved
August 8, 2022, from
https://subgraph.com/vega/

Web application security scanner framework.
Arachni. (n.d.). Retrieved August 8, 2022,

from https://www.arachni-scanner.com/

Mirjalili, M., Nowroozi, A., & Alidoosti, M. (2013).
A survey on web penetration test. ACSIJ

Advances in Computer Science: an
International Journal, 3(6).

Fonseca, J., Vieira, M., & Madeira, H. (2007).
Testing and comparing web vulnerability

scanning tools for SQL injection and XSS
attacks. 13th Pacific Rim International
Symposium on Dependable Computing (PRDC
2007).
https://doi.org/10.1109/prdc.2007.55

Journal of Information Systems Applied Research 16 (2)
ISSN: 1946-1836 July 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 60

https://jisar.org/; https://iscap.info

Khera, Y., Kumar, D., Sujay, & Garg, N. (2019).

Analysis and impact of Vulnerability
Assessment and penetration testing. 2019
International Conference on Machine

Learning, Big Data, Cloud and Parallel
Computing (COMITCon).
https://doi.org/10.1109/comitcon.2019.886
2224

Zakaria, M. N., Phin, P. A., Mohmad, N., Ismail,
S. A., Kama, M. N., & Yusop, O. (2019). A
review of standardization for penetration

testing reports and documents. 2019 6th
International Conference on Research and
Innovation in Information Systems (ICRIIS).
https://doi.org/10.1109/icriis48246.2019.90
73393

Abu-Dabaseh, F., & Alshammari, E. (2018).

Automated penetration testing : An overview.
Computer Science & Information Technology.
https://doi.org/10.5121/csit.2018.80610

Nagpure, S., & Kurkure, S. (2017). Vulnerability
assessment and penetration testing of web
application. 2017 International Conference on
Computing, Communication, Control and

Automation (ICCUBEA).
https://doi.org/10.1109/iccubea.2017.84639
20

Kang, W., Lee, G., Kim, S., & Kim, J.-B. (2016).

Diagnostic Model of Vulnerability based on
Penetration Testing. International
Information Institute (Tokyo). Information,

19(6), 2257–2262.

Muñoz, F. R., Armas Vega, E. A., & Villalba, L. J.
(2016). Analyzing the traffic of penetration
testing tools with an IDS. The Journal of
Supercomputing, 74(12), 6454–6469.
https://doi.org/10.1007/s11227-016-1920-7

Acunetix Web Vulnerability Scanner - test

websites. Acunetix Web Vulnerability Scanner
- Test websites. (n.d.). Retrieved May 25,
2022, from http://www.vulnweb.com/

Vulcan Network Vulnerability Assesment Tool,

Retrieved September 21, 2022, from
https://vulcan.io/

Invicti Network Vulnerability Assesment Tool,
Retrieved September 21, 2022, from
https://www.invicti.com/

Intruder Network Vulnerability Assesment Tool,
Retrieved September 21, 2022, from
https://www.intruder.io/

BeyondTrust Network Vulnerability Assesment

Tool, Retrieved September 21, 2022, from
https://www.beyondtrust.com/

http://www.vulnweb.com/

