
2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 1

http://iscap.info

Teaching Case

SQL: An Introduction to SQL Lesson

and Hands-On Lab

Gayle Jesse
West Liberty University

West Liberty, WV, 26074
gayle.jesse@gmail.com

Abstract

We live in a world run by databases. Thus, knowing Structure Query Language (SQL) is vital to extract
data from a database. The following teaching case is a hands-on introduction to SQL lab activity based
on a scenario of working at a help desk for Foods, Inc using W3 Schools. W3 schools web-based
environment is stable, consistent, and allows numerous users at one time without ever altering the
database. Students begin the case by learning the background information, database structure, and

working through a teaching lesson. The lesson teaches students the basics of writing queries from basic
select statements through joins. After students complete the lesson on querying basics they are ready
to begin the assignment. The assignment requires students to write 25 queries which, are to be recorded
in an answer template designed for easier grading and reduction of cheating.

Keywords: SQL, Introduction Database Course, Applied Lab, W3C Schools

1. BACKGROUND

A database is an organized collection of data that
consists of tables, queries, views, reports, and
other objects. Structure Query Language (SQL)

is a standard language for storing, manipulating
and retrieving data in databases (W3 Schools,
2018). As stated in the abstract, W3 schools
web-based environment is stable, consistent, and
allows numerous users at one time without ever
altering the database. The database can easily
be restored by clicking the “Restore Database”

button. Meaning each user gets a separate
instance they can reset at any time.

In this lab, you are a recently hired database
professional working at a helpdesk for Foods,
Inc., a grocery store distributor located in

Manhattan. Foods, Inc, is a specialty store selling
a variety of unique upscale imported food. From
coffee to tofu as well as deserts to dairy products.
Currently, there are twenty-nine (29) suppliers
for Food, Inc. located worldwide with several
shippers. Foods, Inc. employs 10 people with an
average of 100 customers. As a help desk

employee, it is your responsibility to answer

questions from customers, suppliers, and internal
managers of your company by querying your
Foods, Inc.’s database using SQL.

2. DATABASE STRUCTURE

Foods, Inc.’s database consists of eight (8) tables
that are already created and populated with data.

1. Customers
2. Categories
3. Employees

4. OrderDetails
5. Orders

6. Products
7. Shippers
8. Suppliers

3. LESSON: QUERYING BASICS

To access your database, click on the following
link: http://www.w3schools.com/sql/

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 2

http://iscap.info

W3schools.com is a site for web developers that

provides tutorials on everything from creating
web pages to database programming in SQL.

To query (i.e. ask a question) from a database,
you must type in a command in a SQL editor.
W3schools.com provides its own built in SQL
editor that you can access by clicking on the “Try
it yourself” button as shown in the Appendix
Figure 1.

The basic format of a query is as follows:
SELECT [fieldname]
FROM [tablename]
[WHERE condition]

Note: Where clause is optional.

For example, to view every customer’s name in
the Customers table, you would enter the
command as shown below:

SELECT CustomerName
FROM Customers;

Clicking the Run SQL>> button causes the SQL

editor to execute your query and display the
results in the lower half of the screen.

Before beginning this exercise, I encourage you
to click on each of the table names in the upper
right-hand corner of your screen to familiarize
yourself with the structure of each table. See

Appendix Figure 2.

SELECT clause
To view more than one column (field) of data in a
table, you can specify the fieldnames in the Select
clause, separated by commas:

SELECT CustomerName, City, Country
FROM Customers;

To view all of the columns in a table, you can use
the asterisk (*) as a wildcard character that
represents all columns:

SELECT *

FROM Customers;

Aliases in the SELECT clause

Did you notice that CustomerName looks really
“techie”? If you were to create a report that
displayed CustomerName as the title of a column,
the report would not look very professional.

Instead, you can make your query display this
field as a different name (i.e. an “alias”) using the
keyword “AS”:

SELECT CustomerName AS [Customer
Name]
FROM Customers;

Note: If you have a space in your alias, you must
enclose the alias in square brackets.

DISTINCT keyword in the Select Clause
Sometimes a table includes multiple occurrences
of the same value in a field (not a primary key

field, of course), and you only want to see each
occurrence listed one time in your output.
Assume we want to see a unique listing of all of
the countries in the Customers table. We can use
the DISTINCT keyword to ensure that every
country is only listed once:

SELECT DISTINCT Country

FROM Customers;

Aggregate operators in the Select Clause
In many queries, you are not interested in the
actual values of each individual row in a table, but

rather a summary of them. For example, if

someone asked you how many customers had
ever ordered from you, you could use the COUNT
operator in your select clause. For example:

SELECT COUNT(CustomerID)
FROM Customers;

This query would return the count (or the total)

number of rows in the Customers table.

Note that whenever you specify any other field in
the Select clause other than the item that you are
aggregating, you must also include a GROUP BY
clause at the bottom of your query. For example,
assume you want to know how many customers

are in each country in your table, you can count
the number of customers and group them by
Country:

SELECT Country, Count(CustomerID) as
[Customers by Country]
FROM Customers

GROUP BY Country;

Count is not the only aggregate operator available
to you. SUM, AVG, MIN, and MAX are a few
examples of others that you can use. Note,
however, that statistical functions (e.g. SUM,
AVG, etc.) can only be used on fields that contain

numbers and are defined with a numeric data
type. For instance, it would not make sense to
SUM the customer name field. However, it would

make sense to SUM the Quantity of a particular
product in the OrderDetails table:

SELECT Sum(Quantity)
FROM OrderDetails

WHERE Productid = 11;
This query produces the sum of the quantity field
for the product whose ID is 11. Note that this
query includes the use of a WHERE clause
(discussed next).

WHERE Clause

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 3

http://iscap.info

What if you want to view only those customers

that meet a certain criterion? This is where the
“Where” clause comes in. Let’s assume you want
to view customers that live in Berlin:

SELECT *
FROM Customers
WHERE Country = "France";

Multiple conditions in a WHERE clause:
What if you want to narrow down your results
even more? Let’s assume you want to view

customers that live in the country of France AND
the city of Paris?

SELECT *
FROM Customers

WHERE Country = "France" AND City =

"Paris";

What if you want to expand your results to include
everyone in France OR the USA?

SELECT *
FROM Customers
WHERE Country = “France” OR Country =

"USA";

Note that you can combine AND’s and OR’s as
much as needed to satisfy your question.

IN keyword
Assume you want to specify an elaborate OR

condition like this:
SELECT *
FROM Customers
WHERE City = "Portland" OR City = "Paris"
OR City = "San Francisco" OR City = "Boise"
OR City = "London" OR City = "Madrid" OR

city = "Walla" OR City = "Cork" OR City =
"Berlin";

SQL gives you a shortcut that eliminates much of
the typing. This shortcut uses the keyword “IN”.
The list of items following the IN keyword is the
list of items for which you are filtering:

SELECT *
FROM Customers
WHERE City IN("Portland", "Paris", "San

Francisco", "Boise", "London", "Madrid",
"Walla", "Cork", "Berlin");

Pattern matches

In our previous queries, we have been searching
for records that meet a specific criterion, such as
City = “Portland” or Country = “France”, etc.
What if, however, we do not know exactly how a
particular item is spelled? Instead of searching
for an “exact” match, we can look for a “pattern”.

For example, I want to find a customer whose
name is “Ricardo” but I don’t his last name. I can

use the following query to extract all of the

records whose customer name starts with
“Ricardo”:

SELECT *

FROM Customers
WHERE CustomerName LIKE "Ricardo%";

Note: The use of the percent (%) sign. This
symbol stands for any character or sequence of
characters.

ORDER BY clause

Assume you want to sort your results in a
particular order. You can use the ORDER BY
clause to do this. You can specify whether you
want the results to be in ascending order (A-Z)
with the “ASC” argument or in descending order

(Z-A) with the “DESC” argument. If you leave out

the argument, SQL assumes you mean ascending
order.

SELECT *
FROM Customers
WHERE Country = "USA"
ORDER BY CustomerName ASC;

You can even sort by more than one field at a
time. Because there are multiple cities and
countries listed in the Customers table, you could
sort first by Country in descending order and then
by City in ascending order with the following
query:

SELECT *

FROM Customers
ORDER BY Country DESC, City ASC;

Note: ASC does not have to be listed here as an
argument because SQL assumes that if there is
no argument specified, it will sort that field in

ascending order

JOINING tables
In all of our previous examples, we have been
querying a single table, Customers. It is obvious,
however, that our one Customers table does not
give us the whole picture. In order to get the

“bigger picture”, we need to be able to combine
data from multiple tables.

The way this is accomplished is by “joining” tables
based on fields that they have in common. For
example, click on the Products table. Notice that
it has the following fields in it:

ProductID, ProductName, SupplierID,
CategoryID, Unit, Price.

Now, click on the Categories table. Notice that it
has the following fields in it:

CategoryID, CategoryName, Description

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 4

http://iscap.info

What field exists in both tables? The CategoryID

field, right? Therefore, we can write a query that
will allow us to retrieve data out of both tables by
joining both tables on that common field:

SELECT *
FROM Products
INNER JOIN Categories ON
Categories.CategoryID =
Products.CategoryID;

Note the keywords “INNER JOIN” above. These

keywords are necessary to tell SQL that the two
tables are to be linked based this common field.

There are other types of joins in database
terminology (e.g. Left Outer Joins, Right Outer

Joins, and Full Joins), but those are beyond the

scope of this assignment.

The preferred way of joining tables in today’s
database industry is by using the keywords “inner
join”, “outer join”, etc. In this assignment, I want
you to learn an older way of performing inner
joins in case you ever run into them in industry.

An inner join can be accomplished in one of two
ways: in the FROM clause (as we illustrated
above) or in the WHERE clause.

The WHERE clause method allows you to specify
the all of the tables to be included in your FROM

clause, but the joins are specified in the WHERE
clause. For example, assume I want to join the
products, orders, and orderdetails tables. I
specify all three of them in the FROM clause, but
I join them on their common fields in the WHERE
clause as follows:

SELECT *
FROM Products, Orders, OrderDetails
WHERE Products.ProductID =
OrderDetails.ProductID AND
OrderDetails.OrderID = Orders.OrderID;

If you are having difficulty understanding the

concept of joins, (or any of the commands
presented above), w3schools.com does an
excellent job of explaining them. To view the SQL

command tutorials, click on any of the SQL
Tutorial topics on the left hand side of this screen:
http://www.w3schools.com/sql/

4. ASSIGNMENT

Scenario
You are working at the helpdesk of Foods, Inc.
and are given the task of answering questions
using the database we have been querying during

the previous lesson on querying basics. The 25

questions you have received and need to answer

are as follows.
This is your first job working with databases, so
your manager wants you to familiarize yourself

with all of the tables in the database. Therefore,
he asks you to produce a query for each of the
eight (8) tables displaying all of the columns
(fields) and all of the rows (records) using a
separate SELECT query for each table. The eight
(8) tables are listed below.

25 SQL Questions
1. Customers

To get you started, here is the first query.

SELECT *

FROM Customers

Instructions:

• Download the Answer Template.
• Save as:

YourFirstName_YourLastName_IntroSQL
Lab.

• List all 25 queries and their results in the
Answer Template (Appendix Figure 3)
that is provided for you using the format
below.

• Paste a Screen Capture of output; Screen

Capture must include three items: Sql
Statement, Results, and computer date

and time (Appendix Figure 4).
Note: You only need to display the first
screen of output for each query.

2. Categories
3. Employees

4. OrderDetails
5. Orders
6. Products

7. Shippers
8. Suppliers

After familiarizing yourself with the eight (8)

tables, your manager knows that you can handle
the remaining requests that come in to the
helpdesk.

For each of the remaining items, use the same
format for your queries and results as you did in
the previous 8 questions and continue putting

your answers in the Answer Template provided.

Query Number of records
returned

SELECT *
FROM Customers

91

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 5

http://iscap.info

9. The manager of Human Resources wants a
list of all of the employees who work at the
company. He only wants to see the

employees’ last name and first name. [You
may assume that everyone who works at the
company is included in the Employees table].

10. Your manager asks you for a list of the
product names that the company sells. He
does not want everything related to each
product – only each product’s name. He

wants them sorted alphabetically (in
descending order from Z-A). [The Products
table contains all of the products that are sold
by the company.]

11. The manager of the Purchasing department

needs the phone number of the United
Package shipper.

12. The Accounting department manager

requests a list of all of the suppliers, contacts,
and phone numbers of the suppliers in Japan.

13. A customer calls in and wants a list of all of
your products and their prices. Your results
should be sorted in alphabetical order from A-
Z.

14. Another customer calls in requesting all of

your seafood products. Note that he only

wants the name of the product in his report –
not all of the fields. [Hint: You will need to
join the Products table to the Categories table
to get this information. Your WHERE clause
should include the criterion WHERE
CategoryName = "Seafood".]

15. The manager of the accounting department

needs a list of all of the suppliers (Supplier
name only) in either the USA or the UK.
[Hint: You must use the OR operator in your
WHERE clause to receive credit for this
question.]

16. The Accounts Receivable clerk needs a list of

all the customers (including customer names,

addresses, city, country, and postal codes)
who are located in Germany, France, or
Spain. [Hint: You must use the IN operator
in your WHERE clause to receive credit for this

question.]

17. Just out of curiosity, you want to produce a
listing of the products (product name only)
that are supplied by SupplierID 1 and are in
CategoryID 1.

18. The Human Resources department requests a

list that contains the number (i.e. count) of
orders taken on each date, grouped by the
order date. [Be sure to use an aggregate

operator in your query to receive credit for
this question.]

19. One of the employees in the IT department

asks for the highest order ID that is in the
Orders table. [Hint: To receive credit for this
question, you must use the MAX function to

perform this task.]

20. To double check your results from the
previous question, you decide to run a query
that returns all of the rows and columns from

the Orders table sorted in descending order.

If you see that the order ID of the first record
in your output equals the answer you
obtained in your previous question, you know
you were correct.

21. Your boss wants to know the total quantity of

Boston Crab Meat that has ever been ordered.

[Hint: You will have to join the OrderDetails
and Products tables. Your WHERE clause
should contain the criterion ProductName =
"Boston Crab Meat", and you will have to use
the SUM function in your SELECT clause.]

22. The manager of your Customer Relationship

department wants a list of all of the
customers whose name begins with the letter
“D”.

23. Speedy Express, one of your shippers, wants

to know how many orders it has ever shipped

for you. [Hint: You need to join the Shippers
and Orders tables and include ShipperName
= "Speedy Express" in the WHERE clause.
Remember to use an aggregate operator to
receive full credit for this question.]

24. Someone from the tax department wants a

unique list of all of the customers who have
ever placed an order with the company. He
only needs the customer name, sorted from

A-Z. [Hint: You will need to join the
Customers table with the Orders table
because it is possible that a customer may
exist in the customers table who has not yet

placed an order with your company. Joining
the two tables together with an inner join
ensures that your list of customers only
includes those customerid’s that exist in both
tables (i.e. customers who have actually
placed an order).]

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 6

http://iscap.info

25. The president of the company wants a list of

all orders ever taken. He wants to see the
customer name, the last name of the
employee who took the order, the shipper

who shipped the order, the product that was
ordered, the quantity that was ordered, and
the date on which the order was placed.
[Hint: You will need to join the following
tables: Customers, Employees, Shippers,
Orders, OrderDetails, Products, and get all of
the necessary information.]

Congratulations!!! You have just helped
numerous people inside and outside of your
company to solve all kinds of problems! You
deserve a raise!

Deliverables
Submit your completed Answer Template to your
professor by the due date.

5. REFERENCES

W3 Schools. (2018). SQL Tutorial. Retrieved July
4, 2018, from

https://www.w3schools.com/sql/default.asp

Editor Notes: Teaching Notes are available for
this teaching case, please contact the author
directly.

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 7

http://iscap.info

Appendices

Figure 1

Figure 2

2018 Proceedings of the EDSIG Conference ISSN: 2473-3857
Norfolk, Virginia USA v4 n4767

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 8

http://iscap.info

Figure 3

Figure 4

