
2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://proc.iscap.info; https://www.iscap.info

Distributed Project Teams

and Software Development
An Introduction to the use of Git and GitHub for

ASP.NET MVC Development

Thom Luce

luce@ohio.edu
Analytics and Information Systems Department

Ohio University
Athens, OH 45701

Abstract

This paper describes changes, precipitated by the Covid-19 pandemic, to a capstone MIS class using
Microsoft ASP.NET MVC for team development with live-clients. The advent of the pandemic required

that the entire development effort of the class immediately transition from a largely in-class
development effort with local SQL Server and Web Server Instances to one requiring all development
be done in a virtual desktop interface (VDI). The VDI was the only way for students to get to both the
SQL Server instance and the web server where they published their applications. Code availability,
version control and joint development issues were resolved with Git and the Visual Studio interface to
GitHub. This paper summarizes the development issues faced by the student teams, how they were
resolved and provides a brief introduction to the use of GitHub from within the current version of Visual

Studio. The paper is descriptive, and the subjective nature of the live-client project deliverables made
any significant statistical analysis impossible.

Keywords: Version control, Source code management, Git, GitHub, Capstone course, Pandemic

1. INTRODUCTION

A few years ago, there was an active discussion
on the Computer Science Educator’s Stack
Exchange (Anon, n.d.) about why more
universities didn’t teach revision control. While
this discussion focused on computer science and

engineering programs, many of the
considerations also apply to IS and MIS

programs.

The (Anon n.d.) article says that one reason may
be that it is hard to teach some of the concepts if
students don’t have an opportunity to practice the

concepts and that normally requires team
projects and longer projects than are typically
assigned. They also say that students typically
don’t see a reason for using source code
management (version control) until they get into
more complex problems than those they typically

get in the classroom. The course described in this
paper fits those criteria with a three-part
individual project where each part builds on the
previous part and a major team project involving
the development of an application for an external
client.

Uzunbayir (Uzunbayir, 2018) points out that
source code management is especially

appropriate for continuous software development
projects which are based on agile practices. The
course and project described here and further
documented in (Luce 2017, 2020) use Scrum with
two-week Sprints and a published, potentially

deliverable product at the end of each Sprint.

According to Andersson (2018) and Marko
(2019) good version control should include,
among other things:

1. Making and committing small changes

mailto:luce@ohio.edu

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://proc.iscap.info; https://www.iscap.info

2. Committing frequently

3. Not committing generated code
4. Only committing verified, test code
5. Making good commit comments.

The pandemic induced version of the class, using
GitHub as described here forced students to make
and commit small changes frequently because
they have to commit every time they left the VDI.

The use of. gitignore allows the students to

control which files are committed each time. The
one exception is the .ddl file created when the
application is built, and this can be handled by
essentially ignoring it and always keeping the
local version.

Point number 4 is harder to police but students in
general understand the idea of garbage-in,
garbage-out and soon learn that committing
untested and unvalidated code leads to the
propagation of errors among their team
members.

The last point becomes clearer when students try
to find and reverse changes that they or a
teammate committed to the repository.

2. PROBLEM DEFINITION

Eighty-two students, most of them graduating

seniors and all taking a capstone live-client
software development project, left campus for

spring break on March 7, 2020. They never
returned to campus. While they were on break the
Covid-19 pandemic struck with full force causing
the University to shut down all face-to-face

classes, close campuses and move all classes
online.

The students, working in teams of 4-6, were four
weeks into an eight-week live software
development effort, developing an application for
a remote client using Microsoft ASP.NET MVC

tools (Note: We are planning to more to MVC Core
during the next academic year) and managing
their projects with Scrum. Prior to the campus
closure all students had access to computer labs

with all the development software they required,
the college network with a full SQL Server
instance and a shared web server where they

could publish their applications.

Additionally, the students had access to a virtual
desktop interface (VDI), implemented with
VMWare Horizon (VMWare Horizon 7. (n.d.)). The
VDI gave them access to the college network and

servers, including the SQL Server instance and a
web server from anywhere in the world and

allowed them to work on projects when they

weren’t working on a lab computer.
Unfortunately, the VDI installation at the time
was configured to present a clean environment

every time a student logged in. This meant
students were unable to store files on the virtual
desktop or anywhere on the virtual machine.
They could pull files into the VDI from their local
computer but that didn’t help when they were
working remotely. There were two UNC (universal
naming convention) networked drives available

from the labs and in the VDI environment where
students could store files. Unfortunately,
students could not work directly on applications
from the network drives because a number of
important ASP.NET MVC development operations,
such as data migration and publishing, didn’t

work properly when the source code was stored
on a networked drive.

Access to the VDI and the networked drives was
password protected and limited to registered
students, so sharing files with team members was
difficult. MVC applications tend to be too large to

email. For example, the compressed version of
the sample application developed for this paper
started at over 75Mbytes. As a result, students
were unable to share work via email. Students
were also unable to share network resources
unless they were also willing to share passwords
and, since these passwords were used in

numerous University systems, most students
weren’t willing to do that.

Students learned how to develop ASP webforms
applications in earlier classes and we had
established a series of shared folders on

networked drives that would allow students to
save applications and to share work.
Unfortunately, work on MVC applications is more
complex than work on webforms applications and
shared folders didn’t provide a good solution. As
mentioned previously, a number of important
development steps don’t work correctly in the

Visual Studio ASP.NET MVC environment if the
source code is stored on a network drive.
Because of this, the entire MVC application had to
be copied back and forth between the network

drive and a local drive to be used. Then there
was the most important consideration of all,
because of all the interrelated files in the MVC

environment, only one student at a time could
safely work on application development.
Students could not simply work on different parts
of the application and then copy the individual
files to one central location. Additionally, copying
the application folder back to the shared drive did

not enforce any kind of version control and the
newly revised work simply replaced the existing

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://proc.iscap.info; https://www.iscap.info

files on the drive. Size limitations on the

networked drives made simple version control via
file and folder renaming impractical if not
impossible.

While we had tried different approaches to
version control software in the past, trying
systems like Microsoft Team Foundation Server,
now known as Azure DevOps Server (“Microsoft
Team Foundation Server,” n.d.) and git (“Git,”
n.d.), but our students preferred to work in our

labs, finding the version control systems either
too complex or too foreign to what they knew.
One reason for this is that our program has
always focused on solving business problems
using technology, rather than learning technology
for its own sake. We limit the number of software

platforms and development environments
students are exposed to and focus on what
needed to be done by any set of tools. We had, in
fact, standardized our MIS assignments around
Microsoft Visual Studio, C# and SQL Server a
number of years ago for precisely that reason.
Because of this approach, most of our students

have never seen a command line process like that
used by git or the Package Manager in Visual
Studio. While it could be argued that learning to
use a command line tool would be good for their
education, our program wanted to focus is on
solving business problems, not learning
technologies or new, or old, interfaces.

So, despite our attempts to introduce version

control software the biggest criticism of the
course, semester after semester, was the inability
to have more than one person working on the
application at a time.

Things started to change in the fall of 2019 when
we realized that Visual Studio (VS) had improved
support for git and GitHub within the Visual Studio
environment (Nadagouda, 2020). We introduced
the Visual Studio interface to GitHub at the
beginning of a three-part individual software

development assignment designed to help
prepare students for the team development effort
that would follow. We attempted to sell it on the
idea that they would now be able to work from

anywhere, would eventually be able to do co-
development, wouldn’t be limited to working in
our computer labs and wouldn’t need to copy

large applications back and forth to servers every
time they wanted to work.

As might be expected, students generally didn’t
see the purpose while they were working on
individual assignments but started to understand

how it might be useful when they began the team
project. During that first semester they could,

however, avoid the VDI environment and work on

our lab computers where their files were typically
preserved for the entire semester and, being busy
students, many didn’t do much project work

outside class and lab times.

The pandemic outbreak in the spring of 2020
changed all of that. Students could no longer use
lab computers. They could no longer meet face-
to-face with their teammates. They could no
longer avoid the VDI environment with its access

to SQL Server, the web server and networked
drives. They could no longer avoid the problem
that things left on the VDI desktop or on a virtual
disk wouldn’t be there after they left the
environment. Finally, they could no longer avoid
the fact that multiple team members needed to

work on the project from different locations, often
at the same time.
The solution to these problems was the improved
graphic interface to GitHub built into Visual Studio
2019. This paper is a short overview for
instructors on how to use GitHub in Microsoft
Visual Studio Community Edition 2019 (Version

16.5.x). Much of the information contained here
has been converted to videos to help our students
use GitHub.

3.GETTING STARTED

The latest version of Microsoft Visual Studio

Community Edition generally comes with support
for git and GitHub preinstalled but if they aren’t

installed, you need to start the Visual Studio
Installer, select the current version of the
software and then select modification of the
installation. This should bring up a window

(Figure 1, Appendix) where you can select the
Workloads you wish to install or modify. For most
web development in ASP.NET MVC and ASP.NET
Core, the ASP.NET and web development
workload should work. You can also include
Python, Node.js and other workloads if you use
those.

To be sure you have the components for git and
GitHub, click the Individual Components link and
make sure the “Git for Windows” and “GitHub

Extensions for Visual Studio” are selected.

Once the extensions are installed, start Visual

Studio and create a new project. At the bottom
right-hand side of the window (Figure 2) you will
see a message that says, “Add to Source Control”
and a popup that says Git when you mouse over
it and click the small white arrow on the right.

Click on Git and the Team Explorer window should
open to something like Figure 3A. Visual Studio

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://proc.iscap.info; https://www.iscap.info

supports different source code management

systems including Azure DevOps and GitHub.
Click “Publish to GitHub”.

You will then be asked to login to GitHub, or
create an account, and to name the new
repository – EdSigCon2020 in this case (Figure
3B). Once you have done that, press Publish.

After the project is published the Team Explorer
window should look something like Figure 3C.

At this point you can switch back to the Solution
Explorer. As shown in Figure 4A, the Solution
Explorer now has a small icon at the top that
allows you to switch between Folder View (shown
in 4B) and solution view (Shown in 4A). The

window needs to be in Solution view for normal
development work (creating Controllers, testing
MVC pages, etc.). Folder view allows you to see
all the files in the folder, including files that are
hidden in Solution View.

Among the hidden files is .gitignore. This file lists

files and folders that should be ignored, not
copied, when a local repository is synchronized
with the remote repository. The list includes
various system files and compiled files that should
not be replaced when a repository is cloned to a
local computer. Many of these are bin and system
package files. Unfortunately, ASP.NET MVC uses

a number of binary files and package files that
won’t necessarily be on a local computer and that

do need to be synchronized. To see that this
happens we must edit .gitignore and comment
out two specific lines.

The exact location of these lines varies but one
says

 **/packages/*
and the other is
 [Bb]in/

To convert these lines to comments, type ## in
front of each line and save the file.

Once the edited .gitignore file is saved the entire

application should be saved (committed) to the
local repository and to the distributed repository
on GitHub. The process requires several steps,

but the steps will be essentially the same every
time changes are committed.

To commit changes, first switch to the Team
Explore window and click the small house icon
under the title bar. The Team Explorer windows

should look something like Figure 5A. Next click
Changes and enter a comment in the yellow

comment box (now white because a comment has

been entered). The comments are an important
part of the changes you are committing, and you
won’t be able to actually commit the work until a

comment is entered. As you can see in Figure 5B,
the Team Explorer window shows you what
changes you are about to commit. After entering
a comment, press Commit Staged (sometimes
this button will just say Commit All).

The commit process saves/commits changes to

the local repository. Prior to the commit all code
modifications since the last commit can be
undone and haven’t been added to the local
repository. After committing changes, you need
to synchronize the changes with the remote
distributed repository. First press the Sync link

shown in Figure 6A and then Push the changes to
the remote depository (Figure 6B). Things may
not always work quite as smoothly as this and you
may need to merge changes (discussed below).

4. CLONING A PROJECT

One major benefit of distributed source code
management is the ability to make an exact copy,
a clone, of the project at any time. In the virtual
desktop interface environment (VDI) described
earlier this means a student can login to the VDI,
clone a project and resume work. Once done the
project must once again be committed and

pushed to the server as previously described.

Figure 7 shows the Visual Studio 2019 startup
screen where you can select to Clone an existing
project. After selecting Clone, the Clone or check

out code window opens (Figure 8, underneath).
To clone from a remote repository, click GitHub.
If you aren’t already signed into GitHub you will
have to do that first and then select the project
you wish to clone (Figure 8, upper).

After the project is cloned the Team Explorer

window will look something like Figure 9A. Click
on the Solution Explorer and then the Folder View
Icon (Figure 9B) and select the sln view before
you start working on the project.

5. CHANGING AN APPLICATION

Any number of people can clone and work on a
project at the same time. Each developer
commits changes to their local repository and
then attempts to sync them to the remote
repository. Conflict occurs when one developer
has successfully pushed changes to the remote

repository that the current developer doesn’t
have. Figure 10A shows the error message that
appears when this happens.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://proc.iscap.info; https://www.iscap.info

The error message referred to in the window

says: “Error encountered while pushing to the
remote repository: rejected Updates were
rejected because the remote contains work that

you do not have locally. This is usually caused by
another repository pushing to the same ref. You
may want to first integrate the remote changes
before pushing again.”

To resolve this problem, it is necessary to first Pull
the remote changes and then resolve any

conflicts between the local and the remote
versions. Figure 10B shows the Team Explorer
after Pulling the remote code. Notice that three
conflicts are reported. To fix this, first click on
the Conflicts link and then click on one of the files
reported to be in conflict, in this case

EdSigCon2020.dll.

Figure 10C shows the conflict resolution window
that appears. This window has a “Merge” button,
a Compare Files button and buttons that allow
you keep the remote version or the local version
of the code. In this case the file in question is a

ddl file created when the project was built and one
that will be recreated every time the project is
built and run so it doesn’t matter which version
we use, but we will Keep Local.

The next file selected was called
EdSigCon2020.csproj, a file used to manage the

project. In this case there are differences
between the remote and local code that need to

be resolved for the project to work correctly. To
see the differences, click the Compare Files link
shown in Figure 10C.

Figure 11 shows the resulting display. The
version on the left, with the code highlighted in
pink is code from the remote repository while the
version on the right with code highlighted in
green is in the local repository. In this example
the developers of both the local and the remote
versions of the application had added a View to

the application.

To resolve the differences, click the Merge button
shown in Figure 10C. The display in Figure 11 is

replaced with a similar display shown in Figure
12. The new display lists the two files side by side
and highlights the differences both with color and

with boxes that highlight the difference. When
you click the checkbox next to one of the code
samples it is automatically copied to merged code
at the bottom of the screen. When you click the
checkbox next to the other set of code it is
merged with the first set of code.

At this point you can manually edit the merged

code to make any final adjustments. Once you are
satisfied with the changes, click the appropriate
button to take the remote version or keep the

local version, but which one is it? Notice the
green color in the merged section of Figure 12.
This is the local version, so you need to click Keep
Local.

After merging change to EdSigCon2020.csproject
there is one other file to check. The two versions

of this file, HomeController.cs, have different,
new methods that can be merged into one file as
shown in Figure 13.

6. BRANCHING

The senior capstone project class where this was
introduced has a three-part individual
development assignment prior to the team
project. Each part of the assignment builds on
the previous parts and students often get to part
2 or part 3, make a coding mistake they can’t
undo and have to go back and repeat all the

previous parts of the assignments before they can
continue. This problem is only magnified once the
team development project begins.

Git’s branching capability can help solve this
problem. With branching the user creates a copy
of the current project, a branch, and then works

on the branch while leaving the original alone. If
the user makes a mistake and needs to start over,

they can simply delete the branch and continue
to work on the original code or make a new
branch and work on it. Once the code in the
branch is thoroughly tested it can be merged back

into the master branch as illustrated in Figure 14

Figure 15 shows how to start the process in Visual
Studio. When the Task Manager’s Branches
button is clicked (Figure 15A) the Task Manager
displays a Create Branch window (Figure 15B)
and after the branch is created the resulting list

of branches in the repository is displayed (Figure
15C). To switch between a branch and the
master, simply double click on the desired
branch. If there are unsaved changes you will

have to commit them but once that is done, you
will be working on the selected branch. Figure 16
shows the bottom of the Visual Studio window

with the SampleBranch selected.

A branch can be modified and tested without
affecting the master or any other branch. It is
also possible to create a branch from a branch.

Once the branch is tested and complete it can be
merged back into the master. Figure 17A shows

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://proc.iscap.info; https://www.iscap.info

the Branches view of the Task Manger configured

to merge the current branch back into the master
branch. Figure 17B shows a conflict window since
the branch contains code not found in the master

branch and Figure 17C shows the conflict
resolution window. The process from this point is
exactly the same as the conflict resolution
process outlined above.

7. CONCLUSIONS

The latest GitHub additions to Visual Studio make
source code management easier than ever,
especially for students with limited technical
backgrounds. Students can now add projects to
source code management, commit changes to
local repositories and push them to remote

repositories, resolve code conflicts and merge
files, create and work with branches and
eventually merge branches, all within Visual
Studio.

The ability to perform these operations easily
means students can practice version control

techniques and it no longer matters where a
student works. They can work on campus
computers if those are available, they can work
at home or even work in environments like the
VDI that don’t allow them to save anything and
provide a clean desktop every time they run.
Students with continuing projects can use source

version control on projects that build on each
other, can easily create code branches, work on

the branch and merge back with the original after
testing is complete. In these situations, they can
also avoid large amounts of rework after
disastrous changes by discarding a damaged

branch, reverting to an earlier branch and then
moving forward with a new branch.

Students working on large, individual projects can
use these tools to implement good version control
practices while students working on team projects
no longer have to take turns coding or figure out

how to copy and paste different sets of code
together. Team members can clone a project,
work on their own from anywhere and then
commit changes to the common shared remote

repository.

All of these are skills that students will need if

they continue with development careers after
graduation, but they are skills that even non-
technical students can learn and use now.

8. REFERENCES

Anon (n.d.), “Why don’t more universities teach

revision control?” (n.d.), retrieved from
https://cseducators.stackexchange.com/que

stions/3590/why-dont-more-universities-
teach-revision-control

Andersson, Mikka, “7 Version Control Best

Practices for Developers,”, 2018, retrieved
from https://resources.collab.net/blogs/7-
version-control-best-practices-for-

developers, July 2020.

Git. (n.d.) retrieved from

https://en.wikipedia.org/wiki/Git

Luce, T., "Adding MVC to the MIS

Capstone," Issues in Information Systems,
Vol 18 (1), pp 118-127, 2017.

Luce, T., “Evolution of an IS Capstone Class,”

Information Systems Education Journal, Vol
18 (1), pp 40-47, Feb 2020.

Marco, “Best Practices for Version Control in 8
steps”, 2019, retrieved from
https://ruleoftech.com/2019/best-practices-
for-version-control-in-8-steps, July 2020.

Microsoft Team Foundation Server (n.d.)

retrieved from

https://docs.microsoft.com/en-
us/azure/devops/server/whats-
new?view=azure-devops

Nadagouda, Pratik, “Improved Git Experience in

Visual Studio 2019”, retrieved from

https://devblogs.microsoft.com/visualstudio/
improved-git-experience-in-visual-studio-
2019/ , Mar 2020.

Uzunbayir, 2018, “A Review of Source Code

Management Tools for Continuous Software
Development”, 3ed International Conference

on Computer Science and Engineering, IEEE,
2018, pop 414-419

VMware Horizon 7. (n.d.) retrieved from

https://www.vmware.com/products/horizon.
html

https://cseducators.stackexchange.com/questions/3590/why-dont-more-universities-teach-revision-control
https://cseducators.stackexchange.com/questions/3590/why-dont-more-universities-teach-revision-control
https://cseducators.stackexchange.com/questions/3590/why-dont-more-universities-teach-revision-control
https://resources.collab.net/blogs/7-version-control-best-practices-for-developers
https://resources.collab.net/blogs/7-version-control-best-practices-for-developers
https://resources.collab.net/blogs/7-version-control-best-practices-for-developers
https://en.wikipedia.org/wiki/Git
https://ruleoftech.com/2019/best-practices-for-version-control-in-8-steps
https://ruleoftech.com/2019/best-practices-for-version-control-in-8-steps
https://docs.microsoft.com/en-us/azure/devops/server/whats-new?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/server/whats-new?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/server/whats-new?view=azure-devops
https://devblogs.microsoft.com/visualstudio/improved-git-experience-in-visual-studio-2019/
https://devblogs.microsoft.com/visualstudio/improved-git-experience-in-visual-studio-2019/
https://devblogs.microsoft.com/visualstudio/improved-git-experience-in-visual-studio-2019/
https://www.vmware.com/products/horizon.html
https://www.vmware.com/products/horizon.html

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://proc.iscap.info; https://www.iscap.info

Appendix – Figures

Figure 1. Visual Studio Workload Installer window

Figure 2. Visual Studio showing Add to Source Control

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://proc.iscap.info; https://www.iscap.info

Figure 3. Adding GitHub for source code management.

Figure 4. Solution folder options.

Figure 5. Team Explorer after clicking the Home icon and the window after clicking Changes

(A) (B) (C)

 (A) (B)

(A) (B)

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://proc.iscap.info; https://www.iscap.info

Figure 6. Commit, Sync Push

Figure 7. Visual Studio project startup

Figure 8. Clone or Check Out code window

(A) (B)

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://proc.iscap.info; https://www.iscap.info

Figure 9. After cloning a project.

Figure 10. Conflict resolution and merging

(A) (B)

 (A) (B) (C)

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 11
http://proc.iscap.info; https://www.iscap.info

Figure 11. Comparing remote and local versions of EdSigCon.csproj

Figure 12. Merging files.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 12
http://proc.iscap.info; https://www.iscap.info

Figure 13. Merging changes in HomeController.cs

Figure 14. Simplified Git Flow (https://build5nines.com/introduction-to-git-version-control-workflow/)

https://build5nines.com/introduction-to-git-version-control-workflow/

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5344

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 13
http://proc.iscap.info; https://www.iscap.info

Figure 15. Creating a new branch

Figure 16. Visual Studio with SampleBranch selected

Figure 17. Steps in the Merge Process

 (A) (B) (C)

 (A) (B) (C)

