
2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://proc.iscap.info; https://www.iscap.info

An Investigation On Student Perceptions of Self-

Regulated Learning In An Introductory Computer
Programming Course.

Pratibha Menon
menon@calu.edu

Department of Computer Science,

Information Systems and Electrical Technology
California University of Pennsylvania

California, PA, 15419

Abstract

Learning how to become a self-regulated learner could benefit students in introductory level,
undergraduate courses, such as computer programming. This study explores the role of various learning
activities that can be used in an introductory programming course to develop the skills required to
support self-regulated learning. The design of the learning activities is guided by a teaching and learning
model, and a model for self-regulated learning. Students' perception of the value of various types of
learning activities is compared with their perceived confidence in applying self-regulated learning skills

for independent mastery, problem-solving, correcting errors, and experimenting with programs.

Keywords: Computer-programming, Self-Regulated-Learning, independent-mastery, problem-solving,
teaching, learning.

1. INTRODUCTION

Introductory computing courses are generally
regarded as difficult, and often see significant
number of drop outs that leads to attrition
(Kinnunen & Malmi, 2006). According to
(Beaubouef & Mason 2005), most attrition occurs

during freshman and sophomore years. Studies
have also shown that students often do not
acquire an adequate level of practice as they
complete their introductory computing courses

(Lister et al., 2004). One approach to increasing
success rates in undergraduate computer
programming courses is by teaching students

how to become more effective self-regulated
learners who will apply deliberate practice to
improve their programming skills.

Self-regulated learning is an active process where
the learner attains the desire to be independent

in their learning. They set learning goals, monitor
their goals, regulate their cognition, motivation,

and behavior towards achieving their set goals
(Pintrich, 2004). Self-regulated learners take
greater initiative in their learning process and
persevere by constantly adapting to the tasks at
hand (Zimmerman, 2002).

Becoming a self-regulated learner could

especially benefit students in challenging
undergraduate courses, such as computer
programming. The majority of learning in a
computer programming course takes place

outside the classroom, as it involves hands-on
practice in writing, compiling, and testing
computer programs. However, many college

students are not effective self-regulated learners
(Bembenutty, 2008). Freshmen students often
rely on the support of their teachers during
secondary schooling to direct their learning
processes. Therefore, many freshmen students
find it challenging to engage in self-directed

learning that requires repetitions of cycles of
planning-practice-and-reflection.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://proc.iscap.info; https://www.iscap.info

This study explores the value of various learning

activities that can be used to teach cognitive skills
required to support self-regulated learning. The
context of this study is an undergraduate level,

introductory programming course. This study was
conducted in a class of 22 students, at a public
university. The study considers various teaching
and learning approaches used to model and
instruct the cognitive strategies required to apply
self-regulated learning in a computer
programming class. This study attempts to find

the perceived self-efficacy of students to learn
programming, after they were exposed to the
learning activities designed to promote SRL. The
perceived value of each of the learning activities
of the perceived self-efficacy of students is
analyzed, in an effort to guide future design of

teaching and learning activities.

2. RELATED WORK

This study assumes that learning the practice of
computer programming takes place as a cyclical
exchange of knowledge and information between

the learner and an external learning environment.
Besides the interaction of the learner with
external agents, a learner is also assumed to go
through an internal process that regulates the
thoughts and actions within the mind of the
learner. A Self-Regulated-Learning (SRL) model
is used to identify various steps in the thought

process of a self-regulated learner.

2.1 The teaching-learning model
For this study, the interaction of the learner with
the learning environment is assumed to take
place in two ways; 1) between the learner and the

teacher, and 2) between the learner and an
external learning tools such as an Integrated
Development Environment (IDE). These
interactions may be termed as the Teacher-
Practice cycle and the Teacher-Modeling cycle
(Laullilard, 2012). The Teacher-Practice cycles
involve cycles of interaction in which the teacher

elaborates and displays the ideal way to practice
a skill and provides feedback to the learner
questions. The teacher-modeling cycle considers
the interaction between the learner and the

learning tool, which in this study is the IDE.
Teacher-Modeling cycles influence the learner's
abilities to engage in independent and deliberate

practice to improve programming and problem-
solving skills. The IDE provides immediate
feedback to students and provides opportunities
for students to engage in repeated practice and
self-regulated learning. Although there might be
several relevant learning interaction between the

learners, or between a learner-tutor and learner-
Internet these are beyond the scope of this paper

In a programming course, the Teacher-Practice

cycle typically consists of code-demonstrations
that are used to discuss coding and problem-
solving practices. The Teacher-Modeling cycle is

enabled through suitable practice problems that
require the use of an IDE to implement solutions.
A teacher may provide additional feedback and
support to help students understand and to
appropriate actions based on the feedback
provided by the IDE.

2.2 The Self-Regulated Learning Model
Self-Regulated-Learning (SRL) is a research area
under which a considerable number of variables
that influence learning such as, self-efficacy,
volition, and cognitive strategies are studied
within a comprehensive and holistic approach. A

meta-analytic study of SRL identifies various
models that researchers can utilize those that
better suit their research goals and focus
(Panadero, 2017). This study draws from
previous studies on SRL that posits that Self-
regulated learning can be taught (Pintrich &
Zusho, 2002). SRL strategies can be transferred

to students through instructions that are specific
to the learning context (Perels, Dignath, &
Schmitz, 2009). These studies show that
providing direct instructions on specific
strategies, and the use of an adequate learning
environment can enhance students’ self-
regulated learning. The instruction on the use of

a specific self-regulation strategy should explain
how to apply the strategy, when to use it, and

why it should be done.

The model of SRL that is used in this study is
derived from the work of Zimmerman

(Zimmerman & Moylan, 2009). Zimmerman’s SRL
model is organized into three phases:
forethought, performance, and self-reflection. In
the forethought phase, the students analyze the
task, set goals, and plan how to reach them.

In the performance phase, students execute the

task, monitor their progress, and use self-control
strategies to keep themselves cognitively
engaged and motivated to finish the task. Finally,
in the self-reflection phase, students assess and

try to understand the factors that might have
impacted their success or failure. The self-
reflection phase generates reactions that can

positively or negatively influence how the
students approach the task in later performances.

The SRL model includes the regulation of
cognition, motivation, and emotions.
Zimmerman’s cyclical phase model has been

tested in a series of studies. Studies that compare
experts and non-experts in sports show that

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://proc.iscap.info; https://www.iscap.info

experts performed more SRL actions (Cleary &

Zimmerman, 2001) (Cleary et.al, 2006).

Figure 1 . Zimmerman’s Self-Regulated-
Model (Zimmerman & Moylan, 2009)

Zimmerman’s three-phase SRL model could be
applied to model the learning process in a
computer programming course. In a
programming course, students need to analyze

the requirements of the task and constantly

monitor their code to find errors (syntactical,
logical, and runtime errors) before arriving on an
acceptable programming solution. After
completing a task, it would help the students to
and reflect on their coding habits and practices so
that they can improve their performance next

time. By providing students with suitable
instruction during the Teacher-Practice cycles,
the teacher can model different ways by which
students may monitor their practices. Students
could apply these learning strategies to take
control of their learning during the Teacher-

Modeling cycles.

Previous studies have examined the role of self-
regulation within the educational context of

computer programming (Bergin, et. al, 2002)
(Kumar et. al, 2005) (Chen, 2020) (Ramirez, et.
al, 2018). The focus of these studies has been to

evaluate the impact of self-regulated-learning
strategies on the coding performance of students.
Another study by Castellanos, et. al, uses the
source code produced by students to study
student motivation, performance, use of learning
strategies (Castellanos, 2017). On the contrary to
the two aforementioned studies, the study

described in this paper evaluates the perceived

value of teaching and learning activities and the
perceived ability of students to acquire the
cognitive skills required for self-regulated

learning in a programming course by learning
appropriate cognitive and metacognitive
strategies through source code development.
Extensive recent work on SRL exists in the area
of building online, adaptive learning systems with
open-learner-models (OLMs) that allows learners
to visualize and inspect their progress during the

learning process. It has been pointed out that
OLM can support metacognition and self-
regulation (Bull & Kay, 2013). Moreover,
researchers have incorporated the use of OLM in
all phases of self-regulation, i.e. preparation,
performance and appraisal, and in the areas of

cognitive, metacognitive, motivational, and
emotional support (Hooshyar et.al, 2020). For
example, OLM has been used to improve self-
assessment accuracy incorporating dialog-based
support (Suleman et.al, 2016), and to improve
engagement in a programming course (Hossieni
et.al, 2020). All these studies were performed in

the context of full-online learning that doesn’t
include any direct intervention by a teacher
during the learning process. The study described
in this paper models a typical freshman-level,
under-graduate class room scenario, in which the
teacher still plays a central role in mediating the
self-regulation strategies of students. Therefore,

the focus of this paper is on a teaching-learning
model that includes the central role of a teacher

in designing and supporting the learning process
by adapting to the needs of the learners.

3. THE DESIGN APPROACH

The instructional design that is evaluated in this
study incorporates teaching strategies for the
Teacher-Practice cycle, and suitable learning
activities for the Teaching-Modeling cycle. The
teaching methods are chosen such that they
incorporate the three phases of Zimmerman’s

SRL model.

3.1 Designing the Instructional Activities
The teacher-practice learning cycle consists of

activities through which the instructor, who is also
an expert programmer, models the programming
practices. Table 1 shows the instructional

activities in the Teacher-Practice cycle. Code-
demonstrations (code-demos) provide an
elaborate explanation of the programming
process through task analysis, code development,
execution, and testing. The sample code used for
the code-demo contains extensive documentation

and comments that students can refer to later on.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://proc.iscap.info; https://www.iscap.info

The forethought/planning phase of the code-

demo typically includes a detailed explanation
and analysis of the problem statement to identify
the functional and data requirements. These

planning activities are written down as part of the
code documentation, in the comments section of
the code. The instructor may use real-world
examples to show the value of the problem. The
inputs and the expected outputs are identified
and a test plan is created.

The performance phase of the code-demo
typically involves the instructor elaborating on the
systematic thought process required to write the
program sequences. Some of these thoughts are
written as comments next to the code
statements. Techniques like tracing the variables,

or printing out the values of the variables are
used to help students test and incrementally build
their code.

Table 1. Instruction Activities – Teacher-
Practice Learning Cycle

The self-reflection phase of each code-demo is
used to analyze various options for accomplishing
the same outputs. Good coding practices,

relevant to the problem, are also discussed.
Students are encouraged to reflect upon the
challenges they encountered while solving the
problem and ways in which they can improve their
problem solving and programming skills.

Integral to the Teacher-Practice learning cycle are

the Q&A sessions. The Q&A sessions are
conducted after each learning activity session

described in Table 2. During the Q&A sessions,
besides answering questions to clear any
misconceptions, or problem solving difficulties
that students would have experienced while
completing a learning activity. The instructor may

also discuss the assignments and some of the
common errors and misconceptions that would
have appeared in student submissions.

3.2 Designing Practice Exercises

The Teacher-Practice cycle is followed by the
Teacher-Modeling cycle, during which students
are expected to apply the application

development practices discussed by the teacher.
Students are assigned several different types of
practice exercises as class activities.

The Do-It-Yourself (DIY) exercises, which are not
exactly the same, but very similar to the
problems explained during the code-demos, let

students try out the sample-code written by the
instructor. By observing the sample code,
students can emulate the practices of the
instructor and apply all three phases of SRL to
document and write the code by themselves using
an IDE. DIY activities require students to read the

instructor’s detailed comments and check their
understanding before they begin to write the code
by themselves. The code samples of the DIY
activities were free of errors and contains the
coding best-practices. The DIY activities also
advise students to incrementally build their code
rather than just copy the entire code all at once.

A sample DIY activity is shown in Appendix B.

Table 2. Type of Practice Exercises –

Teacher-Modeling Cycle

It has been commonly noticed by several
instructors that novice programmers are often
challenged by the programming errors that they
generate while learning to write programs. Many
students require help to understand the types of

errors and how they can learn from their mistakes
to improve their programming skills.

To help students gain practice and become
comfortable with detecting and correcting logical

and syntax errors, activities called Hack-the-code
and Messed-up-code have been developed by the

instructor. The Messed-up code contains one or
more errors that students need to identify and
correct. Hack-the-code is an activity in which
students are given a piece of written code whose
logic they need to alter to obtain the required set
of outputs. The Messed-up code and Hack-the-

code activities intend to encourage students to
feel comfortable in experimenting with their code.
Another activity that encourages experimentation

Forethought Performance Self-Reflection

Q&A

Sessions

Task planning ,

Goal Setting for

the class

Discussions on

Identifying and

correcting errors;

adopting good

practices

Choosing

practice

materials to

strengthen

practice

Instructional activities -

 Teacher-Practce Learning Cycle

Code

 Demos

Problem Analysis,

 Solution planning,

Reviewing Test

Plans

Choice of constructs,

Identifying right

sequence,

Tracing variables,

Running Tests

Evaluating Style

&

Practices and

Errors
Activity name

DIY

Test-Tube

Messed Up Code

Hack the Code

Analyze an errored-code

Experiment with a given code to produce a

set of outputs (including errors)

Test a given code by varying the inputs,or by

making suggested changes to obtain a given

output

Try out every code-demo independently,

following the instructor's

comments/explanation.

 Practice Exercises -

Teacher-Modeling Learnng Cycle

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://proc.iscap.info; https://www.iscap.info

is Test-Tube activity. This activity requires

students to develop and execute a test-plan for a
given code and in most cases, also requires them
to trace the variables. All these activities are

designed to teach cognitive and meta-cognitive
strategies that improve coding practice. Samples
of Hack-the-code, Test-Tube and Messed-up code
activities are shown in Appendix B.

The goal of the learning activities is to let students
work on the problems by themselves and learn

how to ask for help from their peers and
instructor. Students are encouraged to apply the
three phases: task analysis, performance
monitoring, and self-reflection for every task they
perform. The Q&A sessions were specially geared
towards addressing the problems students faced

while working on the activities. The class
activities were expected to be completed during
the class time and students received class
participation points for attempting, and not
necessarily completing these activities.

4. THE STUDY

The main intent of this study is to collect, and to
analyze, the perceptions of students on their
ability to apply the skills required for self-
regulated learning in an introductory
programming course. This study was conducted
in an undergraduate computer programming

course that teaches introductory programming
using Java. An initial survey was conducted at the

beginning of the course to gauge the concerns of
students in regards to learning a programming
course. This survey was also used to measure the
prior knowledge of programming and the

perceived self-efficacy to learn programming at
the beginning of the course. A final, end-of-the-
course survey was conducted to study the student
perceptions on the usefulness of various learning
activities that formed the instruction of the
course, and the perceived self-efficacy of
students to learn computer programming at the

end of the course.

Both the initial and final surveys questions are
shown in Appendix A. Both the surveys used a 5-

point Likert scale to score student responses.
Twenty students attempted the initial survey and
only nineteen students attempted the final

survey. This discrepancy in the number of
students was accepted because the initial and
final results weren’t matched, compared or
correlated. Students weren’t individually
identified in the survey and there was no
matching of data collected during the initial and

final surveys. These surveys were anonymously
administered to students. The initial survey

results were used only to understand the prior

experience and perceived self-efficacy of students
prior to attending the course. The final survey
was intended to study the student perceptions at

the end of the course, whose instruction was
primarily made up on programming activities that
was designed to promote self-regulated learning
skills. The final survey responses are not used to
show how much the student perceptions changed
as a result of the instruction in the course. Rather,
this study looks into the perceived usefulness of

different types of practice activities that
constituted the instruction in the programming
course.

Students were required to attempt all the
assigned learning activities assigned in a set

sequence. The scope of this study is limited to
evaluating the cognitive learning strategies
required to develop self-regulated learning in the
programming course. It is assumed that
practicing these cognitive skills would give
enough learning experience to help students
regulate their attitudes and behavior towards

learning how to write programs. The perceived
effectiveness of the learning strategies could be
impacted by motivation, beliefs, and emotional
factors that were not directly addressed through
the instruction.

5. RESULTS

The results from the initial and final surveys are

discussed in this section. The pre-course-
implementation survey measures the students'
concerns, prior programming skills, student
beliefs, and learning preferences. The post-

course-implementation survey measures the
perceptions of students towards various learning
activities designed for the Teacher-Practice and
Teacher-Modeling cycles. The post-survey also
measures the perceived confidence in applying
various self-regulated learning skills, as a result
of their experience with the learning activities.

5.1 Students’ perception of their self-
efficacy
Table 3 shows the results of an initial survey

conducted during the first week of the course. It
is seen that students were less concerned about
how much they can master the contents of this

course than they were about having the right
skills and abilities to learn to program. The survey
was administered to students after the course
syllabus was discussed by the instructor.

Table 3 also indicates the self-reported prior

experience with computer programming. Since
data that is collected using a 5-point Likert scale

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://proc.iscap.info; https://www.iscap.info

is ordinal, a Spearman-rank correlation method is

chosen to investigate the correlation between the
degree of prior exposure to computer
programming, and the learning concerns reported

by students.

Table 3. Survey response distributions on
the perceived self-efficacy and
programming knowledge - prior to the
course.

It was found that the degree of prior exposure to
programming was negatively correlated (, with a

moderately significant correlation coefficient, rho
of -0.6, p = 0.005) with the students’ concerns

about having the right skills to learn to program.
The correlation between prior exposure to
programming and concerns about learning the
subject matter was weak (rho = -0.3, p=0.005).
These results show that students with lesser prior
exposure to programming were more concerned
about their preparedness for acquiring

programming skills than they were on their
readiness to learn the knowledge contained in the
subject matter. This result pointed to the
possibility that an instructional strategy that
included more activities to build programming
skill, might be valuable to develop the perceived

self-efficacy of students in their ability to develop

programming skills.

5.2 Student Perceptions of independent/
self-directed study –prior to the course
The initial survey conducted at the beginning of
the course, indicated responses on some of the

prior beliefs and preferences that students bring
to the course. As shown in Table 4, a large
number of students do not believe that they can
master programming through independent/ self-

directed study, although many did indicate that

they tend to reflect on the problems when they
feel stuck in their assignments.

Table 4. Survey response distributions on
the perceived ability for self-
directed/independent study - prior to the
course

Results also indicated that only a few students
would like to get help just so that they can finish
their tasks quickly. It appeared from the results
that almost all the students were open to learning
the skills that are necessary to master a subject
through self-directed study.

5.3 Perceptions of the effectiveness of
learning activities after the course
The final survey results showed the perceived

value of various learning activities that became a
regular part of instruction throughout the

semester. Table 5 shows that a majority of
students agreed that practicing and participating
in these learning activities were valuable in
acquiring the programming skills that they were
expected to learn from the course.

All the activities, except for the Q&A sessions,

required students to apply their knowledge and
skills to identify the problem, plan the solution,

Very

Much

Disagree

Somewhat

 Disagree

Neutral Somewhat

Agree

Very

Much

 Agree

I am concerned

about how

much I can

master the

subject matter

2 3 2 7 6

I am concerned

if I have the

right skills to

learn

programming

1 6 6 3 4

I have some

prior knowledge

of programming

8 3 2 3 4

Very

Much

Disagree

Somewhat

 Disagree

Neutral Somewhat

Agree

Very

Much

 Agree

When I am stuck

with problem(s) in

assignments,

I tend to reflect on

'why exactly I am

stuck'

2 4 3 9 2

I generally ask for

help so that I can

quickly finish the

assignments

0 8 7 2 3

I believe that one

can master

programming only

by working

independently on

hands-on learning

activities.

3 7 2 5 3

 I think it is

important to know

not just what to

learn, but also how

to learn that

subject.

0 0 0 13 7

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://proc.iscap.info; https://www.iscap.info

write the code, correct errors, and test the code

–all by themselves. These activities provided
different ways for students to apply one or more
SRL skills related to learning how to develop

programming solutions. The Q&A sessions was
the time when students obtained help and
feedback from the instructor.

Table 5. Student response distribution on

the effectiveness of learning methods in
developing programming skills – final
survey results

Survey results on students’ perceptions, depicted
in Table 6, showed that 18 out of 19 respondents
agree or strongly agree that they feel comfortable

to experiment with their code. All the respondents
also report that they feel confident in their ability

to correct programming errors. Out of the 19
respondents, 16 (, which is 85% of respondents)
feel that learning how to program has improved
their problem-solving skills. However nearly 9 out
of 19 (, which is 48% of) respondents don’t

believe that they can master programming only
by working independently on hands-on activities.
The popularity of the Q&A sessions, as shown in
Table 5 shows that students find the help
obtained through the Q&A , as valuable as the
self-directed study.

5.4 Correlation studies
A Spearman-Rho correlation analysis was used to
study the correlation between various factors
indicating the perceptions of self-efficacy and

self-directed learning (listed in Table 6,) and the
perceived value of various instructional methods

(listed in Table 5). For the sample of 19
respondents, it was observed that there existed a
significant correlation (, rho = 0.65, p=0.005)
between the belief of students on their ability to
independently master programming and the
perceived value of doing many DIY activities.

Table 6. Student response distribution on
the perceptions of the self-efficacy and
self-directed learning – final survey results

No significant correlation was found to ascertain
that the perceived values of Test-tube or Hack-
the-code are associated with any of the factors

that indicate the perceived abilities (, as listed in
Table 6) to learn how to program. However, a

moderately significant correlation (rho = 0.57,
p=0.005) was detected between the value of the
Messed-up-code activity and the ability to master
programming by independent learning. A
correlation (rho = 0.6, p= 0.005) was found

between the value of the Q&A sessions and the
perception that learning to program has improved
their problem-solving skills.

The perceived confidence in problem-solving
skills was significantly correlated with confidence
in correcting errors (rho = 0.62, p=0.005), and

with the confidence in learning from mistakes
(rho = 0.6, p=0.005). However, the correlation
between confidence in problem solving and belief
in independent mastery, wasn't statistically

significant. Based on the results, even if a student
is confident in problem-solving, the student did

not necessarily believe that independent mastery
of programming is possible. The confidence in
problem solving is also not significantly correlated
to the perceived value of the hands-on learning
activities, for the given student sample.

Very

Much

Disagree

Disagree
Neutral Agree

Very

Much

 Agree

Q&A

sessions
0 0 1 11 7

Messed

Up Code 0 0 1 12 6

Hack the

Code
0 0 1 11 7

Test Tube
0 0 1 7 11

DIY
0 0 4 13 2

Very

Much

Disagree

Disagree
Neutral

Agree

Very

Much

 Agree

I feel that learning

how to program

has improved my

problem solving

skills

0 0 3 7 9

I feel confident to

experiment with

my programs

0 0 1 8 10

I feel confident

that I can correct

programming

errors

0 0 0 9 10

I believe that one

can master

programming only

by working on

independently on

hands-on activities

1 2 6 7 3

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://proc.iscap.info; https://www.iscap.info

5.5 The Instructor’s reflection on the results

Both the Q&A session and the DIY activities
involved the instructor’s participation and support
to a much greater extent than did the Test-tube,

Hack-the-code, or the Messed-up-code activities.
The DIY activities did not require students to
troubleshoot or to apply problem analysis, as
much as the other activities required them to do.
The DIY activities resembled mini-projects, while
the other learning activities were mostly like skill-
builder activities. The value of completing the DIY

programs, by ‘walking in the shoes’ of the
instructor seems to correlate more with the
beliefs that students can master programming
through independent practice.

By reflecting upon the classroom experience, it

was observed that students did not require much
help from the instructor to complete the DIY
activities. The code documentation and
worksheets were very elaborate and there were
plenty of comments, a readymade test plan, and
test cases. Students could complete the DIY
program perfectly with very little help once they

start the task. On the other hand, the other
activities came with nothing more than a problem
statement and the expected output(s). To
complete the Test-tube, Hack-the-code, and
Messed-up-code activities, students required help
on various aspects of problem-solving such as,
understanding the task, identifying the required

variables and logic, identifying the errors, etc.

From an instructor’s perspective, seeking help is
an important skill required for self-regulated
learning. However, the belief that one can master
programming through independent learning

wasn’t strongly correlated to the perceived value
of the Test-tube and Hack-the-code activities, for
which students needed more help. A student who
considers Test-tube and Hack-the-code as
valuable to their learning , is still not likely to say
that they believe they can master programming
independently, possibly because they needed

more help and support to complete the tasks.
Compared to the Test-tube and Hack-the-code
activities, the Messed-up-code did not require
students to alter the inputs. Therefore, from an

SRL standpoint, Test-tube and Hack-the-code
involved a lengthier thought process than what
was required for the Messed-up-code activity.

In addition to needing more help with the Test-
tube, Messed-up-code, and Hack-the-code,
students tended to make more mistakes, even
though they would eventually figure out a way to
correct the mistakes. From an instructor's

perspective making and correcting mistakes
indicates self-regulated learning. However, if

students perceive mistakes negatively, they are

less likely to register these activities as
contributing to their confidence to learn. This is
possibly the reason why despite the perceived

value of the Test-tube, Messed-up-code, and
Hack-the-code, they were not correlated to the
confidence for independent mastery. These
learning activities were not high-stakes graded
activities and students received participation
points just for attempting them. Perhaps, the
instructor needs to find ways to give incentives to

students to self-reflect on how the mistakes have
improved their performance.

The Q&A sessions were designed to encourage
students to ask questions. Most of the Q&A
sessions were associated with the weekly

assignments and the class activities such as the
Test-tube, Hack-the-code, and Messed-up-code.
A significant correlation between confidence in
problem-solving skills and the value of Q&A
indicates that students are likely to view help and
support as factors that improve their problem-
solving.

6. CONCLUSIONS

This study investigates the student perceptions of
the role of teacher-practice activities and teacher-
modeling activities in an introductory computer
programming class. The majority of the students

agree that the hands-on learning activities had
greatly helped them to acquire the programming

skills, even though more than half of the students
reported that they were not confident in their
abilities to master programming independently.
Emulating the instructor's coding process through

the DIY activities is what the students found as
most valuable in mastering their programming
skills independently; and the Q&A sessions were
strongly perceived and correlated with confidence
in problem-solving skills. Future iterations of the
course could consider tweaking the self-directed
learning activities so that students can see the

value of making mistakes and getting help, in
their ability to master programming
independently.

This study does not objectively evaluate how
realistic are the students in reporting their
perceived confidence in applying SRL. Due to the

limitations of the approved research protocols, no
subject research could be conducted to identify
students and relate the survey responses to their
performance in class activities. However,
irrespective of their performance, or even their
actual growth in self-regulated learning, how

students feel about their self-regulated learning
skills matter in their future decisions to engage in

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://proc.iscap.info; https://www.iscap.info

programming courses. Future studies can look

into learning strategies that could help students
regulate their behavior and motivation as they
encounter greater challenges in their learning

process.

7. ACKNOWLEDGEMENTS

The author would like to thank and acknowledge
the PASSHE-FPDC grant for funding the instructor
during summer 2019. The grant funding helped

the author to acquire the required professional
development on Self-Regulated Learning and
Design Thinking that was applied in this study.

8. REFERENCES

Beaubouef, T., & Mason, J. (2005). Why the high

attrition rate for computer science students:
some thoughts and observations. ACM
SIGCSE Bulletin, 37(2), 103-106.

Bembenutty, H. (2008). The teacher of teachers
talks about learning to learn: An interview
with Wilbert (Bill) J. McKeachie. Teaching of
Psychology, 35, 363–372.

Bergin, S., Reilly, R., & Traynor, D. (2005)
"Examining the role of self-regulated learning
on introductory programming
performance", Proceedings of the first
international workshop on Computing
education research, pp. 81-86, 2005.

Bull, S & Kay, J. (2013) “Open learner models as

drivers for metacognitive processes,” in
International Handbook of Metacognition
and Learning Technologies. Springer, pp.
349–365.

Castellanos, F. H. Restrepo-Calle, F., González. A,
& Echeverry, J. R. (2017) "Understanding the

relationships between self-regulated learning
and students source code in a computer
programming course," 2017 IEEE Frontiers in
Education Conference (FIE), Indianapolis, IN,
2017, pp. 1-9,.

Chen, C. S., (2002) "Self-regulated learning
strategies and achievement in an introduction

to information systems course", Information

technology learning and performance journal,
vol. 20, no. no. 1, pp. 11.

Cleary, T., Zimmerman, B. J., & Keating, T.
(2006). Training physical education students
to self-regulate during basketball free throw
practice. Res. Q. Exerc. Sport 77, 251–262.

Cleary, T., & Zimmerman, B. J. (2012). “A cyclical
self-regulatory account of student
engagement: theoretical foundations and

applications,” in Handbook of Research on

Student Engagement, eds S. L. Christenson
and W. Reschley (New York, NY: Springer
Science), 237–257.

Hooshyar, D. M., Pedaste, K., Saks, ̈A., Leijen,
E. Bardone, & Wang, M. (2020) “Open
learner models in supporting self-regulated
learning in higher education: A systematic
literature review, ”Computers & Education,
p.103878

Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P.,

Malmi, L., Pollari-Malmi, K., Schunn, C., and
Sirkiä, T. (2020) Improving Engagement in
Program Construction Examples for Learning
Python Programming. International Journal
of Artificial Intelligence in Education.

Kinnunen, P., & Malmi, L. (2006). Why students

drop out CS1 course? Paper presented at the
Proceedings of the second international
workshop on Computing education research.

Kumar, V., Winne, P., Hadwin, A., Nesbit, J. et al.,
(2005) "Effects of self-regulated learning in
programming", Advanced Learning
Technologies. ICALT 2005. Fifth IEEE

International Conference on, pp. 383-387.

Laurillard, D. (2012) Teaching as a Design
Science. (New York: Routledge).

Panadero, E & Alonso-Tapia, J. (2014). How do
students self-regulate? Review of

Zimmerman’s cyclical model of self-regulated
learning. Anales de Psicología. 30. 450-462.

Panadero E. (2017). A Review of Self-regulated
Learning: Six Models and Four Directions for
Research. Frontiers in psychology, 8, 422.
https://doi.org/10.3389/fpsyg.2017.00422.

Perels, F., Dignath, C., & Schmitz, B. (2009). Is it
possible to improve mathematical

achievement by means of self-regulation
strategies? Evaluation of an intervention in
regular math classes. European Journal of
Psychology of Education, 24(1), 17.

Pintrich, P. (2004). A conceptual framework for
assessing motivation and self–regulated
learning in college students. Educational

Psychology Review, 16, 385–407.

Pintrich, P. R. (2000). The role of goal orientation
in self-regulated learning. In M. Boekaerts,
P.R. Pintrich, & M. Zeidner (Eds.), Handbook
of self-regulation (pp. 451–502) (pp. 451–
502). San Diego, CA: Academic Press.

Pintrich, P. R., & Zusho, A. (2002). The

development of academic self-regulation: The
role of cognitive and motivational factors. In

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://proc.iscap.info; https://www.iscap.info

A. Wigfield & J. S. Eccles (Eds.), A Vol. in the

educational psychology series. Development
of achievement motivation (p. 249–284).
Academic Press.

Ramírez, J. J. E , Rosales-Castro, L. F. , Restrepo-
Calle & González, F. A. (2018) "Self-
Regulated Learning in a Computer
Programming Course," in IEEE Revista
Iberoamericana de Tecnologias del
Aprendizaje, vol. 13, no. 2, pp. 75-83.

Suleman, R. M. , Mizoguchi. R & Ikeda. M,

(2016) “A new perspective of negotiation-

based dialog to enhance metacognitive skills

in the context of open learner models,
”International Journal of Artificial Intelligence
in Education, vol. 26, no. 4, pp. 1069–1115,

publisher: Springer.

Zimmerman, B. J., & Moylan, A. R. (2009). Self-
regulation: Where metacognition and
motivation intersect. In Handbook of
metacognition in education (pp. 311-328).

Routledge.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 11
http://proc.iscap.info; https://www.iscap.info

Appendix A

Initial survey - conducted prior to the course

Very Much

Disagree- 0

 Disagree-

1

Neutral- 2 Agree - 3 Very Much

 Agree-4

I generally ask for help so that I can quickly finish the assignments

I am concerned about how much I can master the subject matter in this course

I am concerned if I have the right skil ls to learn programming

I have some prior knowledge of programming

I believe that one can master programming (or any subject) only by working

independently on hands on activities.

 I think it is important to know not just what to learn, but also how to learn that

subject.

When I am stuck with problem(s) in assignments, I tend to reflect

on 'why I am stuck'.

Very Much

Disagree- 0

 Disagree-

1

Neutral- 2 Agree - 3 Very Much

 Agree-4

Hack-the-code: Experimenting with the code to alter the outputs helped

me learn better

I believe that one can master programming

by working only independently on hands on activities.

I feel that learning how to program has improved my problem solving skil ls

I feel confident to experiment with my programs

I feel confident that I can correct programming errors

Messed-up-code: Analyzing and fixing an errored code is a vauable learning

method for this course

Final Survey - conducted at the end of the course

Please answer these questions based on your learning experience

in the CIS 120 course

The Q&A session is a valuable learning method for this course

Test-Tube: Experiementing with code is a valuable learning method

for this course

DIY : Trying out the code-demos using Eclipse is a valuable learning

method for this course

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 12
http://proc.iscap.info; https://www.iscap.info

Appendix B
1. A Sample DIY problem:

Shopping Cart – Create a file called ShoppingCart.java

Please refer to the code demo called VariableDataEntry.java prior to attempting this

problem. This problem shows you how to:

• obtain data from the user, scan this data and save it in an appropriate variable.

• perform arithmetic using the numeric data types,

• print a message displaying values of all the variables.

In this program you will capture data of an item for a ShoppingCart application. Your

program may need to know the following properties: customer_name, item_name, item

price, sales tax rate, item quantity, calculated total price of all items in the cart

A ShoppingCart may need the following behaviors:

• Obtain the following data from the user for for a single item: customer_name,

item_price, sales_tax_rate, item_quantity. Scan these values and store them in

variables of appropriate data type.

• Calculate the total price of all items in the cart

• Print a message listing all the item variables with its total calculated price (that

includes the sales_tax factored in).

2. A Sample Hack-the-Code activity:

Refer to the code called AgeCheckerCase2.java.

 Hack this code so that your decision structure calculates the ticketPrice based on the

following rule: For an age that is less than 12 , give a 20% discount on ticketPrice , but for

an age greater than 65, give just 10% discount on the ticketPrice for all other age groups

between and including 12 and 65, give just 2% discount on ticketPrice.

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 13
http://proc.iscap.info; https://www.iscap.info

3. A Sample Test-Tube activity

1. Determine the value of result, i/4 and (i<gate) for each iteration of the while loop

and complete the table shown below

gate = 5 n =2 i result i/4 i<gate

5 2 0 0

5 2

5 2

5 2

5 2

5 2

2. Determine the value of result, i/4 and (i<gate) for each iteration of the while loop

and complete the table shown below for a gate = 10 and n = 3. Add more rows if

needed.

gate = 10 n =3 i result i/4 i<gate

5 2 2 0

5 2

5 2

5 2

5 2

5 2

2020 Proceedings of the EDSIG Conference ISSN: 2473-4901
Virtual Conference v6 n5358

©2020 ISCAP (Information Systems & Computing Academic Professionals) Page 14
http://proc.iscap.info; https://www.iscap.info

A Sample Messed-up Code Activity

Problem : Use decision structures to check if a variable userLetter is a vowel in the English

alphabet. Assume the value of userLetter is already obtained from the user and set to an

appropriate data type in each of the following responses. Correct the errors each of the

following responses that assumes a given data type for userLetter,

 Response 1: userLetter is a String.

if (userLetter.equalsIgnoreCase "a"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "e"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "i"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "o"){

System.out.println("Letter is a vowel");

}

if (userLetter.equalsIgnoreCase "u"){

System.out.println("Letter is a vowel");

}

else{

System.out.println("Letter is not a vowel");

}

Response 2: userLetter is a char

if(user == a){

 System.out.println("Its a Vowel ");

 }

else if (user == e){

 System.out.println("Its a Vowel ");

 }

else if (user == i){

 System.out.println("Its a Vowel ");

 }

else if (user == o){

 System.out.println("Its a Vowel ");

 }

else if (user == u){

 System.out.println("Its a Vowel ");

 }

else {

 System.out.println("Not a vowel ");

 }

Response 3: userLetter is a String and

you need to use a || in your if condition

if else(letter.equalsIgnoreCase("A||E||I||O||U")){

 System.out.println("you got a vowel");

}

Response 4: userLetter is a char and

you need to use a || in your if condition

if (userLetter = a || e || I || o || u) {

System.out.println("This letter is a vowel.");

else if () {

System.out.println("This letter is not a vowel.");}

