
2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 1
https://proc.iscap.info; https://iscap.info

Teaching Case

The Building Blocks of Requirements: A LEGO©-

Based Activity for Introducing Requirements
Engineering and the System Development Lifecycle

Michael Scialdone

mscialdone@mays.tamu.edu
Information and Operations Management

Texas A&M University
College Station, TX 77843, USA

Amy J. Connolly
conno3aj@jmu.edu

Computer Information Systems & Business Analytics

James Madison University
Harrisonburg, VA 22807, USA

Abstract

We describe an original in-class exercise that was designed with LEGO© Serious Play to both introduce
students to requirements engineering and, more broadly, begin acquiring hands-on understanding of
the system (or software) development lifecycle. Our exercise emphasizes information transfer to create
an experience which addresses why requirements engineering is critical to the development lifecycle
and how easily it is prone to communication problems. Further, we discuss the evolution of the exercise,
lessons learned, and potential refinements for future instantiations.

Keywords: Requirements engineering, active learning, systems analysis and design, project
management, software engineering, serious play

1. INTRODUCTION
The Telephone Game is an activity, usually played
in elementary school, where a message is given
to someone, then whispered to the next person in

a line or circle of individuals. As the message
moves from one person to the next, it is usually
misheard, misunderstood, and misinterpreted.
When the message reaches the final individual, it
has shifted in form, substance, and meaning,
often rendering it indecipherable.

This game’s main lesson is that the transfer of
ideas is problematic depending on how we send
and receive messages. Although one might be

tempted to write off The Telephone Game as
superficial or juvenile, its emphasis on how easy
it is for messaging to go awry has real and
practical implications far beyond the schoolyard

playground. Indeed, effective communication,

that is, the extent to which the transfer of ideas
maintains a high degree of fidelity as it moves
between individuals, is paramount to success in
contexts where that success is predicated on
cooperation and collaboration.

One such context is that of requirements
engineering, a cornerstone of software and
systems development. In fact, of the many
challenges associated with this activity, “the lack

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 2
https://proc.iscap.info; https://iscap.info

of proper communication and knowledge transfer

between software stakeholders is among the
most important” (Ghanbari, Similä, & Markkula,
2015). Given that an accurate determination of

requirements is critical to the success of any
system (Davey and Parker, 2015), students
learning about the System Development Life
Cycle (SDLC) need to understand why
requirements engineering is important and how it
is prone to communication problems like those
highlighted by the Telephone Game.

Regardless of the specific development
methodology appropriated in practice (i.e., agile,
waterfall, etc.), requirements engineering is a
vital task because mistakes made at this point
affect future work, and if not caught, result in

higher costs to correct them (Chakraborty,
Baowaly, Arefin, & Bahar, 2012). Therefore,
students need to recognize the potential for
errors rooted in communication between the
individuals typically involved in this task.
Furthermore, as the SDLC is inherently a
collaborative effort that may include, but is not

limited to, groups that include management, end-
users, developers, engineers, UX designers,
technical writers, and others; effective
communication becomes a vital concern across
the entire array of tasks in any instantiation of a
lifecycle.

To this end, we designed an in-class, hands-on
exercise that introduces requirements

engineering to students learning about the SDLC,
serving to stress the importance of effective
communication. This exercise demonstrates that
transferring ideas (namely, requirements)

between individuals is no simple task, but rather,
demands intentionality and even strategic
planning. It teaches that what and how we
communicate will ultimately impact the extent to
which outcomes of the SDLC are successful.

As a note of clarification, we use the acronym

SDLC in this paper to refer to either the Software
Development Life Cycle or the System
Development Life Cycle. As explained by
Ruparelia (2010), “System development life cycle

models have drawn heavily on software and so
the two terms can be used interchangeably in
terms of SDLC, especially since software

development in this respect encompasses
software systems development”. This activity we
present is applicable to both software or systems.
We begin with a brief review of literature to
establish the importance of and problems
associated with requirements engineering and

some of the challenges in teaching it, as well as
examples of similar exercises that have been

reported on. We then present our exercise in

which students construct an artifact out of

LEGOs©, which stresses information transfer
between peers and calls attention to what
requirements engineering is and why doing it well
is critical to SDLC. We then discuss anecdotal

evidence about the utility of this exercise, how it
evolved, lessons learned, and thoughts on
applying it to modified contexts for other
instructors.

2. BACKGROUND

Requirements Engineering is a key activity of the
SDLC and “involves using various fact-finding
techniques, such as interviews, surveys,
observation, and sampling” to identify

requirements for software and/or a system under
development (Tilley, 2020, p. 465). Properly

communicating requirements between individuals
involved in the SDLC is paramount to success in
IT projects but also incredibly difficult to do well.
Many of the top reasons that IT projects fail relate
to poor requirements elicitation and
communication issues (Hughes, Rana &
Simintiras, 2017). Therefore, IS students must

have a healthy respect for the difficulty in
communicating and eliciting requirements as
such will serve to underscore the importance of
information documentation and transfer
throughout the SDLC.

Software and IT systems are amorphous,

dynamic, and complex. These traits increase the
difficulty for organizational stakeholders to
accurately and easily explain what the system
should do and what it should look like. Cutting-
edge technologies combined with outsourcing and
virtual teams amplify these problems. Any IS

course that teaches how to communicate and
work in a team to engineer software systems
needs to stress the importance of strong
communication and include applied ways to show
students how to do it.

Here, we present an exercise in which students

assume one of two roles that are instrumental to
the earliest stage of requirements engineering,

which is the elicitation of requirements (thus,
relying heavily on communication). The first role
is that of a stakeholder, often defined as anyone
affected by an organization’s performance, which

includes but is not limited to employees,
suppliers, customers, and shareholders. We
associate the term primarily with those future
end-users of a system who try to articulate
specific requirements they need. Our second role
is that of an engineer, those professionals
concerned with developing software/systems

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 3
https://proc.iscap.info; https://iscap.info

from inception, to operation, to ongoing

maintenance (Sommerville, 2016). We chose this
terminology as the exercise was developed in a
Software Engineering course (see our explanation

in the next section), however, we do not see our
activity as limited only to the context of that
specific course.

This exercise is based on LEGO© Serious Play
(LSP), rooted in the pedagogical philosophy of
Constructionism, which posits that when students
construct artifacts, the process of creating

requires engagement with classroom content,
resulting in a more meaningful learning
experience (Papret, 1991). LSP is a technique
where “individuals build three-dimensional

models using a special mix of LEGO© bricks

designed to inspire the use of metaphors and
story-making” (Rasmussen, 2006, p. 59).
Although our exercise was not intended to inspire
metaphor or to fabricate fiction per se, it

nonetheless draws on similar benefits. Namely,
we use construction blocks as a flexible medium
for hands-on, experiential learning that allows
students to solve problems and communicate

through LEGO© builds (Peabody & Noyes, 2017).

Using LEGO© to help teach concepts in systems
analysis and design is unorthodox but not entirely
new. For example, Freeman (2003) used them in

simulation and roleplay exercises. There, LEGO©
simulated currency and stood in as building
blocks. In Freeman’s example, volunteers

performed in front of the entire class, three per
round in multiple rounds.

Furthermore, we are not the first to deploy

LEGO©-based lessons for concepts related to
system or software development. For example,
Paasivaara, Heikkilä, Lassenius, and Toivola
(2014) created a SCRUM-simulation game where

Masters students learned about different roles

and agile concepts by constructing a LEGO build©.
Similarly, Gama (2019) reported on using LEGO©
for hands-on, SCRUM-oriented lessons (adapted

from industry-trainings) on understanding
requirements and project planning and
management. Meanwhile, Kurkovsky (2015)

piloted five case studies utilizing LSP to teach
lessons related to requirements engineering,
software architecture, design patterns, socio-

technical systems, and dependability dimensions.

Kurkovsky, Ludi, & Clark (2019) note that
because of the array of possible approaches one
can take to solving Software Engineering
problems, “it is sensible to rely less on lecture and
focus more on active learning experiences

mimicking what students may encounter” in their

future occupations (p. 218). Furthermore,

additional research has supported that while LSP
activities may seem simple on the surface, it has
the potential to support coverage of numerous

Software Engineering subjects (López-Fernández,
Gordillo, Ortega, Yague, & Tovar, 2016). Indeed,
one group of scholars reported that “the students
learned more than we expected regarding
requirements management and customer
collaboration, effective teamwork and the Scrum
roles” (Paasivaara et al., 2014, p. 390).

Although it may share similarities, our exercise
differs from those referenced above in that it
gives students experience in assuming key roles
(engineers and stakeholders), and it focuses on
highlighting communication between these roles.
Given that building software (or even system

design in general) is steeped in ambiguities
(because software is not a discretely defined
tangible good), stakeholders and engineers
usually face unique challenges in communicating
to one another about the product to be built and
the nature of the problem the product is intended
to solve. The artifact that the students build

serves as a centerpiece around which they have
this experience, and as a launching point for the
discussion about communication that takes place
following the exercise.

As explained in our introduction, this exercise
served both as a gateway into the subject of

requirements engineering, and as a lesson about
the importance of doing it well (specifically,

requirements elicitation). In particular, we sought
to leverage our LSP Requirements activity as a
means to impress upon students that
requirements engineering is an activity which

requires effective communication to solve
problems. How we do this is now addressed in the
details of the exercise.

3. THE LEGO-BASED EXERCISE

While we believe that this exercise may be

applicable to a range of situations, our description
of it is embedded within the Software Engineering
course in which we developed and used it.
Accordingly, we begin this section with

background about the course to help the reader
better understand its relevance as a learning
activity. We then provide some fundamental

background about the activity, in particular,
explaining how applying LSP was relevant to a
topic about problem-solving, communication, and
constructing an artifact within the context of the
SDLC.

In the remainder of this section, we present the
instructions for our LSP exercise. Our description

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 4
https://proc.iscap.info; https://iscap.info

here is specific so as to explain how to conduct

the exercise in the classroom. We include
discussion questions to facilitate reflection on the
exercise. In the next section (Discussion), we

then suggest how others may adapt this based on
their needs, audience, materials, constraints, etc.

A Software Engineering Context
This exercise was tested in an upper-level,
undergraduate Software Engineering course that
included Computer Science and Computer

Information Systems students. While coding
experience was assumed, the course itself was
about the non-technical aspects of creating
software, namely, the activities emphasized in
the SDLC besides coding. The SDLC in this course
consisted of specification, development,

validation, and evolution (Sommerville, 2016).
While these terms may differ from those of stages
typically identified in the systems approach to the
SDLC, many of the tasks, goals, and outcomes of
both flavors of the SDLC are consistent. Notably,
this includes requirements engineering.

Our LSP exercise took place about the fourth or
fifth week of the semester, by which time the
students had learned about Software Engineering
and process approaches in general, namely
traditional waterfall and agile. The remainder of
the semester drilled down into various activities
and processes embedded in the SDLC.

Because the LSP exercise served as an

introduction to specification, it was the starting
point for hands-on experience with SDLC
activities as at this point, students were only
familiar with the broad themes associated with

each stage. Specification begins with
requirements engineering, which is also a
common term for a parallel set of tasks in the
analysis phase of Information Systems
development. Analysis consists of techniques and
processes to elicit functional and non-functional
requirements from organizational stakeholders

(Sommerville, 2016; Tilley, 2020). Additional LSP
activities related to SDLC concepts were also
developed and employed in the same Software
Engineering course over several semesters.

However, for the sake of parsimony, this paper
focuses only on this one activity related to
Requirements Engineering.

We provide instructions for the exercise as an
amalgamation of best practices developed based
on implementing the exercise in the classroom.
Over the multiple semesters it was done, the
parameters were changed each time, with some

versions proving more fruitful than others. More
detail about alterations we’ve made to the

exercise are explained following the directions.

These adaptations may prove informative to
those who wish to implement the exercise in their
own instruction.

Overview of Exercise
Each package of LSP comes with booklets
depicting five semi-abstract builds (hereto
referred to as SABs) that can be created with the

LEGO© included in the kit. We describe them as
semi-abstract because they may resemble a
known object or creature (such as a crocodile or

bird), but they also include difficult-to-define
characteristics that don’t as well align with our
understanding of these known objects or
creatures. Four examples from the booklet are
shown in Figure 1 for a sense of context. Of note,

the numbers associated with each example
correspond with instructions provided in the LSP

booklets and are irrelevant to our exercise.

Figure 1: Semi-Abstract Builds (The LEGO

Group, 2009)

By having a student familiar with a SAB direct
another who is unfamiliar with the SAB to
reconstruct it as accurately as possible, the
“fuzzy” nature of these SABs serves as a
surrogate to communicating requirements about

because (like software/system requirements)
they are not neatly defined and easily described.
That is, we find an opportunity to highlight
communication challenges that are present in
requirements engineering by having students try
to negotiate the particulars of reconstructing a
SAB.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 5
https://proc.iscap.info; https://iscap.info

Exercise Directions

At the start of the class session, students are told
that they’ll participate in an activity requiring
them to assemble in pairs, with one playing the

role of a stakeholder (simply referred to here as
Stakeholder), and the other playing a software
engineer (or simply, Engineer). They decide
which student assumes which role. They’re told
that the exercise relates to the topic of
requirements engineering, but that how it relates
will be explained following the activity. Students

are then given the following specific instructions:

For this exercise, you’ll be working together to

replicate an assigned LEGO© build as accurately as
possible. Whomever you decide is the Engineer
will do the actual construction of the build, while

the Stakeholder will provide instruction about
what that build should look like. Throughout this

exercise, only written and verbal communication
may be exchanged meaning no drawings or
photographs may be shared in any way.

In a few minutes, you and your partner will be
separated. Engineers will remain in this room at
their seats, and will each receive one LSP kit to

familiarize yourself with until you get instructions
about what to do next. Meanwhile, Stakeholders
will be sent to a nearby room where they will
receive an image of a build they’ll ask their
partner to reconstruct. They will have a few
minutes to write, but not draw, instructions for

their partners to reconstruct it (such as describing

what to build and/or how to build it).

Pairs will meet initially in the hallway (halfway
between rooms) for two minutes to exchange
instructions or additional information. Then, over
the next 45 minutes, the instructor will

periodically (every 10 minutes or so) call a
meeting where you can briefly reconvene in the
hall to ask questions, provide additional written
instruction, or pantomime about the build.

After 3 to 4 iterations, the exercise will end and
Stakeholders will be invited back to the room with

their Engineer partners to see how well they were
able to reconstruct the build. A short discussion

about the exercise will follow, the lessons from
which will underlie our next few class sessions.

Figure 2: Comparison of LSP Builds

Exercise Outcomes
The result of the Engineers’ efforts typically bore
an approximate likeness to the SAB, but was
imprecise in detail. For example, they may have
created a creature with extended wings and long
legs, or a crocodile-like four-legged animal (as

shown in Figure 1) but done so without accuracy
as seen in Figure 2. Figure 2 illustrates the
original SABs on the left, and examples of what
student outcomes typically resembled on the
right. Of note, we reconstructed these student

builds and photographed them for this paper as

the authors had not previously documented
actual student builds following the exercise.

In-Class Discussion
Students playing the role of Stakeholders tend to
be quite enthusiastic about seeing the extent to
which the Engineers were able to accurately

reconstruct their build, while Engineers are keen
to learn what image the Stakeholder was working
from. As a result, when the class reconvenes at
the end of the exercise, the instructor should give
the students a few minutes to discuss amongst
themselves how they think the exercise went, and
how/why their results were as they were.

Instructors do need to ensure that they have at
least 5 minutes at the end of class to emphasize

that the LEGO© activity was intended to be a first-
hand experience to relate to as the following class
sessions go into various aspects of requirements
engineering, and in particular, requirements
elicitation. This activity is meant to be a launching

point, and so before the students are dismissed
from the class session, the point needs to be
stated explicitly: “you just experienced that

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 6
https://proc.iscap.info; https://iscap.info

bringing someone else’s vision to life is inherently

a difficult task, and one that is inextricably bound
to successful communication.”

The discussion about the exercise itself may take
place, if time permits, during the same class
session or during the following one if there is not
sufficient time remaining. Regardless, some
relevant questions to pose to students should be
similar to what follows.

First, we asked students to what extent did you
find that the build constructed by Engineers
reflected the picture of the build held by
Stakeholders? The purpose of this question is to
draw attention to the fact that despite the
incredible unlikelihood that any pairs got their

final product to match the abstract build image,
they likely were able to achieve notable
similarities.

This first question is important because it shows
that communicating ideas isn’t, in and of itself,
difficult (as evidenced by most teams achieving a

rough approximation); but that precise and
accurate transfer of detail about an idea from one
person to another, is! This is something that the
second question seeks to explicitly draw out
further by asking which factor or factors do you
believe most influenced discrepancies between
the picture and the final product? Here, students

will likely articulate that less obvious concepts like
brick size, color, and specific arrangement were

points that were less likely to be thought of as
relevant facets of communication, whereas the
larger picture received most of the focus.

Third, to Engineers, what did you find most
challenging about putting your build together?
This question is meant to probe students’ sense
about their awareness to the fact that describing
and communicating an abstract idea presents
unknown unknowns, that is, that the
Stakeholders don’t necessarily have an idea

about the sorts of tools and constraints that are
very much present for Engineers, and therefore,
are unlikely to account for potential
misunderstandings.

This is similar to our next question, which is posed
to Stakeholders, what would have been most

helpful to you to better communicate the nature
of your vision to Engineers? Notably, we know
from experience that most absent from the
exercise is useful feedback to Stakeholders as
Engineers work. As such, this question brings that
point to the foreground, which in turn serves to

underscore the same point from question three.
That Stakeholders and Engineers work with

fundamentally different vocabulary, concepts,

and in varying circumstances. This is a point that
is revisited time and again not only in the lessons
on requirements engineering, but throughout the

remainder of the course.

Through this exercise, students have practiced
taking on a role (Engineer or Stakeholder) and
have had the ability to observe how their role’s
position has impacted their teammate’s role.
Now, through discussion sparked by questions

such as the above, the instructor has the
opportunity to highlight the importance of
communication in respect to not only asking the
right questions and providing the clear answers,
but also in being as specific as possible. The role
of detailed documentation is also a point of

relevance to establish to minimize variances in
potential interpretations.

4. DISCUSSION

In this section, we discuss concerns related to the
exercise including anecdotal evidence of student

engagement, multiple variations we’ve tried (and
challenges faced), and some suggested tips that
may be useful for future iterations. All of this is
intended to assist the reader in determining its
applicability to their teaching.

Evidence of Outcomes

Although capturing data on, analyzing, and
reporting the learning outcomes of this exercise

is beyond the scope of this paper; we do have
some anecdotal evidence supporting the value of
our LSP activities in respect to Requirements
Engineering and other SDLC-related concepts.

First, the instructor of this course consistently
noted that students were particularly enthused on
days in which LSP activities were a part of the
course curriculum. In fact, a reputation developed

around the use of LEGO© in this course as one
student wrote in their end-of-term (EOT)
evaluation, “coming into the course, I wasn’t sure
how I really felt about having to do all of the class

activities I heard about, but in the end they were
very entertaining and helpful for the class.”

This enthusiasm and engagement around LSP
activities was not simply limited to this course as
another student wrote, “I really enjoyed the Lego

activities it made the concepts of software
engineering fun and I wish my other computer
classes could be more hands on like this.”

This theme of not only being engaged, but
recognizing the practical utility of the exercise,
emerged in other comments made by students in

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 7
https://proc.iscap.info; https://iscap.info

the EOT evaluations, with one stating, “the in-

class activities were the best part of the course,
and allowed us to tie what we learned during
lecture into the whole scheme of things,” and

another writing, “the in class activities were not
only really fun but really helpful with
understanding the material.” Figure 3 is a photo
taken from one of the in-class activities. While
these comments are not necessarily solely
focused on the LSP exercise described in this
paper, they do lend support to the value of this or

similar hands-on, non-technical activities related
to teaching the SDLC.

These instructor observations and comments
reflect those that have been reported by other

scholars utilizing LEGO© for similar purposes.

Among these is that such activities are highly-
popular and allow students to reflect meaningfully

on course concepts (Paasivaara et al., 2014); that

class sessions which include LEGO© tend to be
more interesting (Gama, 2019); and that they
assist students in achieving learning goals
(Kurkovsky et al., 2019). Additionally, these
activities elicit creativity and imagination around
subject matter (Kurkovsky, 2015) which may
otherwise be difficult to present in engaging

ways.

Figure 3: Software Engineering Students

working with LEGO© Serious Play in class

Arguably, another point of convergence between
our anecdotal observations and comments that
was also remarked upon in the literature is that
“many students reported looking forward to

more” (Kurkovsky, 2015, p. 218) LEGO© activities
and that students find these “highly fun and
motivating and very useful” (López-Fernández et

al., 2016, p. 10).

Past Variations

As stated in the previous section, our exercise has
gone through iterations in which we’ve made
adjustments and alterations to what is presented

in the directions. One major point we’ve struggled
with is if Stakeholders should be allowed to create
images or provide Engineers with any types of
visual information. We allowed this in at least two
iterations, only to find that Stakeholders were
trying to either trace the final build, or to draw it
out as realistically as possible. Such approaches

defeat the spirit of the exercise which is to
illustrate the difficulties inherent in describing,
explaining, or otherwise conveying semi-abstract
ideas to others. In the end, it also deemphasized
verbal communication which is often the primary
form of ideation for Stakeholders.

Similarly, we tried one iteration in which
Stakeholders could sit next to Engineers so they
could see the build in-process, and so that
communication could be constant between them.
Stakeholders tended to, again, subvert the spirit
of the exercise by stating specifically bricks to

pick up and where to place them; treating the
Engineer almost as a surrogate rather than as a
conduit through which their information could be
transformed into a build. In this approach, the
semi-abstract nature of the builds was lost in
translation as there was little need to try to
explain them from Stakeholder to Engineer.

We also played around with the extent to which
Stakeholders were allowed to see the builds in

progress. One iteration saw the Stakeholders
welcomed into the room where the builds were
happening, periodically for a minute or two. This
allowed them to give overly specific verbal

instructions (as when they were allowed to sit
side by side), albeit in a far briefer period of time.

Given the exercise’s emphasis on demonstrating
the difficulties, first-hand, in translating and
transmitting a semi-abstract idea from one
person to another; we believe it works best to

minimize feedback to the Stakeholder about the
Engineer’s progress. This then puts the onus on
the Engineer to try to verbally describe their build
back to the Stakeholder, which, again, puts the

spotlight on communication as key to the success
of requirements elicitation.

Modifications and Additional Applications
Although this exercise was conceived of, and
constructed around LSP, other instructors may
adopt materials that are more suitable to their
purposes. One author of this paper invested in a
dozen and a half LSP kits following their

introduction to it at a conference, and the SABs
pictured in the manuals included in each kit

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 8
https://proc.iscap.info; https://iscap.info

presented a ready-made centerpiece to this

exercise. However, we can certainly envision that
similar outcomes and lessons may be had if
different materials were deployed provided that

(1) Engineers have all of the materials to build
that which Stakeholders direct them to, and (2)
that the builds Stakeholders instruct Engineers to
construct are semi-abstract in nature.

While we executed this activity in a Software
Engineering course, because the SDLC is taught

(albeit with different foci) in both Computer
Science and Information System oriented
disciplines, the LSP exercise is just as suitable in
any course where understanding or documenting
requirements is an integral lesson. We can see
this activity being adopted in courses in Systems

Analysis and Design, Project Management, and
even User-Experience Design.

5. CONCLUSIONS

In the game of telephone, one might start with a
phrase and end up with an entirely non-sensical

salad of words. In our LSP exercise, we start with
creations that are semi-abstract and end up with
builds that, more often than not, resemble their
originals tangentially with the finer details lost. In
both cases, we find that communication between
senders and receivers is easily muddled with the
clarity of meaning lost in translation.

Given that requirements engineering is an early
and key activity in the SDLC, it is important that

students understand how vital communication
between stakeholders and developers are. This

paper presented a LEGO©-based activity intended
to highlight just how easy it is for ideas to get
misinterpreted when engaging with individuals
who have different perspectives but have the

same goal in mind. It is our hope that instructors
will adopt, adapt, and apply this exercise in ways
that work best for them in their classroom.

6. REFERENCES

Chakraborty, A., Baowaly, M. K., Arefin, A.,

Bahar, A. N. (2012). The Role of Requirement
Engineering in Software Development Life

Cycle. Journal of Emerging Trends in
Computing and Information Sciences(3), 5,
723-729.

Davey, B. & Parker, K. R. (2015). Requirements

Elicitation Problems: A Literature Analysis.
Issues in Informing Science and Information
Technology, 12, 71-82.

Gama, K. (2019). An Experience Report on Using
LEGO-based Activities in a Software
Engineering Course. SBES 2019, September
23–27, 2019, Salvador, Brazil.

Ghanbari, H., Similä, J., & Markkula, J. (2015).

Utilizing online serious games to facilitate
distributed requirements elicitation. The
Journal of Systems and Software, 109, 32-49.

Hughes, D. L., Rana, N. P., & Simintiras, A. C.
(2017). The changing landscape of IS project
failure: an examination of the key factors.
Journal of Enterprise Information
Management(30), 1, 142-165.

Kurkovsky, S. (2015). Teaching Software
Engineering with LEGO Serious Play.

ITiCSE’15, July 6–8, 2015, Vilnius, Lithuania

Kurkovsky S., Ludi, S. and Clark, L. (2019).
Active Learning with LEGO for Software
Requirements. Proceedings of the 50th ACM

Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March

2, 2019, Minneapolis, MN, USA. New York:
ACM.

The LEGO Group (2009). LEGO© Serious Play:
Imaginopedia for Core Processes (booklet).
The LEGO Group, Denmark.

López-Fernández, D., Gordillo, A., Ortega, F.,
Yague, A., and Tovar, E. (2016). LEGO®

Serious Play in Software Engineering
Education. IEEE Access(4).

Paasivaara, M., Heikkilä, V., Lassenius, C., and
Toivola, T. (2014). Teaching Students Scrum
using LEGO Blocks. ICSE Companion’14, May

31 – June 7, 2014, Hyderabad, India.

Papret, S. (1991). Situating Constructionism. In
S. Papert & I. Harel (Eds), Constructionism:

Research Reports and Essays, 1985-1990
(pp. 1-11). Norwood, NJ: Ablex Publishing
Corporation.

Peabody, M. A. & Noyes, S. (2017). Reflective

boot camp: adapting LEGO© SERIOUS PLAY
in higher education. Reflective Practice(18),
2, 232-243.

Rasmussen, R. (2006). When You Build in the
World, You Build in Your Mind. Design

Management Review, 17, 56-63.

Ruparelia, N. B. (2010). Software Development

Lifecycle Models. ACM SIGSOFT Software
Engineering Notes(35), 3, 8-13.

Sommerville, I. (2016). Software Engineering,
10th Edition. Boston: Pearson Education

Limited.

Tilley, S. (2020). Systems Analysis and Design,
12th Edition (Shelly Cashman Series). Boston:
Cengage Learning.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5582

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 9
https://proc.iscap.info; https://iscap.info

Zowghi, D. & Coulin, C. (2005). Requirements

Elicitation: A Survey of Techniques,
Approaches, and Tools. In A. Aurum, & C.
Wohlin (Eds) Engineering and Managing

Software Requirements Berlin, Heidelberg:
Springer.

https://proc.iscap/

