
2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 1 
https://iscap.us/proceedings/ 

Teaching Case 

 

An Instructor’s Tutorial and Student Project for 
Extending SQL Implementation to Calculate 
Percentile Aggregates for Ungrouped Data 

 

 
John N. Dyer 

jdyer@GeorgiaSouthern.Edu 
Department of Enterprise Systems and Analytics 

Georgia Southern University 
Statesboro, GA 30458 

 

 

Abstract 

More and more organizations are becoming data-driven, and more so than ever, teachers, students, 
and practitioners are expected to possess an adequate level of skills in basic Structured Query Language 
(SQL) as well as advanced skills. It is increasingly important that all those practicing SQL possess a 
higher level of SQL proficiency than a basic database class. Although relational database management 
systems (RDBMS) encompass many query tools, they were not designed to behave like spreadsheets 
or analytical software. As such, one often goes back and forth between the database and software or 

spreadsheet applications to organize and summarize data before analysis. While the RDBMS allow one 
to effectively organize data, spreadsheets enable one to more easily summarize data using basic 
aggregate descriptive statistics such as the mean, median, mode, percentiles, counts, frequency 

distributions, etc. Most RDBMS allow only a small set of standard SQL aggregate functions such as for 
calculating the mean, sums, counts, variances, and standard deviations. This teaching tutorial tutorial 
presents a set of queries that allow higher-level learning of aggregate queries within the RDBMS, 

including percentiles, deciles, and quartiles, as well as the median for describing ungrouped data. In 
doing so, lesser-studied SQL aggregates and functions are introduced including  the MODULO operator, 
the IIF comparison operator, and several formatting functions. It is hoped that this tutorial can serve as 
a resource to facilitate higher learning skills and expand the capabilities of teachers, students, and 
practitioners in SQL. The complete Access database including tables and queries is available from the 
author upon request. 
 

Keywords: Database System, SQL, Relational Algebra, Aggregate Function, Percentile. 
 
 

1. INTRODUCTION 
 
The purpose of this teaching tutorial is primarily 

to be a teaching case type application to enhance 

and expand the SQL skill sets for teachers, 
students, and everyday users of SQL in 
academics and industry. The topics in this tutorial 
have experienced little formal addressing in the 
literature or in practice. Most examples in this 
tutorial use small data sets for the sake of 

visualization but can readily be applied to very 
large data sets, limited only by the user’s 
computational power.  It also introduces an 

expanded skill set beyond the basic SELECT 
statement, by allowing readers to see the breadth 
of possibilities for calculating aggregates, 

functions and expressions related to database 

attributes. This tutorial is meant to be timely in 
terms of bridging a gap between classroom SQL 
and within-field practice, wherein most IS/CS and 
analytics persons are expected to “hit-the-
ground-running” in SQL. By digesting SQL topics 
at a higher level, it is hoped that the reader can 

enhance their SQL skill set in terms of thinking of 
how much more can be achieved beyond basic 



2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 2 
https://iscap.us/proceedings/ 

SQL when one knows the limits and opportunities 

within the practice of SQL programming.  
 
SQL has been primarily the domain of information 

systems, database and computer science 
educators, students, and practitioners. As the 
world is progressing towards digitalization, there 
has been a shift wherein many organizations are 
now data-driven and depend heavily on database 
and data analytics practitioners possessing SQL 
as a top skill. As such, SQL has become 

ubiquitous across most functional areas of 
modern organizations and has become imperative 
that a greater cross-section of teachers, students 
and practitioners possess more than just basic 
SQL skills, hence, the overreaching purpose of 
this tutorial. It is hoped that this tutorial will make 

a meaningful contribution to higher-level SQL 
skills in the classroom, as well as in practice. 
 

2. BASIC SQL AND AGGREGATE 
FUNCTIONS 

 
SQL readily allows the organizing and 

summarizing data within the domain of the 
SELECT and JOIN operators, projecting various. 
aggregate functions of attributes as output, 
calculated fields (expressions), arithmetic and 
comparison operators, IF statements, and 
formatting, among others. A good SQL tutorial 
can be viewed online at SQL operators (n.d). SQL 

includes a small set of built-in aggregate 
functions including the AVEREGE, COUNT, SUM, 

MINIMUM, MAXIMUM, VARIENCE, STANDARD 
DEVIATION, and the FIRST, LAST and TOP 
aggregates. Standard SQL was not designed to 
calculate aggregates such as the percentiles, 

deciles, quintiles,  quartiles, median, cumulative 
frequency distributions, mode, etc. For these 
undefined SQL aggregates, one might 
asynchronously export data into an external 
software application such as an Excel 
spreadsheet. Some practitioners may find this 
acceptable, not having the need to expand the set 

of aggregate functions, but if the RDBMS is often 
used to provide real-time data aggregation, such 
as used in managerial dashboards and visual 
summaries, the external software approach may  

not always the best approach. It works best when 
the external software has a synchronous link to 
the RDBMS. 

 
Aggregates discussed in this tutorial are often 
important in providing a complete organization 
and summary of large data sets that may be used 
on a case-by-case basis with other descriptive 
aggregates, or as additional metrics in a larger 

summary like a managerial dashboard. 
 

3. PERCENTILE AGGREGATES 

 
What standard RDBMS SQL leaves out are 
aggregates used to summarize data using 

percentile aggregates, like deciles, quartiles, 
quintiles, and the median, as well as frequency 
and percent frequency distributions of grouped 
numerical and categorial data. All spreadsheet 
and analytical software applications provide 
numerous aggregate functions that one would 
use to summarize a dataset. 

  
Percentiles are relative locations of data in an 
ordered data set. The Pth percentile value  (p) of 
a set of data is the value at which p percent of the 
data is below it. Along with other numerical 
summaries used in statistics and data analytics 

such as the count, average, variance, and 
standard deviation, percentiles provide other 
measures of the distribution of data values. 
Common percentiles include deciles (10th p, 20th 
p, … 90th p), quintiles (20th p, 40th p, 60th p, 
80th p) and quartiles (25th p, 50th p and 75th p).  
 

Percentiles are largely used in statistics and 
analytics, and in the everyday life of data 
consumers. Percentiles are used to describe the 
distribution of values such as test scores, health 
indicators, and other measurements. That is, 
given a percentile value, we calculate the value’s 
relative standing in the data set, even if we do 

not know the actual data value. Likewise, analysts 
use the interquartile range (IQR), calculated as 

Q3-Q2, as a measure of variability (dispersion) 
for the middle 50 percent of data, and use the 
IQR as a tool to detect outliers in data. The 
minimum is also known as the 0th p, while the 

maximum is the 100th p, and the median is the 
50th p. If one’s test score is at the 75th percentile, 
that tells us that 75% of the other scores fall 
below that score.  
 
In general, the percentile value of a data value is 
given by Percentile = [(number of values below a 

selected value) / (total number of values)]*100. 
Table 1 reflects the ranks (ID) and VALUES of n 
= 17 ordered numbers. To calculate the percentile 
for value 103, solve Percentile = [8/17)*100 = 

47th percentile, so 47% of values are below 103. 
In this case, the data value is first specified, and 
the associated percentile is calculated. 

 



2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 3 
https://iscap.us/proceedings/ 

 
Table 1: Ranks and Values 

 
On the other hand, the percentile value can be 
specified, and the associated data value can be 
located or calculated. This is the case in this 
tutorial. Percentile locations are based on ranks 
of ordered data. One may specifically want the 

25th or 50th percentile value, corresponding to Q1 
(First Quartile) or Q2 (Median), or the 
interquartile range along with the minimum and 
maximum values. Depending on whether there 

are an odd or even number of data values (n), the 
value at the Pth percentile will be located at a 
specific rank, or between two ranks. When 

between two ranks, the Pth percentile value is 
interpolated as an average of the values between 
the two ranks. This tutorial assumes an arithmetic 
average of values of ranked neighbors between 
the Rth and Rth+1 ranked locations. So, a 
percentile rank can be specified, and the 
corresponding value(s) located or calculated.  

 
The equation for calculating the percentile rank 
differs depending on if n is odd or even. For n odd, 
Percentile Rank = [p]x[n+1], where p is the 
specified percentile value (in decimal notation) 
and n is the number of data values. For n even, 

Percentile Rank = [p]x[n]. For example, to find 
the 50th percentile value of the 17 odd number of 
values in Table 1, Percentile Rank = [.5]x[18] = 
9th rank, corresponding to value 103.  For the 25th 
Percentile Rank, Percentile Rank = [.25]x[18] = 
4.5th rank. There is no 4.5th rank, so the values 
between ranks 4 and 5 are averaged; [25+45]/2 

= 35. Note in Table 1, there is no value 35, so the 
25th percentile value is an interpolated 

approximation. For a more thorough treatment of 

percentile calculations, see Frost, J. (2022). 
 

4. THE MODULO OPERATOR 

 
Determining if n is odd or even can be important 
in determining ranks and other SQL aggregates. 
SQL does not have a built-in function to 
determine if n is odd or even, so we introduce an 
arithmetic operator available in SQL to determine 
odd versus even n by finding the MODULO of two 

values; x MOD y. Other RDBMS use MODULO or 
% instead of MOD. The MOD function calculates 
the remainder of a value, the dividend (x),  
divided by another value, the devisor (y).  So, if 
x/y = 8.1, the quotient is 8 and the remainder is 
1. In this tutorial, our dividend is x = n, and our 

devisor will always be y = 2. Without a deep dive 
into MODULO calculus, accept that if n MOD 2 = 
1, then n is odd, and if n MOD 2 = 0, then n is 
even. In our case, y is always chosen to be 2 to 
ensure that the MOD result is either 0 or  1. A 
quick glance of SQL MOD () with examples. 
EDUCBA, 2022. 

 
Table 1 shows 17 data values, so 17 MOD 2 = 1, 
telling us that n is odd. This will be important 
when using an SQL projected IF function (IIF) to 
determine ranks based on if n is odd or even, as 
we can use the n MOD 2 operator in SQL. It 
should be noted that for large n with many data 

values falling into a few separate groups, the 
effect of n odd or n even on percentile calculations 

can be negligible, but still worth learning new 
skills in SQL. 
 

5. PERCENTILES IN SQL 

 
This tutorial introduces a method to locate or 
calculate percentile values in SQL for ungrouped 
data. That is, find the value in the data set 
corresponding to a specified percentile. 
Calculating percentile aggregates in SQL also 
allows additional calculations like the interquartile 

range, the median, and location of possible 
outliers.  
 
The same technique can't be applied to grouped 

data. While ungrouped data are n-row data 
ordered in a database table, grouped data 
represent a rolled-up summary of the data, 

including group frequency counts, cumulative 
frequency, and cumulative percent frequency 
tabulations. Grouped data are commonly called a 
frequency distribution, or a frequency table. 
While it can be equally important to summarize 
grouped data, manuscript length restrictions 

prohibit introduction of applying this tutorial’s 



2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 4 
https://iscap.us/proceedings/ 

aggregates, with a goal demonstrating the 

method in  a forthcoming tutorial.  
 
While the proposed method uses many of the 

same common SQL keywords taught in an 
introductory database course, they diverge in the 
application of less commonly used textbook or 
tutorial-based SQL functions. The method 
requires use of basic SELECT, FROM, WHERE, 
and AS keywords, and further exemplifies using 
the COUNT aggregate, the IIF (comparison 

operator), the MODULO function, the BETWEEN 
operator, the AND operator, and the AVG 
(average) aggregate function. This method also 
exemplifies using SQL to provide a desired 
outcome of aggregates that are not available in 
any enterprise-level RDBMS, but may be useful 

and required for organizing and summarizing data 
using most common aggregates, or used in a data 
dashboard.  
  
The method here is exemplified using Microsoft 
Office Access 2019/365, so there may be some 
variation in syntax with other RDBMS. For SQL 

statements in this tutorial, BOLD ALL CAP font 
is used for SQL KEY WORDS, FUNCTIONS, IIF 
statements, and ARITHMATIC and 
COMPARISON operators, as well as syntax 
characters including the comma, the parenthesis, 
and the semi-colon.  Italic fonts are used for the 
names of tables, queries, and attributes, as well 

as user input words, phrases, and numbers. 
When querying from only one table or query, 

attribute names are surrounded in brackets, []. 
When querying from two or more tables or 
queries, [table].[attribute] and 
[query].[attribute] dot notation is used indicating 

the name of the table or query, a dot, and the 
attribute name. Attributes derived from 
aggregates, expressions and functions are aliased 
using the AS operator to improve the readability 
of the SQL. 
 

6. METHOD FOR SQL IMPLEMNTATION TO 

CALCULATE PERCENTILES 
 
The method is based on simple ranking of data 
depending on if the number of data values (n) is 

odd or even. Since the value n is used in SQL 
statements, it should be referenced as a dynamic 
value resulting from the SQL SELECT COUNT(*)  

aggregate function, queried from the table of 
data. In this tutorial, the starting database table 
is always named myData, and includes a sorted 
ascending column of data values named VALUES, 
and a column named ID indexed from 1 to n, like 
1, 2, 3, 4, 5 …..., n. The ID column must count 

from 1, associated with the smallest data value, 
to n, the largest data value. Before using this 

method, a one-time setup that can be recycled for 

any percentile calculation should to be completed, 
as shown below. 
 

Complete the following 4 setup tasks. 
 
Task 1: Create a table named myData and enter 
data from Table 1 into it, with columns named ID 
and VALUES. It should be identical to the data 
shown in Table 1, where ID is data type 
AutoNumber (integer), and VALUES is a data type 

number double. There is no primary key. See the 
table design in Appendix A.1. 
 
Task 2: Create a table named myPercentile with 
one column named P,  data type number double. 
This table will have one row, containing the 

decimal Pth percentile associated with the data 
value that is to be located or calculated. See the 
table design in Appendix A.2. 
 
Task 3: Create a query named myCount_n using 
the SQL SELECT COUNT (*) aggregate function 
as shown below to calculate the value n from the 

myData table. The count will be aliased AS n. 
 
SQL  
SELECT COUNT(ID) FROM myData AS n; 
 
Result 
n = 17 

 
Task 4: Create a query named myMODULO to 

calculate the result of n MOD 2 that will be used 
in two IIF operator projections. Use the SQL 
SELECT operator shown below to calculate the 
MOD, resulting in either 0 or 1. The attribute 

name will be aliased AS MOD. 
 
SQL 
SELECT [n] Mod 2 AS MOD FROM myCount_n; 
 
Following the setup, this method has four simple 
steps shown below with an embedded example of 

finding the 50th percentile where n is odd. 
 
Step 1: In the table myPercentile, enter the Pth 
percentile in decimal form. Note that n from the 

query myCount_n, and MOD from the query 
myMODULO, hold the data for input into the Step 
2 query. 

  
Example: Open table myPercentile and enter the 
value .5. Save and close the table. 
 
Step 2: Write a query named M1_myRanks to 
determine the two ranks, R1 and R2, associated 

with the Pth percentile. R1’s calculation 
necessarily depends on the values of MOD and P.  



2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 5 
https://iscap.us/proceedings/ 

Locate the ranks R1 and R2 associated with the 

rank locations of the desired percentile. This 
query depends on a projection of two opening If 
statements (IIF) using the value of MOD from 

the query myMODULO. It then uses the value P 
from the myPercentile table to determine R1 and 
R2.  
 
Also note that R2 is a function of R1, so no 
additional calculations are required for R2. The 
IIF() function returns a value if a condition is 

TRUE, or another value if a condition is FALSE. In 
this query, the values of R1 and R2 are based on 
the IIF function. In the first IIF statement, if n is 
odd (MOD = 1), then calculate the rank R1 using 
[p]*[n+1], else calculate R1 using [p]*[n]. In the 
second IIF statement, if n is odd, R2 = R1, else 

R2 = R1+1. Notice that R1 ranks are rounded to 
0 decimal places, forcing integer ranks. 
 
Example: SQL locating the two ranks. 
 
SQL 
SELECT  

IIf([myMODULO].[MOD] = 1,  
ROUND([myPercentile].[P]*([myCount_n].[n]+
1),0), 
ROUND([myPercentile].[P]*[myCount_n].[n],0) 
AS R1,  
IIf([myMODULO].[MOD]=1, [R1],[R1]+1) AS 
R2 

FROM [myCount_n], [myPercentile], 
[myMODULO]; 

 
Result Ranks 
R1 = 9 and R2 = 9 
 

Step 3: Write a query named M1_myValues to 
locate the two values, VALUE1 and VALUE2, that 
correspond to the two ranks determined in Step 
2, R1 and R2. 
  

• Example: SQL locating the two values. 
 

SQL 
SELECT VALUES  
FROM [myData], [M1_myRanks]  
WHERE [myData].[ID]  

BETWEEN [M1_myRanks].[R1] AND 
[M1_myRanks].[R2]; 
 

Result Values 
Value 1 = 103 and Value 2 = 103 
 
Step 4: Write a query named 
M1_myPercentileValue using the SQL AVG () 
aggregate function to calculate the arithmetic 

mean of the two values from Step 3. 
 

• Example: SQL uses the AVG aggregate function 

to average the two values (103 and 103), and the 
50th percentile result, 
 

SQL 
SELECT AVG(VALUES) AS myPercentileValue 
FROM M1_myValues; 
 
Result Value 
Value = 103, the 50th percentile 
 

In the event there were 18 values, one can apply 
the same 4 steps to calculate the 50th percentile 
value. The next example will apply the same 
queries to an even number of data values; n = 
18. Perform the following tasks. 
 

Task 1: Open the myData table and append a 
row to the bottom; ID = 18, VALUES = 230. 
 
Task 2: Run the query M1_myRanks and observe 
that the ranks are R1 = 9 and R2 = 10. 
 
Task 3: Run the query M1_myValues and 

observe that the associated data values are 103 
and 115. 
 
Task 4: Run the query M1_myPercentileValue 
and observe that the median is 109, the average 
of 103 and 115. 
 

For other percentile value calculations, one only 
need to input the desired percentile into the table 

myPercentile, then run the query 
M1_myPercentileValue. 
 
In summary, the query progression follows. 

 
Step 1: myPercentile - Enter Pth Percentile 
Value. 
Step 2: M1_myRanks - Calculates Ranks to 
locate data values. 
Step 3: M1_myValues - Locates Values to 
average. 

Step 4: M1_myPercentileValue - Calculates Pth 
percentile value. 
 

7. OBSERVATIONS 

 
The method runs quickly, even for large data 
sets. In many cases, the determination of n being 

odd or even may have little effect on the output, 
but it has the added benefit of exposing SQL 
programmers to the lesser known MODULO 
function and using functions within the IIF 
domain to determine output values.  
 

When the attribute data types are date values, 
the method returns serial numbers representing 



2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 6 
https://iscap.us/proceedings/ 

the number of days that have elapsed since 

01/01/1900. Although useful in date calculations, 
the output from the query might lose interpretive 
value unless converted back to a human friendly 

date representation. If dates were going to be 
typical inputs to the queries, one would need to 
edit the final query to cast the serial numbers as 
dates. 
 
If percentile calculations were to be a common 
data summary, it would likely be best if an 

aggregate query were written that included, for 
example, the COUNT, AVG, MIN, Q1, Q2, Q3, MAX 
or any other percentile aggregate output. One 
may also consider aggregates for the variance 
and standard deviation, as well as the range and 
IQR. Using the IQR one could write a query to 

detect possible outliers. Any one of these desired 
outcomes may require a separate query,  but the 
queries could be combined into a single query and 
set as a stored procedure.  
 
Within the Microsoft Access environment, after 
the percentile value P is statically entered in the 

myPercentile table, all queries are dynamically 
executed like a stored procedure without user 
involvement. For other RDBMS, one may need to 
create a stored procedure that dynamically 
updates all queries based on a parameter query 
for the Pth percentile. The benefit of a 
parameterized SQL query is that one can prepare 

it ahead of time and reuse it for similar 
applications without having to create distinct SQL 

queries for each case.  Additionally, one may 
want to write a set of nested queries across all 
individual queries. 

 

8. CONCLUSION 
 
The purpose of the tutorial is to expand the skill 
set of those practicing or studying SQL to in 
higher level SQL experiences, especially in the 
increasing trend in SQL proficiency required by 

data-driven organizations. The higher-level skills 

presented are related to calculating percentiles 
for ungrouped data. Even without application to 
percentiles and other aggregates, SQL 

practitioners can still benefit from the value-
added components of the tutorial, toward 
improved SQL skills, and higher-level 
understanding of SQL programming. 
 
The higher skills went above the textbook 
examples and introduced lesser studied SQL like 

MODULO, and IFF,  writing expressions for 
attributes, and formatting functions. The 
examples were presented in Microsoft Access 
2019/365 since many users have Microsoft 
Access more readily available than an enterprise 
RDBMS. Appendices B to G relate to the teaching 

notes accompanying the tutorial. They include 
quizzes, large data set extraction and project 
completions. The completed Access database is 
available on request. 
   

9. REFERENCES 
 

Frost, J. (2022, March 13). Percentiles: 
Interpretations and calculations. Statistics By 
Jim. Retrieved November 20, 2022, from 
https://statisticsbyjim.com/basics/percentile
s/#:~:text=To%20calculate%20an%20inter
polated%20percentile,11%20%2B%201)%2
0%3D%208.4  

SQL mod(): A quick glance of SQL mod() with 
examples. EDUCBA. (2022, June 10). 
Retrieved November 21, 2022, from 
https://www.educba.com/sql-mod/ 

SQL operators. (n.d.). Retrieved November 20, 
2022, from 

https://www.w3schools.com/sql/sql_operato
rs.asp  



2023 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Albuquerque, NM  v9 n5911 

 

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 7 
https://iscap.us/proceedings/ 

APPENDIX A 

Appendix A.1 – myData Table Data Types

 
 

 
Appendix A.2 - myPercentile Table Data Type

 


