
2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Cross-Platform App Development: A Comparative

Study of PWAs and React Native Mobile Apps

Veerendra Jagatha

jagathaveerendrasai1@cityu.edu

Ali Khamesipour

khamesipoural@cityu.edu

Sam Chung
chungsam@cityu.edu

School of Technology & Computing

City University of Seattle
Seattle, WA 98121, USA

Abstract

This paper compares the architecture, performance, and user experience of Progressive Web Apps
(PWAs) and React Native mobile apps by converting a web application to both platforms using React

framework. The study evaluates the challenges faced and modifications made during the conversion

process and aims to provide developers with insights into the best approach for a specific use case. The
paper offers valuable guidance to developers to make informed decisions when choosing between PWAs
and React Native mobile apps. The benefits of the research include identifying the best platform for a
specific use case and providing guidance to developers to make informed decisions. The paper fills a
gap in the literature regarding direct comparisons between PWA's and React Native platforms in
architecture, performance, and user experience. PWAs offer cross-platform compatibility and can deliver
comparable performance, making them a strong choice for developers aiming for wide device

accessibility. On the other hand, React Native apps provide a more native-like experience and have
better access to native device capabilities. The choice between the two platforms should be guided by
specific project requirements, such as architectural preferences, performance needs, and user
experience goals. Additionally, considerations like development resources, time constraints, and target
platform compatibility play a crucial role in the decision-making process.

Keywords: Mobile Apps, Cross-Platform Development, Progressive Web Apps, React Native, React

1. INTRODUCTION

The increasing popularity of Progressive Web
Apps (PWAs) and React Native mobile

applications led to a growing interest in
understanding the strengths and weaknesses of
each platform. Previous studies on cross-platform
mobile development tried to compare usability
(de Andrade Cardieri & Zaina, 2018) and quality
assurance (Zohud & Zein, 2021). However, there

needs to be a more direct comparison of the two
platforms.

This paper aims to compare the architecture,

performance, and user experience of PWA’s and
React Native mobile apps by converting a web
application to a PWA and a React Native mobile
app using React framework. By analyzing the
challenges faced and modifications made during
the conversion process, this case study provides

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

insights into the best approach for a specific use

case by helping developers to make informed
decisions when choosing between PWAs and
React Native mobile apps.

The rise of mobile devices has caused a growing
demand for mobile applications that provide a
seamless user experience across multiple
devices. While native apps offer high performance
and accessibility, they require separate
development for different platforms and can be

expensive to maintain. A mobile app should
ideally be compatible with all major mobile
platforms (Zohud & Zein, 2021). PWAs and React
Native mobile applications have emerged as
popular alternatives which offer the advantages

of cross-platform development and a native-like

user experience.

The user interface (UI) is a crucial aspect of
mobile app development that directly impacts the
user experience. Effective interface design
involves creating well-designed input and output
mechanisms that satisfy the user's needs,

capabilities, and limitations most efficiently (de
Andrade Cardieri & Zaina, 2018). Interface
elements serve as a communication channel
between the user and the system, and their
design can significantly impact the usability and
performance of mobile apps. So, delivering a
high-performing app is crucial for ensuring a

positive user experience and maximizing user

engagement. Furthermore, choosing the
appropriate architectural approach is crucial in
building scalable, maintainable, and extensible
apps. By comparing the performance and
architectural differences between PWAs and

React Native mobile apps, developers can gain
valuable insights, optimize performance, and
design robust apps that meet their specific project
requirements. Therefore, a comprehensive
analysis of the architecture, performance, and
user experience of PWAs and React Native mobile
apps, as proposed in this study, can provide

valuable insights into the effectiveness of these
platforms' interface design, and inform future
development practices.

We convert a web app to PWA and React Native
mobile apps and evaluate them based on
architecture, performance, and user experience.

Based on the findings, we guide developers in
making informed decisions when choosing
between PWAs and React Native mobile apps, as
there is a lack of research that directly compares
the two platforms. The study involves

• developing both PWA and React Native
versions of the web app,

• evaluating them based on the architecture,

performance, and user experience, and
• comprehensively presenting the findings.

This study focuses on cross-platform mobile
development, an area of substantial importance
in today's digital landscape. By examining the
architecture, performance, and user experience
of both PWAs and React Native mobile apps, this
research contributes valuable insights for
educators, practitioners, and researchers seeking

a comprehensive understanding of these
platforms. The primary audience for this work
includes educators and researchers in the field of
digital technology, mobile application
development, and cross-platform solutions.

Additionally, developers and practitioners seeking

informed decision-making guidance when
choosing between PWAs and React Native mobile
apps will find this study instrumental in their
endeavors.

2. BACKGROUND

Over time, various approaches have been used to
develop cross-platform applications as the
development of mobile applications evolved. The
creation of PWA utilizing web technologies like
HTML, CSS, and JavaScript is a common method
for developing cross-platform mobile
applications. PWA can deliver app-like

experiences on the web, with offline access and

native-like performance. Love (2018) provides an
example-based approach to building PWAs, while
de Andrade Cardieri and Zaina (2018) analyze
user experience in mobile web, native, and PWA.

Another popular cross-platform mobile
application development approach uses
frameworks such as React and React Native.
React is a JavaScript library for building user
interfaces, while React Native allows developers
to create native apps for iOS and Android
platforms with a single codebase. Subramanian

(2019) provides a guide to building full-stack web
applications using the MERN (Mongo DB, Express,
React, and Node) stack, which includes React for
the frontend development, while Boduch, Derks,

and Sakhniuk (2022) offer a comprehensive
guide to building cross-platform JavaScript
applications with React and React Native.

3. RELATED WORK

Comparing PWAs and React Native platforms can
help developers make informed decisions when
choosing the best platform for their specific use

case. While both platforms offer cross-platform
app development, they have unique features and

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

limitations. This comparison can also save time,

effort, and resources by avoiding potential pitfalls
or limitations of one platform.

Some researchers have compared the
performance and usability of cross-platform
approaches. Fournier (2020) compares the
smoothness of PWAs and native mobile
applications on Android, while Botella, Escribano,
and Penalver (2016) discuss selecting the best
mobile framework for developing web and hybrid

mobile apps. In addition, there have been studies
on the practical use of cross-platform mobile
application development in the industry. Zohud
and Zein (2021) present a multiple case-study
analysis of cross-platform mobile app

development in the industry. Dabit (2019) guides

developing iOS and Android apps with JavaScript
using React Native. Some experts have pointed
out weaknesses and restrictions in earlier cross-
platform mobile application development work.
Lee et al. (2018) discuss obstacles in using PWA
and offer suggestions to overcome them. An
improved approach for enhancing web application

and browsing performance using service workers
is put forth by Pande et al. (2018).

Table 1 compares several research studies that
conducted comparative studies of cross-platform
mobile apps, focusing on aspects such as
usability, security, and challenges of cross-

platform development. However, despite the

availability of such research, there is a gap in the
literature in terms of direct comparisons between
PWA and React Native platforms in the areas of
architecture, performance, and user experience.

Criteria
Botella
et al.

(2016)

Zohud
& Zein
(2021)

de
Andrade
Cardieri
& Zaina
(2018)

Architecture No No No

Performance Yes Yes No

User
Experience

Yes No Yes

Table 1: Related Work Summary

4. APPROACH

We compare two popular cross-platform app
development approaches: PWAs and React Native
mobile apps. We aim to evaluate these platforms
regarding architecture, performance, and user
experience. Then, we guide developers on which

platform may best suit their specific needs.

To conduct this study, we follow the steps

outlined below, summarized in Figure 1.

Step 1: Creating the Web App

Our first step is to create a simple web app using
React framework. We reference a similar
example, Cities, in Dabit's book (2019). The app
allows users to add cities, countries, and locations
to each city. We use this web app as the basis for
our PWA and React Native mobile app versions.

Step 2: Converting the Web App to a PWA
We use modern web development techniques
such as service workers, caching, and responsive
design to convert the web app to a PWA. We use
GitHub codespaces as the container to develop

the PWA and ensure that it is installable, works

offline, and is responsive across various devices.
We also use tools such as Lighthouse to evaluate
the performance and user experience of the PWA
version of the app.

Figure 1 Progressive Web Apps vs React
Native Mobile Apps: A Comparative Study

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

Step 3: Converting the Web App to a React Native

Mobile App

We use the React Native framework to convert

the web app to a native mobile app that can run
on iOS and Android devices. We use GitHub
codespaces as the container to develop the React
Native app and Expo as the client to test or
simulate the app. We evaluate the performance
and user experience of the React Native app,
paying particular attention to aspects such as

performance, native functionality, and user
interface design.

Step 4: Comparing the PWA and React Native
Versions

Once we have created both the PWA and React

Native versions of the app, we evaluate them
based on the criteria mentioned above. We
compare both versions' architecture,
performance, and user experience and
comprehensively present our findings. We also
guide developers in choosing between PWAs and
React Native mobile apps based on their specific

needs.

Design
The application follows a three-tier architecture
with a Node.js and MongoDB backend and two
frontend interfaces built using React for a PWA
and a React Native as Mobile App. The backend

and frontends communicate via RESTful

Application Programming Interface (API)
endpoints. Figure 2 illustrates the application's
architecture:

Figure 2 Architectural Diagram

Functionality
The application allows users to add new cities to
the database, along with their country and a list
of locations within the city. Each location has a
name and additional information. Users can also
view a list of all cities in the database and select

a city to view its details, including the list of
locations within the city. In addition, users can
add new locations to an existing city. The React

frontend provides a user interface for accessing

the application through a web browser, while the
React Native frontend allows users to access the
application through a mobile device.

Deployment
The application is deployed on Azure App Service,
with the backend API hosted on a Linux App
Service Plan and the database hosted on Azure
Cosmos DB for MongoDB. The React frontend is
deployed as a progressive web app accessible

through a web browser. In contrast, the React
Native frontend is deployed as a mobile app
accessible to IOS and Android platforms.

Implementation

The implementation of the application follows a

three-tier architecture, consisting of a Node.js, a
MongoDB backend, and two frontend interfaces
built using React for the PWA and React Native for
the mobile app. The backend and the frontend
communicate with each other through RESTful
API endpoints. The overall implementation
involves the following steps: setting up the

backend, developing the React web frontend, and
creating the React Native mobile app frontend.

Backend Implementation
The backend is built using Node.js and Express,
with the database hosted on Azure Cosmos DB for
MongoDB. The backend API provides the

necessary endpoints to handle various

operations, such as adding a city, adding a
location to a city, retrieving a list of cities, and
retrieving city details.

The Node.js runtime environment is installed, and

the Express framework is used to handle API
routing and request handling. The Azure Cosmos
DB for MongoDB is provisioned as the database
service, as shown in Figure 3, providing a fully
managed cloud database solution. The backend is
connected to the database through Mongoose for
data modeling and interaction.

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

Figure 3 Azure Cosmos DB for MongoDB

(cities)

The API routes are implemented using Express,
with appropriate route handlers defined for each
endpoint. The routes handle incoming requests,
interact with the database using Mongoose

models, and return the corresponding responses.
The backend structure is shown in Figure 4.

React Web Frontend Implementation
The React web frontend is developed using Create
React App, a popular toolchain for building React
applications. The frontend provides a user-

friendly interface accessible through a web
browser. It allows users to interact with the
application, view a list of cities, add new cities,

view city details, and add locations to cities.

Figure 4 Backend structure

The frontend utilizes React Router for client-side
routing, enabling navigation between different

views without page refresh. The routing

configuration is set up to correspond to the
different application features, such as displaying
the list of cities, showing city details, and adding
new cities and locations. The frontend structure is
shown in Figure 5.

React components are created for each view and

functionality. These components are integrated
with the backend API endpoints to fetch and
update data as necessary.

Figure 5 Frontend Structure

Mobile App Frontend Implementation
The React Native mobile app frontend is
developed using Expo, a framework that
simplifies the creation of cross-platform mobile

applications. The frontend provides a native
mobile app experience for users, accessible on
both iOS and Android platforms. It offers similar
functionalities to the web frontend, allowing users
to view cities, add new cities, view city details,
and add locations to cities.
React Navigation is utilized for client-side routing

within the mobile app. The app is organized into

screens, each corresponding to a specific view or
functionality. The navigation stack is set up to
handle the transition between screens, enabling
smooth navigation and interaction. The project
structure for the mobile app is like the react
structure, which is shown earlier in Figure 5.

Similar to the web frontend, react components
are created for each screen. These components
communicate with the backend API endpoints to
fetch and update data, ensuring consistency and
synchronization between the mobile app and the

backend.

Deployment
The application is deployed on Azure App Service,

a fully managed platform for hosting web
applications. The backend API is hosted on a
Linux App Service Plan as shown in Figure 6, while

the React web frontend is deployed as a
progressive web app accessible through web
browsers. The React Native mobile app frontend
is deployed through Expo publish. Expo provides
this straightforward way to share our React
Native app without going through the app store
approval process.

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

Figure 6 Backend API

The deployment involves configuring the Azure

App Service with the necessary runtime
environment and dependencies, as well as setting
up the appropriate deployment pipelines.

Screens
The application consists of multiple screens that
provide a user-friendly interface for interacting

with the system. Each screen serves a specific
purpose and allows users to perform various
actions and view relevant information. Figures 7
and 8 are the screens implemented in the
application for adding a city for each platform:

Figure 7 Add City (PWA)

Figure 8 Add City (IOS mobile)

5. DATA COLLECTION

Architecture
To examine the architectural differences between
PWAs and React Native mobile apps, we conduct
a thorough data collection process. The objective
is to gather insights into the architectural aspects
that distinguish these two cross-platform app
development approaches.

1. Literature Review: We extensively reviewed

academic papers and documentation from

reputable sources to understand the
underlying architectural principles and design
patterns associated with PWAs and React

Native apps. This literature review provided a
foundation for identifying the key
architectural differences between the two
platforms.

2. Experimental Setup: To gain practical
insights, we set up a controlled environment
where we develop the cities application as

both PWA and React Native mobile app.
3. Development Process: For PWA development,

we utilize modern web development
technologies such as HTML, CSS, and
JavaScript. We follow best practices for
implementing responsive design, service

workers for offline functionality, and caching

mechanisms to enhance performance. The
development process takes advantage of
GitHub codespaces as a container for
seamless collaboration and version control.
For the React Native mobile app
development, we employ the React Native

framework along with JavaScript and native
components. Expo, a popular toolchain, is
used as the client to test and simulate the app
on both iOS and Android devices. The

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

development process leverages GitHub

codespaces to streamline the workflow and
facilitate code sharing and synchronization.

4. Metrics and Measurements: To gather

quantitative data for architectural
differences, we measure various performance
and memory utilization metrics.

Following this data collection process, we can
obtain comprehensive information about the
architectural differences between PWAs and

React Native mobile apps. The collected data
serve as a foundation for the subsequent data
analysis phase, where we examine and compare
the architectural aspects of these platforms in
detail.

User Experience
The objective is to gather insights into both
platforms' user-centric features and
characteristics. The data collection phase involves
the following steps:

1. User Experience Design: We review user

experience design principles and best
practices specific to PWAs and React Native
apps. This step includes an examination of
design guidelines and usability standards.
The purpose is to understand the
fundamental principles of creating engaging
and intuitive user experiences on each

platform.

2. Performance and Responsiveness: To
evaluate the performance and
responsiveness of PWAs and React Native
apps, we collect data on various aspects. This
step included measuring the app's loading

speed, rendering time, and responsiveness to
user interactions. We use tools such as
Lighthouse to gather performance-related
metrics.

3. Native-Like features: We compare the native-
like features of PWAs and React Native apps.
This step involves identifying and assessing

the functionality and behavior that closely
resembles that of a native mobile app. We
examine features such as offline capabilities
and background sync of the data.

Following this data collection process, we can
obtain comprehensive information about the user

experience aspects of both PWAs and React
Native mobile apps.

Performance
To evaluate the performance of PWAs and React
Native mobile apps, we measure key performance

metrics using the Lighthouse tool. The following
metrics are collected for both platforms:

1. First Contentful Paint (FCP): This metric
measures the time taken for the first piece of
content to appear on the screen. It indicates

how quickly the app starts rendering content
to the user.

2. Largest Contentful Paint (LCP): LCP measures
the time it takes for the largest element on
the screen to become visible. It provides
insights into the perceived loading speed and
responsiveness of the app.

3. Total Blocking Time (TBT): TBT measures the
amount of time the main thread is blocked
and is unable to respond to user interactions.
A lower TBT indicates a smoother and more
responsive user experience.

4. Cumulative Layout Shift (CLS): CLS

measures the visual stability of the app by
tracking unexpected layout shifts. It
quantifies the extent to which elements on
the screen move or shift unexpectedly,
potentially causing user frustration.

5. Speed Index: The Speed Index measures how
quickly the contents of a web page are

visually populated. It provides an overall
measure of the app's perceived loading
speed.

6. DATA ANALYSIS

Architecture

We examined the collected data to identify and

analyze the architectural differences between
PWAs and React Native mobile apps. The data are
analyzed using qualitative and quantitative
methods to gain insights into each platform's
underlying architectural principles and design

patterns.

1. Based on the literature review, we identify

key architectural differences between PWAs
and React Native apps. We analyze the
identified architectural principles and design
patterns to understand how each platform

handles aspects such as component
structure, data management, navigation, and
integration with device capabilities.

2. The controlled environment in which we

develop the PWA and React Native mobile app
versions of the cities application allows us to
analyze the architectural choices made during

development. We examine the overall
application structure, code organization, and
libraries.

User Experience
To comprehensively evaluate and compare the

user experience aspects of Progressive Web Apps
(PWAs) and React Native mobile applications, we

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

conducted a thorough assessment focusing on

features, performance, responsiveness, and other
key metrics.

The evaluation involved an in-depth analysis of
various aspects pertaining to user experience.
This encompassed a detailed review of design
principles, best practices, and platform-specific
functionalities relevant to PWAs and React Native
apps. We compared loading speed, rendering
time, and responsiveness to user interactions

between PWAs and React Native apps. This
analysis provided invaluable insights into how
each platform handles performance optimizations
and contributes to the delivery of a seamless and
satisfying user experience.

We also assessed and compared the native-like
features of PWAs and React Native apps, with a
specific focus on functionalities such as offline
capabilities and background synchronization of
data. Through this examination, we gauged the
effectiveness of each platform in providing these
features and evaluated their overall impact on the

user experience.

Performance
Based on the collected data, we compare the
performance of PWAs and React Native mobile
Apps. The findings provide valuable insights into
how each platform performs regarding initial

loading speed, content rendering,

responsiveness, and overall stability.

To evaluate the performance of the PWA and
React Native app, we collect and analyze various
performance metrics using the Lighthouse tool.

Metrics for PWA are shown in Figures 9 and 10.

Figure 9 PWA performance metrics

Figure 10 PWA Summary

Metrics for React Native App are shown in Figures
11 and 12.

The performance analysis of the PWA and React

Native app reveals that the PWA exhibits faster
First Contentful Paint (FCP), Speed Index, and
comparable scores in metrics such as Largest
Contentful Paint (LCP), Total Blocking Time (TBT),
and Cumulative Layout Shift (CLS). The PWA

demonstrates a quicker rendering of initial
content, faster overall loading and rendering
speed, and achieves a good performance score in
Lighthouse. While both platforms show similar
patterns in terms of loading, rendering, and
painting times, the PWA showcases better

performance overall.

Figure 11 React Native performance

metrics

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

Figure 12 React Native Summary

7. FINDING

Architecture
1. Component Structure: In terms of component

structure, we find that React Native apps

follow a more native-like approach, where the
UI components are rendered using native
platform components. On the other hand,
PWAs use web components and HTML
elements to build the user interface.

2. Data Management: React Native apps
typically leverage state management libraries

like Redux to handle data flow and state
updates. PWAs, on the other hand, can use
similar state management approaches but
also have the option to utilize client-side
storage mechanisms like IndexedDB and
localStorage. This option allows PWAs to store
data locally and provide offline capabilities.

3. Navigation: React Native provides a built-in

navigation library (React Navigation) that
offers a seamless and intuitive way to handle
app navigation. PWAs often rely on browser-
based navigation using URLs and anchor tags.
While both approaches can achieve effective

navigation, React Native's built-in navigation
library provides more control and flexibility
for complex navigation scenarios.

User Experience
1. Design and User Interface: Both PWAs and

React Native apps can create visually

appealing and engaging user interfaces.
However, PWAs often face challenges in
achieving the exact look and feel of native
mobile apps due to limitations in accessing

native device APIs and UI components. React
Native apps, being closer to the native
platform, can deliver a more native-like user

interface and user experience.
2. Native-Like Features: While PWAs have made

significant progress in bridging the gap with
native apps, there are still some limitations in
accessing certain native-like features.
Although PWAs have made strides in

incorporating these features through browser

APIs, they may still encounter restrictions and

variations across different browsers and
devices.

Performance
Our data analysis reveals that PWAs and React
Native apps can provide comparable performance
and responsiveness. However, PWA shows
slightly better performance when compared to
React Native App. These results suggest that
well-optimized PWA can provide a similar

experience as native Apps in terms of
performance. It is important to note that
performance can vary depending on various
factors, including the specific app, its complexity,
the target devices, and the optimizations

implemented.

Overall, our findings indicate that React Native
apps offer a more native-like experience and have
better access to native device capabilities. PWAs,
on the other hand, provide the advantage of
cross-platform compatibility and the ability to
deliver web-based experiences across multiple

devices.

Based on our findings, we provide
recommendations to assist developers in
choosing the most suitable platform for their
specific use case. These recommendations
consider architectural preferences, performance

requirements, and user experience goals.

Additionally, we highlight the importance of
considering factors such as development
resources, time constraints, and target platform
compatibility when making the decision.

By providing this guidance, we aim to empower
developers to make informed decisions and
optimize their development processes, resulting
in successful and efficient app deployments. The
insights presented in this paper contribute to the
broader understanding of cross-platform app
development and assist developers in maximizing

the potential of their projects. Also, by
incorporating these findings into their teaching,
educators can equip students with the knowledge
and skills to make informed decisions in real-

world development scenarios.

By following the recommended guidelines,

developers can select the platform that aligns
with their project goals, resources, and target
audience, leading to the development of high-
quality apps that deliver exceptional user
experiences.

2023 Proceedings of the ISCAP Conference ISSN: 2473-4901
Albuquerque, NM v9 n5944

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

9. FUTURE WORK

While this study provides valuable insights into
the architectural differences, performance, and

user experience aspects of PWAs and React
Native mobile apps, there are specific areas that
warrant focused investigation in future research:

1. Platform-Specific Functionality Testing: A
detailed examination of unique features and
functionalities specific to each platform could
provide deeper insights into their capabilities

and enable developers to leverage them
effectively.

2. Native Device API Integration: Exploring in-
depth integration with native device APIs can

unlock additional potential for both PWAs and
React Native apps. This could involve
optimizing access to device-specific resources
and services.

3. Performance Optimization Strategies: Further
research into advanced performance

optimization techniques tailored to each
platform could yield valuable strategies for
developers aiming to enhance the
responsiveness and efficiency of their
applications.

By further exploring these specific areas we plan

to expand our understanding of PWAs and React
Native mobile apps, offering developers
actionable insights to unlock their full potential

and deliver exceptional app experiences.

10. REFERENCE

Boduch, A., Derks, R., & Sakhniuk, M. (2022).

React and React Native: Build Cross-Platform
JavaScript Applications with Native Power for
the Web, Desktop, and Mobile (4th ed.).
Packt Publishing.

Botella, F., Escribano, P., & Penalver, A. (2016).

Selecting the Best Mobile Framework for
developing web and Hybrid Mobile Apps. In
Proceedings of the XVII International
Conference on Human Computer Interaction
(pp. 102-109).

https://doi.org/10.1145/2998626.2998648

Dabit, N. (2019). React native in action:

Developing IoS and Android apps with
JavaScript. Manning.

de Andrade Cardieri, G., & Zaina, L. M. (2018).

Analyzing user experience in mobile web,
Native and progressive web applications.
Proceedings of the 17th Brazilian Symposium

on Human Factors in Computing Systems.
https://doi.org/10.1145/3274192.3274201

Domes, S. (n.d.). Progressive web apps with
react: Create lightning fast web apps with
native power using react and Firebase. Packt.

Fournier, C. (2020). Comparison of Smoothness
in Progressive Web Apps and Mobile

Applications on Android (Dissertation).
Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:kt
h:diva-283653

Hansson, N., & Vidhall, T. (2016). Effects on
performance and usability for cross-platform

application development using React Native
(Dissertation). Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:liu
:diva-130022

Lee, J., Kim, H., Park, J., Shin, I., & Son, S.
(2018). Pride and prejudice in progressive
web apps. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and
Communications Security (pp. 706-721).
https://doi.org/10.1145/3243734.3243867

Love, C. (2018). Progressive web application
development by example: Develop fast,

reliable, and engaging user experiences for
the web. Packt Publishing.

Pande, N., Somani, A., Prasad Samal, S., &
Kakkirala, V. (2018). Enhanced web
application and browsing performance
through service-worker infusion framework.
2018 IEEE International Conference on Web
Services (ICWS).

https://doi.org/10.1109/icws.2018.00032

Subramanian, V. (2019). Pro Mern Stack: Full
Stack Web App Development with Mongo,
express, react, and node.

Zohud, T., & Zein, S. (2021). Cross-platform
mobile app development in industry: A
multiple case-study. International Journal of

Computing, 46–54.
https://doi.org/10.47839/ijc.20.1.2091

https://doi.org/10.1145/2998626.2998648
https://doi.org/10.1145/3274192.3274201
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283653
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283653
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130022
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130022
https://doi.org/10.1145/3243734.3243867
https://doi.org/10.1109/icws.2018.00032
https://doi.org/10.47839/ijc.20.1.2091

