
2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Generative Conversational AI: Design AI Dialogue

Systems Using Object-Oriented Methodology

Thuan L Nguyen

Advanced Data Analytics – Toulouse Graduate School

The University of North Texas
Denton, Texas, USA

Abstract

While still an emerging technology, natural language processing for generative AI has significantly
progressed in developing AI dialogue systems that can serve various applications, showing an
increasingly sophisticated natural language understanding. In this paper, to help designers and
developers design and build these systems efficiently and effectively, the author proposes a new
approach based on the Speech Act Theory and using the popular Object-Oriented methodology. The

new approach aims to design dialogue flows as object-oriented classes. Each dialogue flow consists of
data (entities and entity types) and intents (or actions), similar to attributes (data: what it has) and
methods (or behaviors: what it can do) of object-oriented classes. The design focuses on these two
significant parts of each dialogue flow: entities - entity types and intents (or actions). Then, the paper
demonstrates how to use the new approach to design one of the main dialogue flows of a simple real-
world conversational system for a retailer. Finally, the paper shows how to use Google’s Dialogflow CX
to build the designed conversational system, focusing on this dialogue flow, and test it.

Keywords: Generative Conversational AI, AI Dialogue System, Generative AI Agent, Design AI Dialogue

Systems, Build Generative AI Agents, Object-Oriented Methodology

1. INTRODUCTION

Conversational AI, powered by large language
models (LLMs), enables natural human-computer
interaction, which led to significant progress,
including generating human-like text. Popular
LLMs, like those behind ChatGPT, Claude, and
Gemini, show impressive language abilities

(Wang & Singh, 2023). These pre-trained models
also make chatbot and conversational agent
development simple and convenient.
Conversational AI can now have broad impacts on

business, healthcare, education, and
entertainment.

Various considerations are crucial in AI dialogue
system development (Wang & Singh, 2023).
Developers must prevent models that perpetuate
uncontrolled conversations and disinformation
(Lucy & Bamman, 2021; Shah et al., 2019).

The aim is to create sound AI dialogues that foster
connection and empathy, which requires safe and

effective conversation management. This paper

presents a new method for designing business-
oriented AI dialogue systems using object-
oriented (OO) methodology and the Speech Act
theory.

For a conversational system, the new approach
proposes that the structure of a dialogue flow

consists of two parts: entities – entity types
(data) and intents (actions), which are similar to
attributes (data: what it has) and methods
(behaviors: what it can do) of an OO class.

The paper only focuses on designing these core
components of a dialogue flow: Entities - entity

types and intents (or actions) As a result, the
discussion does not include some other aspects of
the OO design process like use case analysis. The
paper demonstrates how to design one of the
main dialogue flows of a simple real-world
conversational system for a retailer, build, and

test it using Google’s Dialogflow CX.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

2. SPEECH ACT THEORY

British philosopher John Austin's book "How to Do
Things with Words" revolutionized language

understanding, emphasizing its power in actions
and relationships (Austin, 1962). Speech Act
Theory's core idea is that every utterance
performs three acts:

1. Locutionary act: The act of saying
something, with its literal meaning.

2. Illocutionary act: The intended action
behind the utterance (request, promise,
and more).

3. Perlocutionary act: The actual effect on
the listener or reader, which may not
match the intention.

Speech Act Theory's insights are crucial in
conversational AI and dialogue systems for
intent recognition, response generation, dialogue
management, and contextual understanding
(Mambron, 2020; Sabisa, 2014; Stanford
Encyclopedia of Philosophy, 2020).

3. OBJECT-ORIENTED METHODOLOGY

OO Classes: Data and Behaviors
In object-oriented programming (OOP), a class
acts as a blueprint for creating objects. Objects
and classes are the fundamental building blocks
of OOP systems thanks to the transformative

combination of data (attributes) and behavior
(methods) within objects (Booch, 1994;

Stroustrup, 1991).

• Data (Attributes): Representing the
"What Does It Have?", attributes define

an object's characteristics and
information. For example, a "Customer"
object might have attributes like name,
address, email, and order history.
Attributes determine an object's state.

• Behaviors (Methods): Representing
the "What Can It Do?", methods define an
object's actions and behaviors. A

"Customer" object might have methods

for placing orders, modifying orders, or
viewing order history.

The strength of OOP lies in this combination of
data and behaviors within a class. This provides a
strong foundation for creating reliable,
maintainable, and scalable software.

4. AI DIALOGUE SYSTEM: MAIN CONCEPTS

AI Agent
An AI dialogue system can be designed and

implemented as an AI Agent to communicate with
the end-user using natural languages. The
system or AI agent can be compared to a human
representative in a business’s call center or
customer service department.

Dialogue Flows: Overview

In the real world, an AI dialogue system must be
able to handle many types of conversations for
different purposes and goals, each involving a
specific topic. A simple conversation of several
utterances can handle the greetings. However, a
dialogue for a customer to ask about or buy a car

is much more complex. A complete conversation
typically consists of multiple dialogue flows.
Dialogue flows are the building blocks of an AI
dialogue system.

For example, a conversation between a customer
who calls a retailer to ask about and buy some

clothes:

1. Customer: Hello, good morning!
2. Sales representative: Hello, thanks for

calling. What can help you?
3. Customer: I want to ask about some T-

shirts. Are there any sizes medium and

for men?
4. Sales representative: Sure! We have

many. How about color? What color do
you want?

5. Customer: Green or orange.
6. Sales representative: Yes. We have.

7. Customer: I want to buy two of them, in
green, please.

8. Sales representative: You got them. To
confirm, you want to buy two green T-
shirts, for men, medium size. Is that
correct?

9. Customer: Yes. … (the customer pays for

the T-shirts) …
10. Sales representative: What else can I

help you?
11. Customer: That is all. Thanks. Bye.

12. Sales representative: Thanks very much
for the business. Bye.

In the above conversation, there are three
different dialogue flows, or at least two:

• (1) – (2): Dialogue flow for initial
greetings

• (3) – (9): Main dialogue flow for the
customer to ask about and buy clothes

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

• (10) – (12): Dialogue flow to conclude the

dialogue (NOTES: This can be merged
with (3) – (9))

Entities and Entity Types: Overview
In AI dialogue systems, “entities” can represent
the data associated with an intent. For example,
given the utterance “I want to buy two green T-
shirts,” the intent is “to buy some clothes,” and
the data or entities are (1): Number of T-shirts:
Two; (2): Product: T-Shirt; (3): Colors: Green.

In OO programming, there are two groups of data
types:

• System or built-in data types such as
Integer or Floating-point offered by
default by the system, e.g., a compiler or
an IDE (Integrated Development

Environment).
• User-defined data types defined by the

user.

Similarly, to design and develop an AI Dialogue
System, both system-built-in and user-defined
entities and entity types are needed.

• System or built-in entities and entity
types offered by default by AI
conversational development systems,
such as Google Dialogflow CX.

• User-defined entities and entity types
defined by designers or developers as
necessary to create an AI dialogue

system.

For entity types, the author proposes five
categories of entity types: (1) Basic entity
types, (2) Complex entity types, (3) Enumerated
List, (4) Enumerated List Map, and (5) Struct

Composite.

Basic Entity Types
Like primitive or primary data types in popular OO
programming languages, the paper proposes a
category of basic entity types that includes all
commonly used entity types, such as integers and

floating-point, to name a few. The basic entity
types are often system-defined. These entity
types may include the following ones (but are not
limited to): Number (any numeric values:

cardinal, ordinal, integer, float, fractions,
iterations, …), Integer, Float, Cardinal, Ordinal,
Fraction, Iterations (e.g., once, twice, three

times, …), Phone numbers (e.g., 1234567890 …).

Complex Entity Types
The following complex entity types can be
introduced and used to design and develop an AI
dialogue system: Any (any numbers, texts,

characters, any entity), String (any length,
including alphanumeric ones, similar to strings in

Java or C++), Color, Date and Time, Duration

(number + duration units like seconds, minutes,
or hours, …), Percentage (%) (Number +
percentage Units - percent), Temperature

(Number + Celsius / Fahrenheit degrees),
Currency (Number + currency name (e.g.,
$100.00, 100 Euros)).

Enumerated List Entity Types
This paper proposes a new category of entity
type, Enumerated List (Enum-List). The

Enum-List entity type combines common
properties of the “enum” data type in Java/C++
and “list” in Python.

Most Enum-List entity types are user-defined,
although some can be defined and supported by

the system by default. An Enum-List entity type
can be defined as a list of values of which each is
an entity name, as follows:

Enum-List <entity type name> = { value 1,
value 2, … }

For example:
Enum-List Clothes {Shirt, T-shirt, Pants, Skirt,
Hat, Shoes, Jacket, Sweater, …}

Enumerated-List Map Entity Types
This paper proposes another new category of
entity type, Enumerated List Map (Enum-List

Map). The Enum-List Map entity type has all the
features and properties of the Enum-List entity

type. The only difference is that each value of the
Enum-List Map entity type is mapped to another
list of values each of which is also an entity name.
An Enum-List Map entity type can be defined as

follows:

Enum-List Map <entity type name> = {
value 1 → sub-value 11, sub-value 12, …;
value 2 → sub-value 21, sub-value 22, …;

…

}

For example:

Enum-List-Map Size {

S → Small, Little

 M → Medium, Average, Middle;
 L → Large, Big, Grand;
}

Struct Composite Entity Types
This paper proposes another new category of

entity type, the Struct Composite. This entity
type has features and properties like the
structure data type in C++. Struct Composite
entity types are likely defined by the user, i.e.,

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

user-defined entity types. However, a system can

define some by default for the user’s
convenience.

For example:

Struct Composite Address {
 Integer streetNumber;
 String streetName;

String cityName;
 String stateName;

 String zip-code;
}

Intents: Overview
A meaningful conversation requires at least an
initial intent or intention to start (Austin, 1962;

Searle, 1969; Searle, 1983; Henderson & Brown,
1997). Without any intent, meaningful
conversations cannot begin. Furthermore, the
flow of intents or intentions, i.e., illocutionary
force in his Speech Act Theory, drives
conversations forward. When this flow stops, so
does the dialogue.

In essence, intent or intention in each utterance
is the driving force for successful conversations.
Therefore, handling intents or intentions at each
turn should be the top priority when designing AI
dialogue systems.

Utterances: Data and Intents
Some utterances in dialogue only have intents, or

actions, without data, like "Let's go!" However,
most conversations, especially in business,
require utterances with both intent and data.

For instance, a customer saying "I want to buy..."
to a retailer is incomplete without specifying what
to buy. A complete utterance combines an intent
with the data on which the action is performed.

Routine Dialogue Flows
An AI dialogue system must handle some routine

dialogue flows that are always needed in any
dialogue. For example, we always start our
dialogues with some greetings that can be
grouped into a routine dialogue flow named

Default Greetings Flow. Another type of routine
dialogue flow can be the one to complete and end
a dialogue.

Usually, a routine dialogue flow only has intents,
i.e., actions, but no data, i.e., entities and entity
types. Therefore, a routine flow for
conversational AI can be viewed as an interface
with only methods, i.e., behaviors or actions, in

an OO programming language like Java.
Data-Intent Dialogue Flows

In addition to the routine dialogue flows, a

complete significant conversation must include
another type of dialogue flow, data-intent
dialogue flows. Each data-intent flow handles a

specific topic and may be needed to fulfill a
system requirement. For example, an AI dialogue
system for an online shopping store may need to
fulfill conversational requirements for three
topics:

1. Products-Info flow: For customers to

get information on some products
2. Order-Process flow: For customers to

buy/order some products
3. Customer-Services flow: For

customers to get help with orders,
canceling, and returning products

A data-intent dialogue flow has intents and data,
i.e., entities and entity types. These flows can be
matched to OO classes with attributes (data) and
methods (actions or behaviors) in OO
programming languages like Java or C++. In
special cases, a data-intent flow can have only

data but without any intents.

Data-Intent Flows: Intents
In object-oriented programming languages such
as Java or C++, a class combines two major
components: data (attributes) and behaviors
(methods). As discussed above, similarly, a

dialogue flow can have data, i.e., entities and
entity types, and intents (actions). As a result,

the author proposes to mimic the structures of
methods in an OO class to design intents
belonging to a data-intent dialogue flow of an AI
dialogue system.

Data-Intent Flows: Intents: Signature
In a Java or C++ class, a method has a signature
consisting of a returned data type, one or more
optional modifiers, the method name, and a list
of parameters embedded between a pair of
parentheses. Each parameter is a variable defined

by its data type.

The author proposes an intent signature that
consists of an access modifier (“public,”

“protected,” or “private”), the intent name, and a
list of parameters embedded between a pair of
parentheses. Similarly, each parameter is an

entity defined by its associated entity type. An
intent signature is slightly different from that of
an OO class method: An intent signature does not
have a returned entity type where an OO class
method has a returned data type.

The signature of an intent can be defined as
follows:

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

<Optional Modifier> <Intent Name> (… List

of entities with entity types …);

For example, the signature of a customer’s intent

to buy shirts of some color, size, and group (men,
women, …) can be defined and designed as
follows:

order (Product product, Number numItems,
Color color, Size size, Group group);

Data-Intent Flows: Intents: Definition
A method of an OO class is defined with its
signature and a body of lines of code. Similarly,
the complete structure of an intent definition
consists of its signature and a body that contains
training phrases used to train the AI dialogue

system to learn how to detect, match, and fulfill
the intent.

<Optional Modifier> <Intent Name> (… List
of entities …) {

Training phrase 1
Training phrase 2

Training phrase 3
…

}

For example, a customer’s intent to buy shirts of
some color, size, and group (men, women, …) can
be defined as follows:

order (Product product, Number numItems,

Color color, Size size, Group group) {

// Training phrases
I want to buy two green shirts.

I need a T-shirt for men, large, and orange.
We need three medium hats for ladies.

 …
}

Significance of Intent Definitions
The most crucial task for a virtual agent in an AI

dialogue system is gathering all necessary
information to fulfill an intent once it's identified.
For instance, when a customer wants to buy
shirts, the system must collect information like

the quantity, color, size, and group. If the
customer says, "I want to buy two shirts for
men," the system already has some information

but needs to prompt for color and size.

A clearly defined intent signature guides the
system's actions. For ordering shirts, the
signature could be:
order (Product product, Number numShirts,

Color color, Size size, Group group);

This list of parameters tells the system what

information to gather from the customer. The
virtual agent will continue prompting the
customer until all five parameters have been

collected so that the system can fulfill the intent
and complete the order transaction successfully.

Data -Intent Dialogue Flows: Inheritance
Inheritance, a key principle in object-oriented
(OO) methodology, allows classes to inherit
attributes and methods from their superclass,

depending on access modifiers like "public" or
"protected."

This principle can be applied to data-intent
dialogue flows. A child flow can inherit "protected"
entities, entity types (data), and intents (actions)

from a parent flow if a parent-child relationship is
established.

For example, a super flow can be defined as
follows:

Data-Intent Abstract DI-Super-Flow {

Protected <entity type> {… }
…

Protected <intent> (…) { … }
…

}

If all the entities, entity types, and intents of the
super flow are defined with the modifier
“protected,” its child flows can inherit all
properties it has, including entities, entity types,

and intents as shown in the following example.

Data-Intent Products-Info: DI-Super-Flow {
 …
}

An inheritance relationship (Parent-Child)

between this flow and the super flow has been
established. The colon ‘:’ in “Products-Info:
DI-Super-Flow” indicates the inheritance,
similar to what is used in OO programming

languages like Java and C++.

The inheritance principle in dialogue flows

reduces duplication, especially in entity and entity
type definitions and declarations.

5.AI DIALOGUE SYSTEM: DESIGN

AI Dialogue System: Design: Overview

This section demonstrates designing a simple AI
dialogue system for a retail store to showcase

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

how to design an AI dialogue system using

Speech Act Theory and OO methodology in a real-
world business application.

The store aims to create a system for 24/7
customer interaction across the USA. For
simplicity, it is assumed that clothes have only
three properties: color, size, and group
(men, women, children).

The design follows the standard system

development life cycle (SDLC): Planning, System
Analysis, System Design, and System
Implementation/Deployment. These phases may
overlap, and agile methodology can be used for
faster feedback and improvement.

SDLC: Phase I: Planning
In Phase I, the organization that wants to build a
new AI dialogue system should identify all
business values of the targeted system. For
example, a retailer wants an AI dialogue system
that enables it to do business 24/7, serve its
customers better, improve and expand its

business, and increase revenues and profits, to
name a few. In addition to identifying business
values, the organization should also complete
other planning activities to deliver a project plan
that includes the work plan, the project staffing,
the technical planning, and the project
management scheme.

SDLC: Phase II: System Analysis and

Requirements
In Phase II, the organization should perform the
system analysis to collect critical system
information such as system requirements and

system concepts. Generally, the system analysis
aims to answer the following questions: (1) Who
will use the new AI dialogue system? (2): What
will the new AI dialogue system do? (3): Where
will the new AI dialogue system be used? (4):
When will the new AI dialogue system be used?

In addition, the organization can gather the
following operational requirements for the new
system:

1. System Requirement 1: Customers can
use the system 24/7 to ask about
products.

2. System Requirement 2: Customers can
use the system 24/7 to order products
online.

3. System Requirement 3: Customers can
use the system 24/7 to get online
customer service.

SDLC: Phase III: Design: Routine Flows

For routine dialogue flows that often include only
intents, the author proposes to define them as a
structure similar to the interface of the Java

programming language in which an interface only
contains methods and optional constants (the
particular case of data) but not variables (typical
case of data).

Default Greetings Flow is a routine dialogue flow
with only intents (to greet) but not data, i.e., no

associated entities or entity types. This routine
flow can be defined as follows:

SDLC: Phase III: Design: Data-Intent Flows
Like OO classes that have attributes (data) and
methods (actions/behaviors), a data-intent
dialogue flow requires entities and entity types
(data) and intents (actions). In this example of
an AI dialogue system for a retailer, based on the
system requirements, the designer can sketch the

system concepts of four main dialogue flows,

including a default routine flow and three data-
intent flows, each for one system requirement:
(1) Products Info, (2) Order Process, (3)
Customer Services as follows:

 Figure 1: Four Main Dialogue Flows

All three data-intent flows have many common

user-defined entities and entity types. For
example, all needs product entities such as shirts,
t-shirts, skirts, and others. The flows also needs
entities representing sizes, and more. Instead of
defining these custom entities and entity types for
each data-intent flow, it is much better to use the
inheritance principle to define a super flow with

all common entities and entity types, from which
each data-intent flow – as a child flow – can

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

inherit. The design is much cleaner, better, easier

to understand, and much more efficient without
unnecessary duplication of data or intents.

Figure 2: Data-Intent Super and Child Flows

NOTES:

--) A larger image of Figure 1 is displayed in
Appendix B

--) The definition details of all the data-intent
super flows are presented in Appendix C.

The data-intent super flow has only data, i.e.,
entities and entity types, and no intents. It should
be declared with the modifier “abstract” to
indicate that it will not be implemented as a

normal data-intent dialogue flow, similar to
abstract superclasses in OO programming
languages. The super flow can be declared as
follows:

NOTES:
--) The declaration details of all data-intent

dialogue flows, including the super flow, are
presented in Appendix C.

Data-Intent Abstract DI-Super-Flow {
// Define common entities and entity types of
data-intent flows

Protected Enum-List Product { Shirt, … }
Protected Enum-List-Map Yes-No { … }
Protected Enum-List-Map Size { …}
Protected Enum-List-Map Group { …}
Protected Struct Composite Order { …}

}

The data-intent super flow, named “DI-Super-

Flow,” is specified with the flow type of “Data-
Intent.” It only has entities and entity types,
without any intents. All child flows can inherit
these entities and entity types.

Data-Intent Products-Info: DI-Super-Flow {

// Intents
askProduct (Product product, …){

 // Training phrases

 Do you sell T-shirts for women?

 …

 }

} // End of Data-Intent Products-Info

The data-intent flow, “Products-Info,” a child of
the super flow, handles the scenarios when a
customer wants to ask for information about
some products. This data-intent flow has

• All entities and entity types inherited
from the super flow (do not need to be
displayed)

• Only one intent: askProduct (…)

Data-Intent Order-Process: DI-Super-Flow {

 // Intent to order only one product type
 order (Product product, … {
 // Training phrases
 I want to buy two green shirts for men.
 …
 }

// Intent to order more than one
// product type in the same utterance

 orderComplex (…) {
// Training phrases
I want to buy two green shirts for men
and one hat for me.

 …

 } // End of orderComplex

} // End of Data-Intent Order-Process

The data-intent flow, “Order-Process,” also a
child of the super flow, has the following

properties:
• All entities and entity types inherited from

the super flow
• Two intents: order (…) {…} and

orderComplex (…) {…}

Data-Intent Customer-Services: DI-Super-

Flow {
 askOrder (Number orderNum) {

 // Training phrases
 When is my order delivered?
 …
 }

changeOrder (Number orderNum) {

 // Training phrases
 I want to change my order.
 …

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

 }

cancelOrder (Number orderNum) {

 // Training phrases
 I want to cancel my order.
 …

 }

} // End of Data-Intent Customer-Services

The data-intent flow, “Customer-Services,” also
a child of the super flow, has the following
properties:

• All entities and entity types inherited
from the super flow (do not need to be

displayed)
• Three intents: askOrder (…) {…},

changeOrder (…) {…}, cancelOrder (…)
{…}

SDLC: Phase III: Design: State Machines
Similar to the state machine of a software

program, the designer should create one state
machine to document all the steps or states of
each data-intent dialogue flow representing a
conversational flow or session. For this paper,
only the state machine of the data-intent dialogue
flow Order Process is created as an example. The
details of the state machine are discussed in

Appendix D.

Figure 3: State Machine of Order Process

SDLC: Phase IV: Implementation
The enterprise cloud service Dialogflow CX of
Google Cloud Platform (GCP) is used to
implement the design of the retailer’s AI dialogue
system, which is used as an example to
demonstrate how the system is built, tested, and

deployed.

The step-by-step details of the implementation
and deployment of the AI dialogue system are
discussed in the next section.

6.AI DIALOGUE SYSTEM: IMPLEMENTATION

Dialogflow CX: Overview

Generative conversational AI is revolutionizing
business-customer interactions. Evolved from an
earlier version (Dialogflow ES), the Google
Dialogflow CX employs a state machine approach
for flexible conversational flows and uses modular
flows and pages for scalability. Each page
represents a state with its data, and every

dialogue starts with the "Start Page."

Dialogflow CX provides a robust understanding
engine for natural languages, accurately
interpreting intents and managing context.
Integrated with other Google Cloud products, the

conversational AI development system enables
task execution and personalized experiences. The
system supports multi-channel interactions via
websites, voice calls, and messaging platforms.

Dialogflow CX offers a built-in "Default Start Flow"
and numerous system entities and entity types

for convenient use. Designers and developers can
also create user-defined ones.

NOTES:
--) All the implementation steps are discussed in
detail, including visual explanation with figures
presented in Appendix E.

Create Virtual Agent
To build an AI dialogue system with Dialogflow
CX, we first create an agent like a human call
center agent.

Dialogflow CX offers a built-in "Default Start Flow"
for initiating conversations. This flow begins with
a "Start Page" for a default "Default Welcome
Intent." Customization of the virtual agent's
greeting responses is possible.

Build Data-Intent Dialogue Flows
As discussed above, there are three data-intent
dialogue flows: Products-Info (or Products),
Order-Process, and Customer-Services. However,

the demonstration focuses on only one data-
intent dialogue flow – the Order Process flow.

Create User-Defined Entities and Entity
Types
Based on the signature of the Order intent of the
Order-Process flow:

order (Product anItem, Number numItems, Color

color, Size size, Group group);

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

We must have entities defined for five entity

types: Products, Number, Color, Size, and Group.
DialogFlow CX provides two built-in system entity
types, @sys.number-integer and @sys.color

that can be used for Number and Color. Three
others – Product, Size, and Group plus
OrderNumber must be defined as custom entity
types.

Build Data-Intent Order-Process Flow
Its intent “Order.Propducts” must be created with

its training phrases.

Create Page “Product-Order”
For Dialogflow CX, each page represents a state
or step of the state machine. It manages all the
data required for the state, i.e., entities and entity

types. Every dialogue flow starts with a default
“Start Page.” This page handles the customer’s
intent to order some products.

This page includes a form to manage the data,
i.e., entities and entity types or parameters
required for the state or step of the state

machine. As mentioned above, the intent requires
five parameters (Product, Number of Items,
Color, Size, and Group). These five required
parameters guide the virtual agent in determining
whether it has all the information needed to fulfill
the intent or whether it needs to gather more
information.

The page also includes information, i.e. routes,

about the next page or flow to which this page (or
state) will transition when the system moves to
the next state in the state machine. Based on
these routes, Dialogflow CX automatically builds

the state machine of the dialogue flow.

Test Retailer’s AI Dialogue System
The designer and developer of the AI dialogue
system can test their newly built system either
using Test Agent or Dialogflow Messenger.

6. EVALUATION

To quickly evaluate the new design approach of
entities – entity types and intents of a dialogue

system, the author asked 25 graduate students
to employ the new method in designing entities /
entity types and intents after they had done the

same thing without using the new approach while
developing a conversational AI. Then, the author
performed a brief oral survey on the students
focusing on the following aspects:

1. Does the new design method help the
user to understand the role of entities /

entity types w.r.t. intents more easily and
quickly?

2. Does the new design method help the

user more accurately capture and then
formally represent the relationships of
entities / entity types with intents?

3. Does the new design method help the
user to design each intent and its training
phrases faster and better in a dialogue
system?

The results of the survey showed 18 students
(72%) say “Yes” with Question 1, 20 students

(78%) say “Yes” with Question 2, and 17
students (68%) say “Yes” with Question 3.

In summary, the results of the survey were
positive, suggesting the effectiveness of the new
design method in aiding their understanding of

entities and entity types, agreeing that it
facilitated the accurate capture and formal
representation of relationships, and
acknowledging its role in expediting the design of
intents and their training phrases.

7. CONCLUSION

Speech Act Theory (SAT) and Object-Oriented
Methodology (OOM) are powerful synergies for
designing AI dialogue systems. The theory
understands language as actions, focusing on
intentions and social dynamics. The methodology
provides the structure for organizing these

complex conversational components in a
modular, reusable, and scalable way.

Integrating SAT and OOM enhances naturalness
and adaptability in designing and developing
conversational AI systems. By understanding the

illocutionary force of user input via the theory, the
virtual AI agent can respond more appropriately
and empathetically, tailoring responses based on
context for more coherent conversations. The
methodology translates this into a modular,
maintainable system, with speech acts
encapsulated as objects for flexible development.

Formulating dialogue flows and designing intents
using OOM structures enables deeper insight into
the system architecture. Additionally, SAT opens
up new metrics for evaluating AI dialogue

systems, focusing on achieving the intended
effect of user communication for greater
satisfaction.

Challenges include the complexity of Speech Act
Theory, which requires designers and developers
to understand it for practical application. Further
studies need to perform a more detailed
comparison of this approach with traditional

design approaches, which would be beneficial.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

In conclusion, the new design approach, which

combines Speech Act Theory and Object-Oriented
methodology, has the potential to significantly
enhance the user's understanding of entities and

entity types, as well as their relationships with
intents. As conversational AI continues to evolve,
this blend of linguistic theory and software
engineering has the potential to inspire a new
wave of innovation in the field of conversational
AI, leading to more natural and effective
interactions.

8. REFERENCES

Alphatbet Inc. (2024). Google Cloud Platform
(GCP): Dialogflow CX Documentation.
Retrieved August 20, 2024 from

https://cloud.google.com/dialogflow/cx/doc

s.

Alphatbet Inc. (2024). Google Cloud Platform
(GCP): Dialogflow CX Documentation –
System Entities Reference. Retrieved August
20, 2024 from
https://cloud.google.com/dialogflow/cx/doc
s/reference/system-entities.

Austin, J. L. (1962). How to do things with words.
Oxford University Press, New York, NY.

Booch, G (1994). Object-Oriented Analysis and
Design with Applications (2nd Ed.). The
Benjamin/Cummings Publishing Company,
Inc. Redwood City, CA.

Henderson, G. E. & Brown, C. (1997). Glossary of

Literary Theory. Retrieved August 20, 2024
from
https://resources.saylor.org/wwwresources/
archived/site/wp-
content/uploads/2011/04/Speech-Act-
Theory.pdf.

Lucy, l. & Bamman, D. (2021). Gender and
Representation Bias in GPT-3 Generated
Stories. In Proceedings of the Third
Workshop on Narrative Understanding,
pages 48–55, Virtual. Association for
Computational Linguistics.

Mambron, N. (2020). Speech Act Theory.

Retrieved August 20, 2024 from
https://literariness.org/2020/10/11/speech-
act-theory/.

Sbisà, M. (2014). Austin on Language and Action.
In: Garvey, B. (eds) J.L. Austin on Language.
Philosophers in Depth. Palgrave Macmillan,
London.
https://doi.org/10.1057/9781137329998_2
.

Searle, J. R. (1969). Speech Acts: An essay in the

philosophy of language. Cambridge
University Press, Cambridge.

Searle, J. R. (1983). Intentionality: An essay in
the philosophy of mind. Cambridge

University Press, Cambridge.

Searle, J. R., Kiefer, F., & Bierwisch, M. (1980).

Speech act theory and pragmatics. Springer
Netherlands, Heidelberg.

Shah, D., Schwartz, H. A., and Hovy, D. (2019).
Predictive biases in natural language
processing models: A conceptual framework
and overview. Retrieved August 20, 2024
from

https://doi.org/10.48550/arXiv.1912.11078
.

Stanford Encyclopedia of Philosophy (2020).
Speech Act. Retrieved August 20, 2024 from
https://plato.stanford.edu/entries/speech-

acts/.

Stroustrup, B. (1991). The C++ Programming

Language. Addison-Wesley Publishing
Company (2nd Ed.). Reading,
Massachusetts, USA.

Wang, Y. & Singh, L. (2023). Adding Guard Rails
to Advanced Chatbots. Retrieved August 20,
2024 from

https://www.researchgate.net/publication/3
71537176_Adding_guardrails_to_advanced
_chatbots.

https://cloud.google.com/dialogflow/cx/docs
https://cloud.google.com/dialogflow/cx/docs
https://cloud.google.com/dialogflow/cx/docs/reference/system-entities
https://cloud.google.com/dialogflow/cx/docs/reference/system-entities
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2011/04/Speech-Act-Theory.pdf
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2011/04/Speech-Act-Theory.pdf
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2011/04/Speech-Act-Theory.pdf
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2011/04/Speech-Act-Theory.pdf
https://literariness.org/2020/10/11/speech-act-theory/
https://literariness.org/2020/10/11/speech-act-theory/
https://doi.org/10.1057/9781137329998_2
https://doi.org/10.1057/9781137329998_2
https://doi.org/10.48550/arXiv.1912.11078
https://doi.org/10.48550/arXiv.1912.11078
https://plato.stanford.edu/entries/speech-acts/
https://plato.stanford.edu/entries/speech-acts/

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

Appendices and Annexures

APPENDIX A
System Analysis – System Requirements

Figure 1: AI Dialogue System: Retailer Example: Three System Requirements

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 12
https://iscap.us/proceedings/

APPENDIX B

Data-Intent Super Flow and Its Child Flows: Inheritance Relationship

Figure 2: Data-intent Super Flow and Its Child Flows

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 13
https://iscap.us/proceedings/

APPENDIX C

Data-Intent Super Flow and Its Child Flows: Detailed Definitions

DATA-INTENT DIALOGUE SUPER FLOW: DI-Super-Flow

NOTES:

--) Name of the flow: DI-Super-Flow.

--) The keyword “Data-intent” indicates the flow type.

--) The super flow only has entities and entity types. It has no intents.

Data-intent Abstract DI-Super-Flow {

Protected Enum-List Product {

Shirt, T-shirt, Pant, Skirt, Hat, Shoes, Jacket, Sweater, …

}

Protected Enum-List-Map Yes-No {

YES --> Yes, True, 1, OK, Correct, Fine, Good, Agree, Confirm, Do it;

NO --> No, False, 0, Not OK, Incorrect, Bad, Disagree, Deny, Don’t do it;

}

Protected Enum-List-Map Size {

S → Small, Little;

M → Medium, Average, Middle;

 L → Large, Big, Grand;

}

Protected Enum-List-Map Group {

Any → Any;

Men → Men, Man, Male, Guy;

Women → Women, Woman, Lady, Female, Gal;

 Adult → Adult;

 Children → Children, Teens;

}

Protected Struct Composite Order {

 Number orderNumber // order number of the order

Product item; // a product item like shirt, or pants, or …

 Number numItems; // number of items in this order

 Color color; // Color of the items

 Size size; // Size of the items

 Group group; // Men or women or children, …

}

} // End of Data-intent Abstract DI-Super-Flow

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 14
https://iscap.us/proceedings/

DATA-INTENT DIALOGUE FLOW: Products-Info

Data-Intent Products-Info: DI-Super-Flow {

 // Intents

 askProduct (Product product, Color color, Size size, Group group){

 // Training phrases

 Do you sell T-shirts for women?

I want to get some pants for boys. Do you have them?

We need some medium skirts for ladies?

 …

 }

} // End of Data-intent Products-Info: DI-Super-Flow

The data-intent flow, “Products-Info,” is a child of the super flow. The colon ‘:’ in “Products-

Info: DI-Super-Flow” indicates the inheritance relationship between this flow and the super

flow, similar to what is used in the OO programming language C++. This data-intent flow

handles the scenarios when a customer wants to ask for information about some products. This

data-intent flow has the following properties:

• All entities and entity types inherited from the super flow (do not need to be displayed).

• Only one intent: askProduct (…) {…}

DATA-INTENT DIALOGUE FLOW: Order-Process

Data-intent Order-Process: DI-Super-Flow {

// Intent to order only one product type, color, size, and group.

 order (Product product, Number numItems, Color color, Size size, Group group) {

 // Training phrases

 I want to buy two green shirts for men.

Can I get one skirt for ladies, size small, and blue?

 May I purchase three large T-shirts, any color, for teens?

 …

 }

// Intent to order more than one product type in the same utterance

 orderComplex (Product product_1, Product product_2) {

 // Training phrases

 I want to buy two green shirts for men and one hat for me.

Can I get one skirt, two shirts, and three T-shirts?

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 15
https://iscap.us/proceedings/

 May I purchase hats, shoes, ties, and suits here?

 …

 } // End of orderComplex (Product product_1, Product product_2)

} // End of Data-intent Order-Process

The data-intent flow, “Order-Process,” is also a child of the super flow. This data-intent flow

has the following properties:

• All entities and entity types inherited from the super flow (do not need to be displayed).

• Two intents: order (…) {…} and orderComplex (…) {…}

NOTES:

--) The virtual agent needs to recognize only two types of product in the same utterance to

match the intent orderComplex, no matter how many types of product in the same utterance.

--) In this case, the virtual agent should generate the necessary prompts for the customer to

guide him/her in completing the order of each product type at a time. In other words, the virtual

agent should help the customer split a complex intent into multiple simple intents, each of only

one product type.

DATA-INTENT DIALOGUE FLOW: Customer-Services

Data-Intent Customer-Services: DI-Super-Flow {

 askOrder (Number orderNum) {

 // Training phrases

 When is my order delivered?

What did I order?

 When can I receive my items?

 …

 }

changeOrder (Number orderNum) {

 // Training phrases

 I want to change my order.

Can I change what I bought two days ago?

Can I change the shirt I ordered and get a larger size?

 …

 }

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 16
https://iscap.us/proceedings/

cancelOrder (Number orderNum) {

 // Training phrases

 I want to cancel my order.

Can I cancel the order I made yesterday?

 Would you cancel the order of two shirts?

 …

 }

} // End of Data-intent Customer-Services

The data-intent flow, “Customer-Services,” is also a child of the super flow. This data-intent

flow has the following properties:

• All entities and entity types inherited from the super flow (do not need to be displayed)

• Three intents: askOrder (…) {…}, changeOrder (…) {…}, cancelOrder (…) {…}

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 17
https://iscap.us/proceedings/

APPENDIX D

Data-Intent Super Flow and Its Child Flows: Detailed Definitions

For each data-intent dialogue flow, the designer should create one state machine to cover all its

steps or states of the flow. For this paper, only the state machine of the data-intent dialogue flow

Order Process is created as an example.

1. Start

a. The data-intent dialogue flow Order-Process starts with the Start step or state

2. Product Order

a. At this step or state, first, the customer orders some products.

b. The system tries to collect all required parameters to fulfill the customer’s intent –

to order some products.

c. After the order has been taken, the system asks the customer to confirm what he/she

has ordered to ensure the order has been taken correctly to fulfill his/her intent. Two

scenarios can occur:

i. The customer confirms the order.

1. → Transition to the step of Order Confirmation

ii. The customer declines the order.

1. → Transition to the step of Order Declination

3. Order Confirmation

a. At this step or state, the customer confirms his/her order

b. After this step, the customer has completed his/her order and successfully his/her

intent, and the dialogue flow ends.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 18
https://iscap.us/proceedings/

4. Order Declination

a. At this step or state, the customer declines the order.

b. After this step, two scenarios can occur:

i. The customer completely stop the order. → The dialogue flow ends.

ii. The customer may want to make another order.

1. → Transition back to the start of the order flow.

iii. The customer way want to ask for more information of some products.

1. → Transition to another dialogue flow – the Products flow.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 19
https://iscap.us/proceedings/

APPENDIX E

Data-Intent Super Flow and Its Child Flows: Detailed Definitions

Create Virtual Agent

To build an AI dialogue system with Dialogflow CX, we first create an agent like a human call

center agent.

Dialogflow CX offers a built-in "Default Start Flow" for initiating conversations. This flow

begins with a "Start Page" for a default "Default Welcome Intent." Customization of the virtual

agent's greeting responses is possible.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 20
https://iscap.us/proceedings/

It is possible to customize the virtual agent’s responses to the customer’s greetings.

Build Data-Intent Dialogue Flows

As discussed above, there are three data-intent dialogue flows: Products-Info (or Products),

Order-Process, and Customer-Services. However, the demonstration focuses on only one data-

intent dialogue flow – the Order Process flow.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 21
https://iscap.us/proceedings/

Create User-Defined Entities and Entity Types

Based on the signature of the Order intent of the Order-Process flow:

order (Product anItem, Number numItems, Color color, Size size, Group group);

There must be entities defined for five entity types: Products, Number, Color, Size, and Group.

DialogFlow CX provides two built-in system entity types, @sys.number-integer and

@sys.color that can be used for Number and Color. Three others – Product, Size, and Group plus

OrderNumber must be defined as custom entity types.

Also, OrderNumber is another entity type that must be defined to represent the values of order

numbers. The custom entities, i.e., values of order numbers, should be alphanumeric strings that

can be defined as Regexp entities

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 22
https://iscap.us/proceedings/

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 23
https://iscap.us/proceedings/

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 24
https://iscap.us/proceedings/

Build Data-Intent Order-Process Flow

The intent “Order.Propducts” must be created with its training phrases.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 25
https://iscap.us/proceedings/

Create Page “Product-Order”

For Dialogflow CX, each page represents a state or step of the state machine. It manages all the

data required for the state, i.e., entities and entity types. Every dialogue flow starts with a default

“Start Page.” This page handles the customer’s intent to order some products.

This page includes a form to manage the data, i.e., entities and entity types or parameters

required for the state or step of the state machine. As mentioned above, it requires five

parameters (Product, Number of Items, Color, Size, and Group). These five required parameters

guide the virtual agent in determining whether it has all the information needed to fulfill the

intent or whether it needs to continue gathering more information.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 26
https://iscap.us/proceedings/

The page also includes information, i.e. routes, about the next page or flow to which this page (or

state) will transition when the system moves to the next state in the state machine. Based on

these routes, Dialogflow CX automatically builds the state machine of the dialogue flow.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 27
https://iscap.us/proceedings/

Test Retailer’s AI Dialogue System

The designer and developer of the AI dialogue system can test their newly built system either

using Test Agent or Dialogflow Messenger.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6126

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 28
https://iscap.us/proceedings/

