
2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

A Study of Software Metrics, Student Learning,

and Systems Development Analytics

Seth J. Kinnett

seth.kinnett@colostate.edu

Jon D. Clark

jon.clark@colostate.edu

Computer Information Systems, College of Business
Colorado State University

Fort Collins, CO 80523, USA

Abstract

The purpose of this paper is to identify accepted systems development metrics and trace the ability of
students learning relative to programming behavior and outcome. In particular, metrics identified by
Maurice H. Halstead and Thomas J. McCabe were applied to a particular intermediate level Java
programming exercise, part of a first course in Computer Information Systems. In addition, various
approaches to solving a specific, timed exercise will be analyzed and subjected to a standard grading
rubric used in the class. Counterintuitive results included: 1) all programs exceeded McCabe’s cyclomatic
complexity threshold and; 2) expected time to implement exceeded expectations.

Keywords: Software Metrics, Halstead, McCabe, Student Learning, System Development Analytics

1.INTRODUCTION

The purpose of this paper is to provide some

insights into student learning in the computer
programming domain. Having access to a large
file of student assignment submissions, we hope
to assess student learning and interrogate the
implications of well-known metrics provided in
the literature. In particular, we are fortunate to

have at our disposal McCabe’s suite of products
(BattleMap IQ) which will be run against
submitted programs in Java, generating both

McCabe and Halstead metrics. The course in
which these assignments are used is CIS240
named Application Design and Development and
is the first programming course that

undergraduate Computer Information Systems
majors take. The 16-week course introduced
students to object-oriented programming
fundamentals using Java, spanning the concepts
outlined in Table 1. We spent roughly two weeks
of class per module.

Module
Number

Topics

1
Course Overview & History of
Programming Languages

2
Java Fundamentals (data typing,
variables, constants)

3
Selection Statements (if/else/else
if/switch)

4 Loops (while, do-while, for)

5 Methods & Method Overloading

6 Arrays (one and two-dimensional)

7
Classes & Objects (data
encapsulation, constructors)

8 String Manipulation & File I/O

Table 1: Course Topic Summary

The course includes the use of programming
using graphical user interfaces (GUIs) through

mailto:seth.kinnett@colostate.edu
mailto:jon.clark@colostate.edu

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

the incorporation of selected methods from the

JOptionPane class (javax.swing.JOptionPane) in
addition to utilizing the console for inputs and
outputs. Students write code using the Eclipse

IDE. Prior to defining our specific research
questions, a general discussion of metrics is in
order.

There have been three distinctly different
approaches to systems development metrics
identified in the literature during the late 1970’s

and early 1980’s (Navlakha, 1987). Arguably, Dr.
Maurice H. Halstead, a professor of Computer
Science at Purdue, developed a foundation for
software science (Halstead, 1977) that can also
be applied to domains other than computer code.
Interestingly, with degrees in physics and physical

science, he was committed to defining the science
of Computer Science while at Purdue University.
Thomas McCabe, a graduate student of
mathematics at the University of Connecticut,
developed metrics of control flow in programs
(McCabe, 1976), including the well-known
cyclomatic complexity, among others. In addition,

McCabe’s later tools for assessment included
Halstead metrics as well. Finally, A.J. Albrecht’s
function points target project management but do
not assess quality of implementation. There have
been, however, detractors of software metrics
(Jones, 2017) who have characterized the current
state as a mess!

According to Jones, software applications are

among the most expensive and error prone
products of human effort. In order for this record
to be improved, software needs to be accurate
and reliable. An example of the current state of

development and management practice is the
CrowdStrike debacle (Fung, 2024) in which over
5 billion dollars of damage and 8.5 million devices
were affected.

The relative positioning of these three approaches
can be summarized as follows: Halstead metrics

are based on tokens for operators and operands
and some information theoretic functions that
allow one to estimate errors, information content
and mental processing time. Thus, Halstead’s

metrics can be applied to natural languages and
programming. McCabe’s work, on the other hand,
focuses on control flow of a program to measure

complexity, estimate errors and address coverage
test strategies. Thus, this approach is more
program domain specific. Albrecht’s function
points appear to have a loose theoretical basis,
but due to empirical results from many case
studies, offer a practical approach to determining

the effort involved in latter stages of the systems
development lifecycle.

Halstead

Halstead metrics are based on token counts of
operators (verbs) and operands (nouns);
information theory in terms of bits, the standard

measure; and Stroud’s (Stroud, 1956)
information processing rate taken as a constant
of 18 bps. The calculation of the various metrics
depends on the counting strategy appropriate to
a given language, and many programming
languages have well defined strategies
established including COBOL, Java, C and C++.

Token counts are determined as follows:

 n1 = number of distinct operators

 n2 = number of distinct operands

n (vocabulary size) = total number of
distinct tokens (operators + operands)

N1 = total number of occurrences of
operators

N2 = total number of occurrences of

operands

N (program length) = total number of
tokens (operators and operands)

The derived metrics are as follows:

V (program volume) = N*log2(n):
program length times bits of information

in vocabulary

D (program difficulty) = (n1/2)*(N2/n2)
or 1/L: as volume increases, level

decreases and difficulty increases

E (program effort) = D*V

T (time to implement) = E/18: effort in
bits divided by human binary
discriminations per second

I (intelligence content) = V/D

McCabe

McCabe’s complexity measures were based on
graphs of control flow, where nodes represent
program statements and edges (arcs) represent

the flow. Obviously, statements that determine
decisions produce branches in the graphs and the
count of various paths are an important
determinant of complexity. These metrics are far
more domain specific to procedural programming
than Halstead’s approach but are not predictive of

effort across the stages of systems development.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

The control graph produces the following metrics:

E = number edges of the graph

N = number of nodes of the graph

P = number of connected components
(program exit points)

The derived metrics are as follows:

v(G) (Cyclomatic Complexity) = E-N+2:
number of edges less number of nodes
plus the number of connected
components

ev(G) (Essential Complexity) =

1<=ev(G)<=v(G): based on reduced
control flow graph

Interpretation of v(G) thresholds by McCabe:

• 1-10: simple procedure, little risk
• 11-20: more complex, moderate risk
• 21-50: complex, high risk

• >50: untestable code, very high risk

The Essential Complexity, ev(G) is produced by
removing all of the structured programming
primitives. These include 1) sequence; 2)
selection statements, including if and case
statements; 3) iteration constructs, including

while, do, and for.

Others
There have been other attempts to define metrics
that do not fit into these three categories. Several
have involved using cognitive characteristics as a

predictor of systems development performance at
various stages including systems design (Clark,
1982 and 1983)), program maintenance (Clark &
Khalil, 1989), and early-stage programming skill
development in COBOL (Clark & Gibson, 1988).

2. RESEARCH DESIGN & QUESTION

ARTICULATION

We chose, specifically, to focus on McCabe and
Halstead metrics. We evaluate these families of

metrics both individually and collectively seeking
both to identify insights unique to each family of
metrics while also seeking to understand where

the metrics share communal results. Our data
sample entails a collection of 30 student samples
of a timed, in-class coding exercises. The metrics
we generated for a subset of student submissions
in this paper were taken from a particular
selection of programming exercises, known as in-

class exercises (ICEs). ICEs are combinations of
short programming assignments, designed to be

completed by the expert student in about 30

minutes and by all competent students within a
1.25-hour class period. The purpose of these
exercises – in addition to allowing students

opportunities for knowledge sharing and
collaboration – is to provide wake-up calls to
identify areas where students may need
additional work. Since the exercises are designed
to be solvable in 30 minutes or less, students who
struggle to complete them in 1.25 hours should
be alerted to the need for remedial work in a

given area. Students are permitted to ask
questions and at least one undergraduate, who
previously completed the course, circulates to
address student questions.

Our first research question recognizes that all of

the metrics generation approaches we outlined
rely on several assumptions or rules of thumb—
McCabe and Halstead included. For example,
regarding Halstead’s metrics, one notable rule of
thumb appears in the context of the Stroud
number, which represents the number of binary
discriminations per second (bps) assumed to be

available to the human brain. Halstead’s metrics
— particularly the T (time) metric – utilizes a
Stroud number of 18. Assessing the
implementation time for student programming
activities has important pedagogical implications
for timed programming activities, such as the
ones we examine. Namely, we ought not assign

programs that are reasonably likely to take longer
than the time allotted. Our first research question

seeks to test the appropriateness of the default
value for the Stroud number against actual timed
student programming exercises.

RQ1: What value of the Stroud number
corresponds to the mean observed T (time)
calculation from our student sample?

Another related point and an implied reality in
software development is that short, simple
programs are more reliable and maintainable

than longer, more complicated programs. In the
context of an introductory Java programming
course, we deliberately seek to present
manageable assignments, which would be

somewhat simple to implement. The logic
underlying McCabe’s metrics – particularly the
measures of cyclomatic complexity (v(G)) and

essential complexity (ev(G)) provides a more
nuanced understanding of reliability and
maintainability, respectively. While intuitively we
might assume that our student-generated
programs would be sufficiently bounded so as to
have negligible scores in these areas, we propose

our second research question to illuminate the

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

realities of student code reliability and

maintainability.

RQ2: How do student programs rank in McCabe’s

measures of cyclomatic complexity (v(G)) and
essential complexity (ev(G)), and what – if any –
characteristics of code are implicated in these
findings?

Although Halstead’s and McCabe’s metrics were
developed independently and are based on

drastically different analytical frameworks, we
nevertheless suspect that certain metrics might
have complementary utility with one or more
McCabe metrics enriching Halstead metrics or
vice versa. Accordingly, our final research
question seeks to identify aspects of Halstead’s

and McCabe’s metrics, which are complementary
to one another.

RQ3: Which metrics from Halstead’s analytical
family are complementary to McCabe’s or vice
versa?

The remainder of our paper is structured as
follows. First, we provide more detail surrounding
the programming course, sample coding exercise,
inclusion/exclusion criteria for our samples, and
approach to addressing our research questions.
Next, we present the key findings across the
Halstead and McCabe metrics, along with a

qualitative follow-up exercise. Finally, we discuss
pedagogical implications, conclusions, and

proposed future research.

Write a Java program that plays the game

Rock, Paper, Scissors.
The rules are as follows:
•Rock (0) beats scissors (2)
•Scissors (2) beats paper (1)
•Paper (1) beats rock (0)

At the start of the program, the program must

ask the user for their name. The program
should then ask how many rounds the player
wants to play. The program will then prompt
the user to choose rock, paper, or scissors
and randomly choose a value for the

computer player. It will determine the winner

of that hand, display the results, and keep
track of the number of hands won by the
player, the number won by the computer, and
the number of tie games.

Use JOptionPane for all inputs and outputs.

Figure 1: ICE04 Assignment

We selected ICE04: Loops for our examination. It
struck a balance of being reasonably complicated

while also only requiring a single main method,

which simplified analysis. Although the new topic
being evaluated was loops, the program still
required students – as is common in

programming – to make use of all of the previous
concepts they had learned. Specifically, the
purpose of ICE04 was to assess student
understanding of loops through the
implementation of a rock-paper-scissors game, as
shown in Figure 1.

The optimal solution used a while or do-while loop
to elicit user input for number of rounds to play,
while using a for loop to handle the gameplay for
the user-specified number of rounds. For each
round, students would need to implement if/else
an/or if ladders and – optionally – switch

statements to compare user guesses to random
integers generated by the program to ascertain
whether the player won, lost, or tied the
computer for each round. In total, students can
earn 10 points for successfully implementing the
program. Table 2 contains the grading rubric used
for the assignment, and the number of points

possible for each item.

Proper coding habits including indentation &
comments (1)

Proper compilation (no errors) (2)

Either for or while loop implemented properly
to loop for the number of rounds specified by
the user (2)

Correct use of if/else-if or switch to process

user’s choice each time (1)

Correct use of nested if/else-if to evaluate
computer’s choice (1)

Correctly implements counter variables to

track computer wins, player wins, ties (1)

Correct computation of winner using if/else-
if/else to evaluate the counters (1)

Correct generation of output using string
concatenation (1)

Table 2: ICE04 Grading Rubric

We extracted a sample of student submissions
across three semesters of our introductory
programming course. We only retrieved the

source code of students, who had achieved

perfect scores (10/10) on the assignment. This
yielded a sample of 30 submissions (N = 30). By
selecting only perfect scores, we obtain a – on the
surface – homogenous collection of coding
samples. Any observed differences throughout
the sample will be particularly notable given our

decision to select only fully working programs
without errors, which had yielded full credit
across our grading rubric.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

We utilized the software analysis application

BattleMap IQ for this project. After extracting the
student submissions, we loaded each student
project into BattleMap IQ and generated Halstead

(Long) metrics, McCabe metrics, and a scatterplot
of McCabe’s v(G) and ev(G) metrics. We next
exported these results to a text file and used the
file to populate a spreadsheet. Alongside the
system-generated Halstead metrics, we added in
the elapsed time in minutes between when the
exercise was assigned and when each student

submitted it, thus providing an actual time
metric, which allowed us to proceed with our
comparisons against Halstead’s T values. We
loaded the entire data set into IBM’s SPSS
statistics software in order to perform
comparisons of means across selected metrics as

outlined below.

3. RESULTS

Analysis of the Stroud Number
As noted, Halstead’s metrics span a variety of
analytical points of interest. One area of focus
surrounds our comparison of Halstead’s
measurement of development time (T) to the

elapsed time it took students to complete our
selected assignment. By comparing students’
elapsed time to complete the program against
Halstead’s T (time) calculation, we observed that
Halstead’s T, converted to minutes, overestimates
the time to complete the program in 83% of the

samples. Indeed, the correlation between

Halstead’s T and the time we observed students
took to complete programs approaches zero (r =
.03). Only 17% of student submissions had a
longer elapsed time than would have been
predicted from the Halstead T metric.

By revisiting the formula for calculating T, we note
that it represents Halstead’s effort (E) divided by
the Stroud number, representing an estimate of
the number of bps the human brain can process.
Halstead’s T uses a default value of 18 for the
Stroud number.

Student Elapsed
Time

Halstead’s T

Mean

(mins)

Standard

Deviation

Mean Standard

Deviation

71.47 7.95 111.33 34.53

Table 3: Elapsed Time Compared to
Halstead’s T

The mean value for Halstead’s T in our samples

was 111.33, while the mean student time was
71.47. By calculating the mean value for effort
(E), 120,235.3, we verified the T calculation, then
began iteratively recreating Halstead’s T

calculations with progressively greater values for

the Stroud number, noting that 18 was too small.
We arrived at a near match when we reached a
Stroud value of k = 28, 10 more bps than the

default value and which yielded a modified
Halstead’s T of 71.57, a difference of only 0.1
from our observed mean value for time. Rather
than discrediting Halstead’s T, we believe these
findings reinforce the validity of T when the
proper value for the Stroud number is employed.
Accordingly, we can answer our first research

question, noting that a Stroud number value of
28 binary discriminations per second reflects the
mean program development time. Incidentally,
scientists have suggested that brain processing
rates can vary depending on a number of factors
including attention and task familiarity. Rates in

excess of 100bps have been posited.

Evaluating McCabe’s Metrics
Turning to our second research question, we
analyzed McCabe’s primary metrics of cyclomatic
complexity (v(G)) and essential complexity
(ev(G)). The former measurement assesses

reliability while the latter measures
maintainability. While McCabe noted four ranges
of interest for v(G), the threshold of 10 separates
low risk procedures from medium risk, with
values above 20 and 50 separating the
comparatively higher risk ranges. In simplest
terms, code samples yielding v(G) values less

than 10 are reliable and values greater than ten
are unreliable. Similarly, a threshold of 4 was

proposed for Essential Complexity (ev(G)). Values
for ev(G) greater than four are considered
unmaintainable, while those less than four are
considered maintainable. A review of our student

code sample reveals that while no code sample
meets the standard for reliable code (v(G)), a
subset meets the standard for maintainable
(Nmaintainable = 13), while the remainder were
considered unmaintainable (Nunmaintainable = 17).
Figure 2 depicts a scatterplot, generated from the
BattleMap IQ program showing the four

quadrants of reliable/maintainable,
unreliable/maintainable, reliable/unmaintainable,
and unreliable/unmaintainable, based on the
prior thresholds.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

Figure 2: v(G) & ev(G) Scatterplot of
Student Submissions

Table 4 outlines the percentage of samples in
each category based on a view of their v(G)
scores, confirming that the unreliable group had
a higher proportion of high-risk code and lower
proportion of moderate risk code than the reliable

group.

 v(G)

Moderate Risk
(11-20)

High Risk
(21-50)

Reliable 77% 33%

Unreliable 59% 41%

Table 4: Assessment of v(G) Ranges

As the essential complexity metric (ev(G)) seeks
to measure the degree of structuredness of code
– a term both somewhat intuitive yet challenging
to delineate with examples – we performed a
qualitative analysis of a subset of five
maintainable and five unmaintainable code

samples. We selected the maintainable choices at
random, then selected five unmaintainable
samples generally at random, assuring only the
same mixture of male and female students as we
obtained through the random selection of the

maintainable sample.

Qualitative Comparison of Working Student
Programs
Each set of programs was then subjected to an
exploratory qualitative analysis feature which
included -- but was not limited to – code
organization, structure/readability, and inventory

of Java constructs used in the implementation.
While the analysis was both tedious and
unstructured, the exploratory nature of the topic

necessitated such an approach, which ultimately

revealed students’ paths to understanding and
development of skills.

At an abstract level, the assignment was one that
depended on a set of 12 to 15 variables of several
types, a loop to iterate through a number of game
rounds, and a set of decisions to match outcomes
of each round. In addition, output was required to
display the results of each round, as well as a
game-wide summary at the game’s conclusion.

The maintainable (M) samples differed from the
unmaintainable (UM) samples across the
dimensions of program length, types of
constructs used, variable organization & scoping,
and structure & readability. First, the M group’s
programs were more consistent in length,

spanning 2.5 to 3.4 pages, while the UM group
varied from 2.75 to 4.5 pages.

While both groups made use of looping
constructs, only the M group incorporated switch
statements. Of particular note, only the UM group
employed compound if statements, often

stringing together at least two conditionals
separated by && to evaluate the rock-paper-
scissors choice combinations. No one in in the M
group used such constructs and instead used
single clauses and relied on combinations of if and
switch or nested if statements. We believe the
employment of compound if statements may

have been one of the main reasons why higher
ev(G) values were obtained for the UM group.

One of the UM samples even tried to simulate a
loop using a counter integer and an if statement
instead of using a simple looping construct.

Regarding code organization and variable
declarations, the M group was far more consistent
with variable declarations. 4 out of 5 of the M
samples defined variables primarily at the
beginning of the main method. The UM group
tended to define variables within loops or other
code blocks whenever they realized they were

needed, thereby limiting their scope and causing
re-declaration for every pass of a loop, for
example. Additionally, the M group adhered to
better readability and indentation practices

compared to the UM group. Collectively, our
evaluation of the McCabe metrics and qualitative
code sample assessment address our second

research question.

Halstead and McCabe Complementary
Regarding RQ3 and whether Halstead and
McCabe produce similar results based on
information theory as well as control flow, the

answer appears to be yes based on Table 5, but
not at a statistically significant level.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

Group ID N D v(G) ev(G)

M

1 585 43.32 18 1

2 509 42.81 17 1

3 475 31.89 16 1

4 413 26.77 13 1

5 466 38.0 13 1

 M=490,
SD=63

M=37,
SD=7

M=15,
SD=2

M=1,
SD=0

UM

14 503 40.00 21 18

15 529 43.73 17 8

16 462 39.15 17 14

17 731 49.67 22 7

18 434 37.29 18 14

 M=532
SD=117

M=42,
SD=5

M=19,
SD=2

M=12,
SD=5

Table 5: Metrics for Qualitative Samples

Indeed, we performed both nonparametric tests
and independent samples t-tests through the
employment of bootstrapping, comparing the
maintainable and unmaintainable group across
the elapsed time, Halstead metrics, and McCabe

metrics. Although the nonparametric test advised
retention of null hypotheses (i.e., u1-u2=0) for all
metrics, we persisted in employing independent
samples t-tests with bootstrapping across 1000
simulated samples. Bootstrapping is a technique
used to simulate a higher sample size based on

the distribution of the existing sample. Our
intention is to expand the “true” sample size by
evaluating student programs in subsequent
offerings of this programming course. Of note, the

mean calculated elapsed time – not to be
conflated with Halstead’s T values – between the
maintainable and unmaintainable groups had

statistically significantly different means
evaluated against 95% confidence intervals: CI95
= [-11.9,-1.06] , (p = .03).

Essentially, students who wrote unmaintainable
code took longer to do it. Despite the lack of
statistical significance in mean difference tests

across other metrics, we nevertheless note that
the samples we selected for our qualitative
analysis do indicate patterns suggesting the two
families of metrics are complementary. In
particular, we observed higher mean values for
Halstead’s N and D in the McCabe unmaintainable

sample than in the maintainable sample.
Revisiting this question with larger sample sizes
is a part of our future research agenda.

4. DISCUSSION/LIMITATIONS

One of the most surprising findings from this
examination is the poor scoring we observed on

McCabe’s measure of cyclomatic complexity. In
particular, the observation that every single

student program obtained a v(G) value above 10

suggests none of the programs could be
considered reliable by that standard. We found
this surprising in that these programs are highly

targeted to the implementation of a simple rock-
paper-scissors game. If such simple exercises
result in unduly cyclomatically complicated code,
what hope do large-scale enterprise applications
have of meeting this one of McCabe’s standards?

One avenue for our future research encompasses

the evaluation of even simpler programs to
determine just what program characteristics
could meet McCabe’s v(G) standard. While we do
not necessarily question the formulation of v(G),
we believe our examples could lead to a more
relaxed threshold for where code should be

cleaved along the reliable vs. unreliable axis. One
wonders if the threshold McCabe suggested for
reliable levels of cyclomatic complexity may be
too strict.

Next, the dispersion in results across the essential
complexity metric (ev(G)) has pedagogical

implications. Namely, since this metric measures
the structuredness of code, with higher values
indicating higher quantities of unstructured code
constructs, it is clear that both highly
unstructured and more structured code is suitable
in achieving a perfect score via our rubric, yet
some students are clearly – based on the implicit

reliability of the metric – writing better code than
others. On one hand, students have not – at this

point in the course—yet been introduced to
custom methods, parameter passing, and the
general enablement of modular design. This
makes it even more notable, however, that the

sample cleaved along the boundary of what
McCabe considered maintainable compared to
unmaintainable code.

In an introductory programming course, a natural
tendency exists to focus on ensuring students can
form algorithms, understand syntax, and tie

business requirements to appropriate solutions.
One contribution of this paper is the illumination
of a second layer of competency considerations:
namely, the importance of best approach

solutioning. In a ten-point assignment like the
one we used here, point allocation options are
limited. Longer assignments like the biweekly 20-

point programming assignments in our course
provide more opportunities to reward students for
choosing solutions, which best minimize
cyclomatic complexity and essential complexity,
as two potential metrics.

The examples explored here confirm that these
metrics are not simply theoretically interesting

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

but correspond to important decisions made in

the development of coding solutions. By
identifying a collection of best practices in an
introductory course – far from overwhelming

students – we posit that it will actually be freeing
and allow students to work more efficiently and
effectively. One of the most concrete findings
from this paper surrounds the inferiority of
compound if clauses compared to using nested
single-clause if statements or combining switch
and single-clause if statements. Rewarding the

choice of the latter solutions would be a good
starting point for awarding bonus points in a
revised assignment rubric. Advising students to
choose better structured program statements is
one curricular adjustment we plan to implement
following this research. We plan to focus on these

constructs to reaffirm our findings in future
studies.

Another important contribution of this research
lies in the revelation that not only were the
programs with high ev(G) statistics
unmaintainable, but also that this group had

statistically significantly higher development
times compared to the mean development times
of the students, who achieved ev(G) values under
the 4.0 threshold proposed by McCabe. While we
are limited to only drawing inference from
correlation, we found it notable that students
writing comparatively sub-par code also took

longer to write it, despite still achieving perfect
scores per the grading rubric.

Finally, although we employed as rigorous a
methodology as possible, we acknowledge
limitations of this research, which are primarily

centered in the sample data itself. Namely,
students are prohibited from the use of
unapproved resources (e.g., Chegg, CourseHero,
ChatGPT) – and assignment graders are trained
to spot techniques with deviation from those
taught in the course – it remains possible a subset
of these observations represent bad-faith

attempts at completing the assignments, which
could skew the results. The use of bootstrapping
sought to mitigate the additional limitation of a
relatively small sample size.

5. CONCLUSIONS

Software metrics play an important role in
ascertaining a variety of dimensions of software
quality, including complexity, reliability, and

maintainability. Similarly, the assumptions
underlying the computations of these metrics are
important both to understand but also to
challenge and verify. In this paper, we selected a
sample of student programming assignments

from an introductory Java programming course.

We generated a bank of metrics from both the
Halstead and McCabe categories of software
metrics.

Our findings have implications for both software
science in general and the teaching of computer
programming in particular. First, we illuminated
an important nuance pertaining to grading
rubrics: not all perfect scores are created equal.
We plan to modify our teaching of the course to

give preferred vs. acceptable coding techniques
derived from our findings of this paper. We
recommend instructors gradually incorporate
bonus points for certain stylistic practices that
align with more reliable and maintainable code.
Ultimately, this research affirms the use of

Halstead and McCabe’s approaches to software
science as important, with notable pedagogical
implications.

6. REFERENCES

Clark, Jon D. (1982, October), A Psychometric

Evaluation of Yourdon's Design
Methodology, SIGCHI Bulletin, 14(2), 9-
12.
https://doi.org/10.1145/1044759.104476
1

Clark, Jon D. (1983, July), A Psychometric

Evaluation of the Use of Data Flow
Diagrams, SIGCHI Bulletin, 15(1), 3-6.

https://doi.org/10.1145/1044779.104478
0

Clark, Jon D. & Gibson, Michael Lucas (1988,

November 21-23), Measuring Program
Complexity Using Halstead's Metric,
Proceedings of the Annual Meeting of the
Decision Sciences Institute, Las Vegas,
Nevada.

Clark, Jon D. & Khalil, Omar (1989, February), The

Influence of Programmer's Cognitive
Complexity on Program Comprehension
and Modification, International Journal of
Man-Machine Studies, 219-236.

https://doi.org/10.1016/0020-
7373(89)90028-X

Flatter, David (2018, May), ‘Software Science’
revisited: rationalizing Halstead’s system
using dimensionless units, NIST Technical
Note 1990, 1-9.
https://doi.org/10.6028/NIST.TN.1990

Halstead, Maurice H. (1977), Elements of
Software Science, Elsevier.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

Fung, Brian (2024, July 24), We finally know what
caused the global tech outage – and how
much it cost, CNN Business.

Jones, Capers (2017, May 4), The Mess of

Software Metrics, Version 10.0,
Namcook.com.

Mccabe.com (2024, May 15). McCabe Software:

The software Path Analysis Company.

Retrieved from https://mccabe.com.

McCabe, Thomas J. (1976, December), A

complexity measure, IEEE Transactions
on Software Engineering, SE-2(4):308-

320,

https://doi.org/10.1109/TSE.1976.2338
37.

Navlakha, J.K. (1987), A Survey of System
Complexity Metrics, The Computer
Journal, 30(3),233-238.
https://doi.org/10.1093/comjnl/30.3.23
3

Stroud, J.M. (1956), The fine structure of

psychological time, in H. Quastler (Ed.),
Information theory in psychology:
problems and methods (pp. 174-207),
Free Press.

https://mccabe.com/
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

Appendix

 Halstead McCabe

ID Time (T)
Length
(N)

Volume
(V)

Difficulty
(D)

Intelligent
Content (I)

Effort
(E) v(G) ev(G)

1

8,600 585

3,573 43.32 82.49

154,803 18 1

2

7,586 509

3,190 42.81 74.52

136,541 17 1

3

5,242 475

2,959 31.89 92.77

94,361 16 1

4

3,814 413

2,565 26.77 95.79

68,659 13 1

5

5,946 466

2,817 38.00 74.12

107,034 13 1

6

7,064 518

3,256 39.05 83.37

127,149 28 1

7

9,948 611

3,770 47.50 79.36

179,067 19 1

8

9,062 633

4,046 40.31 100.37

163,118 21 1

9

5,637 442

2,770 36.63 75.62

101,461 18 1

10

9,902 591

3,681 48.42 76.03

178,233 29 1

11

5,930 454

2,819 37.87 74.45

106,746 15 1

12

7,397 521

3,183 41.84 76.07

133,147 18 1

13

4,291 427

2,626 29.41 89.28

77,238 16 1

14

6,851 503

3,083 40.00 77.08

123,321 21 18

15

8,193 529

3,372 43.73 77.12

147,471 17 8

16

6,095 462

2,803 39.15 71.59

109,716 17 14

17

12,893 731

4,673 49.67 94.08

232,082 22 7

18

5,510 434

2,660 37.29 71.34

99,184 18 14

19

6,955 520

3,165 39.55 80.04

125,198 20 13

20

9,256 563

3,637 45.81 79.38

166,601 24 6

21

4,099 379

2,257 32.70 69.02

73,787 14 13

22

4,916 450

2,794 31.67 88.24

88,485 17 13

23

5,797 434

2,817 37.03 76.08

104,337 20 18

24

4,421 436

2,732 29.12 93.82

79,573 17 13

25

5,938 466

2,847 37.55 75.81

106,892 26 18

26

5,180 418

2,657 35.09 75.74

93,244 18 11

27

7,073 513

3,234 39.37 82.14

127,311 28 20

28

4,214 402

2,384 31.81 74.94

75,849 16 13

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6152

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

29

6,412 492

3,055 37.78 80.87

115,413 22 18

30

6,169 480

2,990 37.14 80.50

111,039 26 18

 Table 6: ICE 04 Student Data

