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Abstract  
 
In the era of big data, the prevalence of imbalanced datasets has emerged as a significant challenge in 
machine learning and data analytics. Analysts often employ two primary techniques - undersampling 
and oversampling - to overcome the imbalance problem. This study explores the multiple oversampling 
techniques in addressing these imbalances, focusing on how appropriate sampling methods can enhance 

model performance, improve predictive accuracy, and facilitate better decision-making. The results 
affirm that oversampling does improve the predictive power for the minority class when compared to 
building a model with unbalanced data. However, the additional contribution is that the type of balancing 
technique matters to the overall performance and accuracy of the predictive model. 
 
Keywords: Data Balancing, Predictive Modeling, Logistic Regression, Credit Card Fraud. 

 

mailto:Dara.tourt@my.metrostate.edu
mailto:Queen.booker@metrostate.edu
mailto:carlr@sandiego.edu
mailto:Simon.jin@metrostate.edu


2024 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Baltimore, MD  v10 n6186 

 

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2 
https://iscap.us/proceedings/ 

1. INTRODUCTION 

 
In the era of big data, the prevalence of 
imbalanced datasets has emerged as a significant 

challenge in machine learning and data analytics. 
Imbalanced datasets occur when one class 
significantly outnumbers another which is 
common in financial modeling to address issues 
such as credit decisions, fraud detection, and 
default predictions (He & Garcia, 2009). For 
example, in a dataset used to build models to 

detect credit card fraud, fraudulent transactions 
may represent less than 1% of the total data. 
Traditional classification algorithms, such as 
logistic regression and support vector machines, 
often perform inadequately on such datasets 
because they tend to favor the majority class, 

leading to high overall accuracy but poor 
sensitivity for the minority class (Saito & 
Rehmsmeier, 2015).  
 
Analysts often employ two primary techniques - 
undersampling and oversampling - to overcome 
the imbalance problem. Undersampling involves 

reducing the number of instances in the majority 
class to create a more balanced dataset. This 
technique can lead to simpler models that 
generalize better, as it prevents the model from 
becoming overwhelmed by the sheer volume of 
majority class instances (Kotsiantis, 2006; Dube 
& Verster, 2023). However, undersampling 

carries the risk of losing potentially valuable 
information, which can negatively impact model 

performance (Batista et al., 2004).  
 
Conversely, oversampling increases the number 
of instances in the minority class. Techniques 

such as SMOTE (Synthetic Minority Over-
sampling Technique) generate synthetic 
instances based on the existing minority class 
data, helping to mitigate the risk of overfitting 
associated with simple duplication of minority 
instances (Chawla et al., 2002). By enhancing the 
representation of the minority class, 

oversampling can significantly improve the 
model's ability to learn relevant patterns.  
 
Given the emphasis prior research has made 

regarding the significance of balancing 
imbalanced datasets, many balancing methods 
have been introduced to accomplish the goal. 

However, few studies have compared and 
contrasted the various methods of balancing 
datasets and measured the difference in the 
results of the different approaches. This research 
study aims to address this gap, applying different 
oversampling methods to the credit card default 

problem using a logistic regression model as the 
comparative tool. We report the difference in 

Type I and Type II errors, and significant 

difference between each model built using the 
different balancing methods. The paper continues 
with the literature review of oversampling 

methods, followed by the research methodology, 
results, conclusions, limitations, and next steps. 
 

2. LITERATURE REVIEW 

 
In the field of machine learning, addressing class 
imbalance remains a critical challenge that can 
significantly impact the performance of predictive 

models. This literature review explores various 
oversampling techniques reported in the 
literature and used in data analysis, their 
theoretical foundations, and their benefits and 
challenges. 

 

Random Oversampling 
Random oversampling serves as a fundamental 
technique for addressing class imbalance in 
machine learning. By increasing the 
representation of minority class instances, 
random oversampling helps mitigate bias and 
improve the performance of predictive models on 

imbalanced datasets. Random oversampling 
involves randomly duplicating instances from the 
minority class until a balanced distribution is 
achieved (Chawla et al., 2002). Random 
oversampling is easy to implement and does not 
require complex algorithms or parameter tuning 
compared to other oversampling techniques. 

Random oversampling also retains all instances 
from both classes, thereby preserving the overall 
information content of the dataset. While simple, 
it may lead to overfitting and increased 
computational costs. Random oversampling is 
based on the premise of increasing the minority 

class instances randomly until the class 
distribution is balanced with the majority class. 
Random oversampling preserves all instances 
from both classes but duplicates minority class 
instances. By doing so, it aims to provide the 
model with more examples of the minority class, 
thereby reducing bias and improving the model's 

ability to generalize to minority class instances. 
(Yang et al, 2024) 
 

Synthetic Minority Over-sampling Technique 
(SMOTE)  
SMOTE generates synthetic instances for the 
minority class by interpolating between existing 

instances (Chawla et al., 2002). This technique 
preserves the underlying data structure better 
than random oversampling and reduces the risk 
of overfitting. SMOTE, proposed by Chawla et al. 
(2002), tackles class imbalance by generating 
synthetic instances for the minority class. It 
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works by interpolating between existing minority 

class instances to create new synthetic samples 
in the feature space, thereby balancing the 
dataset without blindly duplicating existing data 

points.  
 
This method is effective in improving the 
generalization ability of machine learning models 
by providing more balanced training data.  
Despite its advantages, SMOTE may struggle with 
datasets where the minority class is not uniformly 

distributed or when instances of the minority 
class overlap with those of the majority class. This 
can lead to synthetic samples that do not 
adequately represent the true characteristics of 
the minority class, potentially affecting model 
performance. (Kimbrell, 2014) 

 
Synthetic Minority Over-sampling Technique 
for Nominal and Continuous (SMOTE-NC) 
SMOTE-NC is used for datasets that contain both 
numerical and categorical features. SMOTE-NC 
first identifies instances belonging to the minority 
class. For each minority instance, the algorithm 

calculates the k-nearest neighbors (typically 
using Euclidean distance). Synthetic samples are 
generated by taking a minority instance and one 
of its nearest neighbors. A random point is then 
created along the line segment joining the two 
instances. This process is repeated until the 
desired level of balance is achieved in the dataset. 

SMOTE-NC uses the most common value among 
the k-nearest neighbors for categorical attributes 

when generating synthetic samples. Instead of 
calculating a weighted average (as with 
continuous data), it identifies the mode (most 
frequent category) for categorical features. The 

synthetic instance is formed by combining the 
continuous attributes generated as described 
earlier and the most frequent values for nominal 
attributes. (Gök et al, 2021) 
 
Safe-level-SMOTE (SL-SMOTE) 
SL-SMOTE builds upon the original SMOTE 

framework by incorporating a safety level 
mechanism to control the generation of synthetic 
samples. SL-SMOTE evaluates the density of 
instances surrounding minority class samples. It 

utilizes the concept of safe regions, where 
synthetic samples can be generated without 
risking overfitting or misclassifying noisy data 

points. Instead of randomly selecting neighbors 
as in traditional SMOTE, SL-SMOTE identifies 
"safe neighbors" that lie within a certain threshold 
of distance from the minority instance.  
 
This selective approach minimizes the chances of 

generating synthetic samples that may lead to 
decision boundary distortions (He & Ma, 2009). 

Once safe neighbors are identified, synthetic 

samples are generated similarly to traditional 
SMOTE, using linear interpolation. By focusing on 
safe regions for sample generation, SL-SMOTE 

significantly reduces the risk of overfitting to 
noisy or outlier data points that may exist within 
the minority class. Several studies have 
demonstrated that SL-SMOTE can lead to 
improved classification performance compared to 
traditional SMOTE, particularly in scenarios with 
extreme class imbalance (Shing et al, 2023).  

 
Borderline-SMOTE (BSMOTE)  
This variant of SMOTE focuses on generating 
synthetic instances near the decision boundary 
between classes (Han et al., 2005). It addresses 
classification errors that occur near the class 

boundaries. Borderline SMOTE focuses on 
generating synthetic samples specifically in the 
"borderline" areas where the minority class 
instances are most vulnerable to misclassification 
(Han et al., 2005). The algorithm first identifies 
minority class instances that lie close to the 
decision boundary between classes. These 

borderline instances are critical because they are 
often misclassified or underrepresented, making 
them essential for model training. For each 
borderline minority instance, the algorithm 
identifies its k-nearest neighbors within the 
minority class. The choice of k can be adjusted 
based on the dataset's characteristics. Synthetic 

samples are generated by interpolating between 
a borderline instance and its nearest minority 

neighbors. The interpolation is performed 
similarly to traditional SMOTE, using a weighted 
combination of the instances to create new 
synthetic samples in the feature space. (Han et 

al, 2004; Chen et al, 2023).  
 
K-Means SMOTE 
K-Means SMOTE is an approach that integrates K-
Means clustering with SMOTE to enhance the 
representation of the minority class. By 
leveraging K-Means clustering, K-Means SMOTE 

generates synthetic instances that better capture 
the distribution and structure of the minority 
class, leading to improved model performance 
(Batista et al., 2004). The localized generation of 

synthetic instances helps in reducing overfitting 
by preserving the diversity within the minority 
class and avoiding excessive duplication of 

instances (Sun et al., 2007). Models trained on 
datasets augmented with K-Means SMOTE 
synthetic samples are better able to generalize to 
unseen data, as they have learned from a more 
balanced and representative dataset (He & Ma, 
2013). 
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Support Vector Machine SMOTE (SVM 

SMOTE) 
To enhance the performance of predictive models 
on imbalanced datasets, SVM SMOTE has 

emerged as an advanced approach that 
integrates Support Vector Machines (SVM) with 
SMOTE to improve the representation of minority 
class instances. SVMs are powerful supervised 
learning models used for classification tasks. SVM 
SMOTE integrates the strengths of SVM and 
SMOTE by selectively applying the oversampling 

technique to minority class instances that are 
support vectors or are close to the SVM decision 
boundary. By focusing on instances near the SVM 
decision boundary, SVM SMOTE generates 
synthetic samples that are more relevant to the 
SVM classifier's learning process, thereby 

enhancing its ability to generalize (He & Ma, 
2013). SVM SMOTE aims to mitigate the impact 
of class imbalance on SVM classifiers, resulting in 
improved accuracy and robustness in predicting 
minority class instances (Sun et al., 2007). 
Empirical studies and applications across various 
domains, such as healthcare diagnostics, fraud 

detection in finance, and image classification, 
have demonstrated the efficacy of SVM SMOTE in 
addressing class imbalance and improving 
predictive model performance (Batista et al., 
2004; Zhang & Mani, 2003). 
 
Adaptive Synthetic Sampling (ADASYN) 

ADASYN adjusts the density distribution of the 
minority class by focusing synthetic instance 

generation on instances that are harder to classify 
(He & Ma, 2013). It emphasizes regions of the 
feature space where the classifier performs 
poorly. ADASYN is another extension of Synthetic 

Minority Over-sampling Technique (SMOTE), 
which addresses class imbalance by oversampling 
the minority class. SMOTE generates synthetic 
samples along line segments joining minority 
class instances. However, SMOTE does not 
consider the distribution of minority class 
instances, potentially leading to overfitting in 

dense minority regions and underfitting in sparse 
regions. ADASYN improves upon SMOTE by 
adaptively generating synthetic samples based on 
the density distribution of minority class 

instances. Specifically, it focuses more on 
generating samples in regions where the class 
distribution is sparser, thereby making the 

classifier more robust and reducing the risk of 
overfitting. (Mitre et al, 2023) 
 
Self-adaptive Oversampling (SAOM) 
The Self-Adaptive Oversampling Method (SAOM) 
introduces a dynamic approach to the 

oversampling process, allowing it to adjust based 
on the characteristics of the data at hand. Unlike 

static oversampling techniques that apply a 

uniform strategy across the dataset, SAOM 
adapts its sampling strategy according to the local 
distribution of minority and majority classes, 

thereby enhancing the quality of the synthetic 
samples generated. SAOM continuously evaluates 
the data distribution and adjusts the 
oversampling strategy based on local density 
estimates.  
 
By incorporating an adaptive mechanism, SAOM 

strikes a balance between exploring 
underrepresented regions of the feature space 
and exploiting areas where the minority class is 
already well-represented. This dual strategy 
improves the diversity of synthetic samples while 
ensuring they remain relevant to the underlying 

data distribution. Studies have shown that 
models trained using SAOM exhibit superior 
performance compared to those utilizing 
traditional oversampling methods. The self-
adaptive mechanism allows SAOM to be tailored 
to a wide range of applications and datasets, 
making it a versatile tool in the machine learning 

toolbox. Its scalability ensures that it can be 
applied effectively in both small and large 
datasets. (Tao et al, 2023) 

 
3. RESEARCH METHODOLOGY 

The purpose of this study was to evaluate the 
performance of a predictive modeling technique 

using different oversampling techniques. The 
application for the study is logistic regression to 

predict customer default on credit card payments. 
There are many machine learning methods used 
to predict default behavior. Logistic regression 
was used for this study for exploration of the 
oversampling method. According to Yeh and Lien 
(2009) and Sperandei (2014), logistic regression 

is specifically tailored for scenarios with a binary 
response variable and is typically the first or 
baseline technique to compare subsequent 
models for performance. Logistic Regression’s 
strength lies in its ability to offer a straightforward 
probabilistic framework for classification.   
 

The study compares eight different oversampling 

methods to the unbalanced dataset. The 
oversampling techniques studied were Random 
Over-Sampling, SMOTE, SMOTENC, ADASYN, 
BSMOTE, SVM SMOTE, K-Means SMOTE, and SL-
SMOTE.  

The research questions for the study were: 

1. Does oversampling improve the performance 
of the logistic regression predictive model for 
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identifying potential credit card accounts that 

default? 
2. Is there an oversampling method that 

improves the performance of the logistic 

regression predictive model for identifying 
potential credit card accounts that default? 

Based on the literature, oversampling methods 
improve the performance of data mining 
algorithms. However, there was no indication 
through the literature review process that any 
method significantly outperformed another for 
the credit card default application. The 
hypotheses for the study are as follows: 

H0: A logistic regression model for predicting 

credit card payment default built using an 

unbalanced dataset will not perform significantly 
better than a model built using a balanced 
dataset.  

H1: When compared to other oversampling 
methods to balance the dataset, no logistic 
regression model performs significantly better 
than another. 

All models were built and evaluated using Python. 
To test the significant difference between each 
model, a t-test was performed comparing error 
rates. Each model was evaluated using standard 

suitability measures. According to the literature, 
there is general agreement how they are defined 

and are listed as follows (Chen et al., 2021; 
Demraoui et al., 2022; Karthiban et al., 2019; 
Lusinga et al., 2021; Li et al., 2017; Ndayisenga, 
2021; Orji et al.; Peiris, 2022; Pimcharee & 
Surinta, 2022, Booker & Rebman, 2024): 

• Accuracy score over 90% 
• Specificity score over 85%  

• Type I Error score under 10%  
• Type II Error score under 10%  
• Recall score over 85%  
• Precision score over 85% 
• F measure score over 85  
• AUC near to 1 

Dataset 
The dataset used in the study contains 
information on customer default payments in 

Taiwan. Figure 1 illustrates that the number of 
accounts not expected to default the following 
month vastly outnumbers those that are at risk of 
default and shows the class imbalance between 
defaults and non-defaults, with 6,636 accounts 
classified as defaults and 23,364 as non-defaults.  
It is a multivariate dataset with 30,000 instances 

and 23 features, including both categorical and 

nominal data types. The dataset is hosted by the 
UCI Machine Learning Repository and can be 
accessed directly at 

https://archive.ics.uci.edu/ml/datasets/default+
of+credit+card+clients.  

 

 
Figure 1: Default Instances in the Dataset 

The creators of this dataset, led by I-Cheng Yeh 

compiled it for business applications, specifically 
within the subject area of risk management 
associated with credit card default payments. The 
dataset does not contain any missing values. 
Variables were recoded as necessary to ensure 
categorical data was represented as binary 

variables. The decision variable was whether a 

customer defaulted with 1 for defaulted and 0 for 
non-default. 

The variables in the dataset were: 
● X1: Amount of the given credit (NT dollar): it 

includes both the individual consumer credit 

and his/her family (supplementary) credit. 

●  X2: Gender (1 = male; 2 = female). 

●  X3: Education (1 = graduate school; 2 = 

university; 3 =high school; 4 = others). 

●  X4: Marital status (1 = married; 2 = single; 

3 = others). 

●  X5: Age (year). 

●  X6–X11: History of past payment. We 

tracked the past monthly payment records 

(from April to September 2005) as follows: 

○  X6 = the repayment status in 

September, 2005; X7=the 

repayment status in August, 

2005;...;X11 = the repayment status 

in April, 2005. 

■  The measurement scale for 

the repayment status is: 

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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● -1 =no pay delay 

● 1=payment delay for 

one month 

● 2 =payment delay for 

two months...;  

● 8 = payment delay 

for eight months; 

●  9 = payment delay 

for nine months and 

above. 

●  X12–X17: Amount of bill statement (NT 

dollar). 

○  X12 =amount of bill statement in 

September, 2005; X13 =amount of 

bill statement in August, 

2005;...;X17 = amount of bill 

statement in April, 2005. 

●  X18–X23: Amount of previous payment (NT 

dollar).  

○  X18 =amount paid in September, 

2005; X19 = amount paid in August, 

2005;...;X23 = amount paid in April, 

2005. 

 
Model Development 
Each model was built using 10,000 instances. For 
the unbalanced dataset, all the observations were 

drawn from the dataset. Following the 
recommendation of Gholamy et al. (2018), the 

training used 80% of the dataset. The remaining 
20% was used for testing. All models were built 
using logistic regression which is a widely used 
statistical method for predictive modeling, 
particularly suited for binary classification tasks. 

It models the relationship between one or more 
independent variables (features) and a binary 
dependent variable (outcome) using a logistic 
function. Logistic regression is designed to predict 
the probability of a binary outcome, typically 
coded as 0 and 1. Each model, including the 
application of sampling techniques were built 

using the Python software application. 
 

4. RESULTS 
 

This section presents the results of the validation 
stage of the analysis. Each model was applied to 
the full dataset. Table 1 summarizes the 

performance metrics of accuracy, precision, 
recall, and F-measure across the different 
oversampling methods using the results from the 
validation of the models.  
 
Based on the results, the unbalanced model 

appears to perform better than most of the 

models using oversampling methods. Each of the 

oversampling methods had at least two measures 
that met the suitability standards. Random 
oversampling met all four standards. In 

comparing the suitability measures, it would 
seem that the unbalanced trained model and the 
random oversampling model would provide the 
best predictive power. 
 

Model Precision Recall Accuracy 
F1 
Score 

Unbalanced 0.8631 0.8917 0.8055 0.8771 

Random 

Over-
Sampling 

0.9729 0.9649 0.9517 0.9689 

SMOTE 0.9658 0.7771 0.8050 0.8612 

SMOTENC 0.9677 0.7806 0.8089 0.8642 

ADASYN 0.9662 0.7803 0.8076 0.8634 

Borderline 
SMOTE 

0.9665 0.7793 0.8070 0.8628 

SVM 
SMOTE 

0.9676 0.7774 0.8064 0.8621 

KMeans 
SMOTE 

0.9667 0.7757 0.8045 0.8607 

SL-SMOTE 0.9066 0.7803 0.7662 0.8387 

Table 1: Validation Data Results Logistic 
Regression on Various Over-sampling 
Methods to Deal with Imbalance Class 
(Default, Non-Default) 

However, a review of the confusion matrices in 
Figures 2 through 10 show that the unbalanced 

model predicts the majority instances well but 
falters when predicting the defaults, providing a 
50/50 predictive power. For credit card default, a 

client is likely interested in having more potential 
default cases predicted than fewer.  
 
In examining the matrices, the unbalanced model 
has the worst performance with regards to 
correctly identifying default instances, predicting 
approximately 50% of the instances correctly. 

The best method of those tested was SVM-
SMOTE, correctly identifying more than 90% of 
the default instances. However, the model with 
the best predictive power for the majority class 
was random oversampling. 
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Figure 2: Unbalanced Confusion Matrix 

 
 

 
Figure 3: Random Oversampling Confusion 
Matrix 
 

 
Figure 4: SMOTE Confusion Matrix 
 

 
Figure 5: SMOTE-NC Confusion Matrix 
 

 
Figure 6: ADASYN Confusion Matrix 
 
 

 
Figure 7: Borderline SMOTE Confusion 
Matrix 
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Figure 8: SVM SMOTE Confusion Matrix 
 

 
Figure 9: KMEANS SMOTE Confusion Matrix 
 

 
Figure 10: SL-SMOTE Confusion Matrix 
 

The suitability measures and the confusion 
matrices indicate that the oversampling models 
perform better than the unbalanced model when 
predicting default instances. The next step was to 

determine if the differences were significant. 
Paired t-tests were performed for the unbalanced 
model and each of the oversampling models, and 

between each of the oversampling models.  The 
results are shown in Table 2 in Appendix A.  
 
Based on the t-tests, all the models that used 
oversampling methods performed with significant 
difference from the model using an unbalanced 

dataset when evaluating the prediction for 

default. Within the oversampling methods, SL-

SMOTE was significantly different from the other 
methods, with SL-SMOTE performing worse 
rather better. 

  
The final step in the analysis was to evaluate the 
hypotheses and research questions. Recall the 
primary research hypotheses: 

H0: A logistic regression model for predicting 
credit card payment default built using an 
unbalanced dataset will not perform significantly 
better than a model built using a balanced 
dataset.  

H1: When compared to other oversampling 

methods to balance the dataset, no logistic 

regression model performs significantly better 
than another. 

H0 is accepted because all the oversampling 
models performed better, based on the t-test 
results. H1 is partially accepted as the SL-SMOTE 
performed better than the other models. 
 
When returning to the research questions RQ1 
“does oversampling improve the performance of 

the logistic regression predictive model for 
identifying potential credit card accounts that 
default?” and RQ2 “is there an oversampling 
method that improves the performance of the 
logistic regression predictive model for identifying 

potential credit card accounts that default?”, the 
results indicate that oversampling does improve 

the performance of the logistic regression 
predictive model for identifying potential credit 
card accounts that default and of the 
oversampling methods tested, all the other 
models performed better than the SL-SMOTE 
method.  

 
In summary, the results indicate that there is 
value in comparing data balancing methods when 
developing predictive modeling as such a 
comparison can improve the performance of the 
predictive model. 
 

5. LIMITATIONS AND CONCLUSIONS 

 
This study examined only oversampling methods 
in the context of predicting credit card default for 
a specific dataset using a specific modeling 
method-logistic regression. The results of the 
study cannot be generalized as there are many  

factors to consider when building predictive 
models including but not limited to the variables, 
data balancing methods, and predictive modeling 
techniques. Therefore, additional analysis is 
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needed to determine the conditions best suited 

for each sampling method, dataset configuration, 
and predictive modeling tool. 
  

However, oversampling techniques represent a 
critical approach to addressing class imbalance in 
data analysis. While each technique has its 
strengths and weaknesses, their application 
depends heavily on the specific characteristics of 
the dataset and the objectives of the analysis. 
Continued research and development in this area 

aim to improve the robustness, scalability, and 
applicability of oversampling methods across 
diverse domains and applications in machine 
learning and statistical modeling. Oversampling 
serves as a viable strategy to address the 
challenges posed by imbalanced datasets. The 

selection of the appropriate method hinges on the 
specific requirements of the task, the nature of 
the dataset, and the criticality of predictive 
accuracy in the minority class. As machine 
learning continues to evolve, ongoing research 
into sampling approaches that combine the 
strengths of multiple methods may provide 

further avenues for improvement in managing 
imbalanced datasets. 
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Appendix A 
 

Model Unbalanced 
Random 

Over-
Sampling 

SMOTE SMOTENC ADASYN 
Borderline 

SMOTE 
SVM 

SMOTE 

Random 
Over-

Sampling 

56.544 *       

SMOTE 56.239 * 0.444      

SMOTENC 57.518 * 0.572 1.006     

ADASYN 56.357 * 0.295 0.146 0.864    

Borderline 
SMOTE 

57.346 * 0.118 0.323 0.689 0.177   

SVM 

SMOTE 
57.173 * 0.598 1.032 0.030 0.905 0.720  

KMeans 

SMOTE 
56.745 * 0.118 0.569 0.453 0.418 0.238 0.578 

SL-SMOTE 25.838 * 28.810 * 
28.134 

* 
29.390 * 28.612 * 28.737 * 

39.647 
* 

Table 2: T-test Results Comparing Accuracy of the Models 
 


