
2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Teaching Software Supply Chain Security

Zhouzhou Li

Zli2@semo.edu

Juefei Yuan
jyan@semo.edu

Mario Alberto Garcia

mgarcia@semo.edu

Southeast Missouri State University

Cape Girardeau, MO

Abstract

Modern software often incorporates open-source and third-party code, inheriting their vulnerabilities
and reducing developers' control over security and patches. Notable supply chain attacks, such as the

SolarWinds incident, the Log4j exploit, and the outage caused by CrowdStrike’s update, have highlighted
the severe consequences of compromised software supply chains. In response, the cybersecurity faculty
of Southeast Missouri State University introduced a new Software Supply Chain Security course in
Summer 2023, aimed at enhancing students' practical skills and job market readiness in facing the

challenges from software supply chain vulnerabilities. The course is designed to align with the NCAE-CD
Knowledge Units and respect the classic Bloom’s Taxonomy. And six learning outcomes, such as
“understand the dependencies between the software and the 3rd-party software”, “select and integrate

appropriate 3rd-party software”, and “verify, debug, and update or replace the integrated 3rd-party
software” are identified. Attended by 12 Cybersecurity master's students, the course received positive
preliminary feedback on its teaching effectiveness, with the majority of students praising the quality of
the course materials.

Keywords: Software Supply Chain Security, Cybersecurity Education, Open-source Vulnerabilities,

Third-party Code Security, Supply Chain Attacks, SolarWinds Incident, Log4j Exploit, Practical Skills
Development, Job Market Readiness, NCAE-CD Knowledge Units.

1. WHY TEACHING IT AND WHY
PROPOSING A COURSE

Software Supply Chain Security is important
The software supply chain is made up of
everything and everyone that touches the
software in its Software Development Life Cycle
(SDLC). It includes networks of information about
the software, like the components, the people
who wrote them, the sources they come from,

and all vulnerabilities associated with (DEF, 2024).
Most software today is not developed from
scratch – it reuses A significant amount of open-

source code and/or combines third-party code.
Therefore, it inherits all the vulnerabilities from
the reused code. Unfortunately, the software

developers have less control over the open-
source and third-party code as well as their
patches. Software supply chain security becomes
a big challenge to today’s software.

Three examples of the software supply chain
attacks are the recent SolarWinds incident, the

famous Log4j exploitation, and the outages
caused by CrowdStrike’s updates. The
consequences were catastrophic. The

mailto:Zli2@semo.edu
mailto:jyan@semo.edu
mailto:mgarcia@semo.edu

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

CrowdStrike case was particular ironic because

the third-party software provided by CrowdStrike
was for security protection.

In response to the rise of the Software Supply
Chain Security issues, in 2021, the president of
the United States highlighted the importance of
software supply chains and security with two
White House Executive Orders: supply chains and
cybersecurity. In 2022, the National Centers of
Academic Excellence in Cybersecurity (NCAE-C)

Curriculum Task Force started to seek proposals
for developing post-secondary educational
materials in the software supply chain security
area. In 2023, they are still looking for it.

To expose the students to this new practical

Cybersecurity sub-area, develop their hands-on
skills in an ever-changing discipline, and increase
their competency in the job market, it is urgent
to develop the course material for Software
Supply Chain Security. Southeast Missouri State
University, as the national CAE-CD and MO state
designated institution, and its Cybersecurity

faculty actively take the responsibility to adapt to
the new technical trends in Cybersecurity
education and training by developing a new
Software Supply Chain Security course. The first
experimental class was delivered in Summer
2023 as a 6-week summer course with 12
Cybersecurity master students attending. The

newly designed course materials included an up-
to-date syllabus, six Learning Outcomes, six

lecture slides, five assignments and five labs. The
preliminary teaching effectiveness evaluation is
very positive.

Software Supply Chain Security Education is
new
Because the Software Supply Chain Security is
quite a new sub area of Cybersecurity, it is hard
to find an existing textbook or tutorial for
reference when the authors were developing the
course material. However, there are several hints

we can get from the existing textbooks or other
documents talking about the general supply chain,
and from the “brainstorming” conducted by
ChatGPT. We will address the prior later, here we

just discuss the “answers” from ChatGPT.

In Figure 1, ChatGPT answered the question: can

you develop a course talking about software
supply chain security? Obviously, ChatGPT
thought SSCS is a component of software
development life cycle, which is good. However,
from the eight modules proposed by ChatGPT, we
did not see sufficient technical topics unique to

software supply chain security. We can find
similar modules in general Secure Software

Development courses. The answer did not well

address the core question when a faculty try to
develop a new course: what is the unique content
in the new SSCS course? This was why we did not

follow ChatGPT’s recommendations.

Figure 1: Ask ChatGPT to design a

“Software Supply Chain Security” course.

The rest of this article is organized as follows.
First, we will follow some standard and philosophy
(KU, 2024) (TAX, 2024) to define the outline,

technical scope, and focus of the new course. The
referred documents include the “2020 CAE Cyber
Defense (CAE-CD) Knowledge Units” (KU, 2024)
and the Bloom’s Taxonomy for categorizing
educational goals (TAX, 2024). Then, we will
provide the details of the course materials

including the teaching environment construction,

course outline, labs. After that, an experimental
but real teaching effectiveness evaluation will be
provided for analysis. The shortage of the
teaching experiment and potential enhancement
directions will be discussed in the “Future Work”
section. And finally, we summarize this article in

the “Conclusion” section.

2. HOW TO TEACH IT

The “Software Supply Chain Security” course
somehow is related to software security analysis.
Therefore, ideally, the course developer can reuse

a few ideas and materials from the existing
Software Analysis course. However, in the CS
department of the Southeast Missouri State

University (SEMO), we did not offer any software
analysis course (this situation was improved in
Fall 2024 though). So, at that time, the course

developer had to develop the experimental course
from scratch.

Decide the outline of the course
In the document of “2020 CAE Cyber Defense
(CAE-CD) Knowledge Units”, the Supply Chain
Security (SCS) is an optional Knowledge Unit

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

(KU), which includes both software and hardware

components. Per the document, the intent of the
SCS KU is to “provide students with an
understanding of the security issues associated

with building complex systems out of third-party
components of unknown (and potentially
unknowable) origin.” There are several keywords
in this statement: Complex Systems, Third-party
Components, Unknown and Potentially
Unknowable. These keywords should help us
identify the scope of the course and the

challenges the instructor and students are facing.
This document also provides the learning
outcomes for the SCS KU.

To complete this KU, students should be able to:

▪ Describe the issues related to outsourcing

hardware and/or software development
and/or integration.

▪ Describe methods to mitigate these
issues, and the limitations of these
methods.

And it provides typical topics that should be

covered in the SCS KU.

To complete this KU, all Topics must be completed:

▪ Global Development
▪ Offshore Production
▪ Transport and Logistics of IT Components
▪ Evaluation of 3rd Party Development

Practices
▪ Understanding of the Capabilities and

Limits of Software and Hardware Reverse
Engineering

Simply skip the hardware, transport, and logistics

parts of the above information, we can tell that
SDLC, Third-party Software, and Reverse
Engineering are the focus of the course, and the
course should be practical to the students.

As a summary, the newly developed Software
Supply Chain Security course should teach

students the practical skills (such as reverse
engineering) to solve the security issues
embedded in the SDLC when third-party
component is integrated to the software.

Based on the above summarized guideline, we
decided the outline of the course, as shown in

Figure 2.

Figure 2: Our outline for the Software
Supply Chain Security course.

Integrate Teaching Philosophy: Hands-on,
practical, competency including soft skills
Also, the Software Supply Chain Security course
needs to align with the existing program,
supporting the learning outcomes required by
ABET, NCAE-CD assessment process. According
to Bloom’s Taxonomy, as shown in Figure 3, there

are different levels of educational goals the
students need to achieve during the course study.

We designed the course specific labs around the
different levels of education goals and gave
priorities to hands-on and practical content with

the hope to improve our students' competency in
the job market.

Figure 3: Bloom’s Taxonomy for different

levels of education goals.

Decide the teaching and learning

environment

Different software execution environments
require different considerations on tools and lab
designs. Windows itself is not free, not to mention
the relied third-party components. IoT
environment seems more attractive because of
the following advantages:

▪ IoT hardware and software are either
open-source or available at very low cost.
Teachers and students do not have to
worry about the corruption of the

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

hardware and software even though

cybersecurity labs are usually destructive.
▪ IoT applications integrate a huge number

of third-party components, which are the

desired target of SSCS. IoT application
development usually relies on existing
libraries. The pure software development
has been reduced to less than hundreds
of new lines. This feature will speed up
the exploration of mysterious third-party
code while helping ignore the

unnecessary distraction from coding.

However, as a matter of fact, IoT applications rely
on the cross-compilation to compile the
application under one environment then run the
application under another environment. Linux

(virtual machine) is the recommended
compilation platform for IoT applications due to
its availability and versatility. Therefore, the
teaching and learning environment was Linux in
our first experimental course.

Detailed Labs Design

We lectured the course material in Summer 2023
for a 6-week period and a small group of students.
Due to the tight schedule, all the technical topics
were distributed to 6 modules with one module a
week. The course materials were organized based
on SDLC phases with special consideration for
integrating third-party components. For example,

the early phases in third-party software
development (such as System Analysis,

Architecture Design and coding) have been
covered by the vendor of the adopted third-party
software. The user of the third-party software
only considers how to select the third-party

software, and then how to integrate it to the
user’s software/application. As well as how to
test/verify the external components. Debugging
third-party software is challenging but also
necessary, no matter whether the user can get
immediate support from the vendor or not. Finally,
the vendor of the third-party software may have

their own rhythm, therefore, they may not be
able to align with the user’s development
schedule, which means, the user needs to know
how to update or upgrade the third-party

software when it is ready.

Lab for Unit 1

In the first week, the instructor will need to
explain the composition of a software, which is
the fundamental of the Software Supply Chain
(Figure 4). We designed a lab directing our
students to check the executable’s size after
compilation, so that they would realize there are

a large number of supporting libraries behind the
source code they wrote, which will be integrated

into the executable. Along with the post-class

reading on “Open-Source Security”, the students
will understand the potential damages that could
be caused by the third-party or open-source code.

So, they will be cautious when they adopt a third-
party or open-source components in their
software. Table 1 indicates the different levels of
learning goals the students are expected to
achieve in the first lab.

An example of good student work is shown below:

“The larger size of the compiled program
compared to the source program is primarily due
to the inclusion of additional code and data during
the linking process. This includes:

Standard library functions: The compiled
program needs to link with the C runtime library,
which provides standard functions like printf and
scanf. These library functions add additional code
to the program.

Runtime support code: The linker includes

runtime support code necessary for proper
program execution, such as initialization and
cleanup routines, exception handling (if
applicable), and other internal mechanisms.

Symbol tables and debugging information:
The compiled program includes additional

information for debugging purposes, such as
symbol tables that map function and variable

names to their memory addresses. This
information aids in debugging and error analysis.

Additional sections: The compiled program

may have additional sections, such as “.rodata”
(read-only data), “.eh_frame” (exception
handling information), and .dynamic (dynamic
linking information). These sections store various
data required by the program's execution and
increase the overall size.

It's important to note that the larger size of the
compiled program does not necessarily imply that
it is less secure or more vulnerable. The additional
code and data included during compilation and

linking are necessary for the program to run
correctly and interact with the underlying
operating system and runtime environment.”

Lab for Unit 2
Unit 2 (Figure 5) talked about how to securely
integrate third-party software. First the instructor
introduced the compilation process. Then the
instructor indicated the compilation command

option to integrate a library into an executable.
And finally demonstrated the tools that can be

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

used to analyze the components of an executable.

We designed two labs for Unit 2. The first one
required the students to derive the header
information of an executable by using tools such

as readelf and objdump. From the information the
student should be able to figure out where the
initialized global variables, uninitialized global
variables, constant strings, and instructions are
saved in the executable. The second lab
instructed the students to generate their own
shared lib and then call it from their software.

An example of good student work is shown below:

“To generate a shared library (also known as a
dynamically linked library) and integrate it into
your software, you can follow these general steps:

Write the library code: Create the source code for
your library in a programming language of your
choice. This code should contain the functions and
logic you want to expose to your software.
Compile the library: Use the appropriate compiler
and build tools to compile the source code into an

object file. The commands and options will vary
depending on the programming language and
platform you're using. Make sure to compile it as
a shared library. For example, using GCC on Linux,
you can compile a shared library with the
following command:
vbnet

Copy code
gcc -shared -o libyourlibrary.so yourlibrary.c

Link the library: When compiling your software,
you need to link it with the shared library you
created. This step varies depending on your build
system or IDE. For example, if you're using GCC

on Linux, you can link your software with the
shared library using the following command:
bash
Copy code
gcc -o yoursoftware yoursoftware.c -lyourlibrary
-L/path/to/library
Here, -lyourlibrary specifies the library name

without the "lib" prefix and the file extension, and
-L/path/to/library specifies the path to the
directory where the library is located (if it's not in
the default search path).

Distribute the library: Copy the shared library file
(libyourlibrary.so) to an appropriate location
where it can be accessed by your software. This

could be a system library directory or a custom
directory that you configure for your software.
Load the library in your software: Depending on
your programming language and platform, you'll
need to use specific mechanisms to load the
shared library dynamically at runtime. This allows

your software to access the functions and
symbols provided by the library. The exact steps

for this will depend on the programming language

or framework you're using. Here are a few
examples:
C/C++: Use functions like dlopen and dlsym from

the dlfcn.h header to load and access symbols
from the library dynamically.
Java: Use the System.loadLibrary method to load
the library. Then, you can access the library's
functions through the Java Native Interface (JNI).
Python: Use the ctypes module to load the library
and access its functions.”

Lab for Unit 3
After integrating the third-party or open-source
components to a software, the user needs to

verify their functionalities and security. This is the
main content of Unit 3 (Figure 6). Besides the
ordinary software testing, we designed a lab
requiring the students to do research on static
scanning tools and choose one to scan an
executable and demo the buffer overflow
vulnerability that can be detected by the tool.

Lab for Unit 4
Verifying the seamless integration of the third-
party component is easily blocked by the lament
bug or incompatibility embedded in the third-
party component. Waiting for the technical
support from the vendor is not a realistic solution

in most cases and very time-consuming.
Therefore, the user of the third-party component

should prepare for independent debugging. In
Unit 4, the instructor demonstrated Linux OS
debugging, which is a good example of third-
party component debugging (Figure 7). We

designed 3 labs around the built-in Linux eBPF
virtual machine focusing on the user interfaces
but ignoring the implementation details.

Lab for Unit 5
During the software development, often the
developers will encounter a situation where some

relied-on third-party component got a new
version released with critical security issues being
fixed. To fix the security issue inherited from the
old version of the third-party component,

update/patch/upgrade is needed. Unit 5 talked
about these scenarios (Figure 8). We designed
one lab for Unit 5. After completing it, the

students should know how to handle these
scenarios.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

Table 1: Lab for Unit 1 Mapping to the

Bloom’s Taxonomy.

Table 2: Lab for Unit 2 Mapping to the
Bloom’s Taxonomy.

Table 3: Lab for Unit 3 Mapping to the

Bloom’s Taxonomy.

Table 4: Lab for Unit 4 Mapping to the
Bloom’s Taxonomy.

Table 5: Lab for Unit 5 Mapping to the
Bloom’s Taxonomy.

Figure 4: Content of Unit 1.

Figure 5: Content of Unit 2.

Figure 6: Content of Unit 3.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

Figure 7: Content of Unit 4.

Figure 8: Content of Unit 5.

3. TEACHING EFFECTIVENESS ANALYSIS

Figure 9: Student Evaluation on Teaching
Effectiveness.

Figure 10: Student Evaluation on Teaching
Effectiveness – Compared to Other Classes

Student evaluation on a specific course is usually
the first-hand input for teaching effectiveness
analysis. Figure 9 shows the student evaluation
on the teaching effectiveness of the experimental
summer course. The underlined items were
related to the course materials either directly or

indirectly. Most of the rest items were focused on
how nicely the instructor communicated with the
students. They are not reflective to the quality of
the course material. Therefore, we will not discuss

them here.

Among the columns, the ‘N’ column represents

the number of students provided the course
evaluation. And ‘RR’ means Response Rate, that
is how many percentages of students provided
the course evaluation. Each evaluation varies
between 0-5 with 5 being the highest evaluated.

Among the underlined items, “Required materials
used effectively”, “Assessments reflected course
content”, “Assignments helped understanding”,
“Knowledge/abilities in subject increased”, and
“Online course organized logically/conductive to
learning” metrics were directly related to the
quality of the course materials. The average

evaluation in this category is equal or above 4.86,
which is much higher than the other summer
Cybersecurity courses as well as the average
evaluation of the school and university.

“Instructor interested in teaching class”,
“Instructor well prepared/used class time

effectively”, and “Instructor engaged students via
discussion activities” are indirect metrics. Usually
if the course material is new, interesting, and

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

providing insights, the student will recognize the

instructor’s effort by giving high evaluations on
these indirect metrics. The average evaluation in
this category achieves nearly the full points with

all responded students strongly agreeing. If we
check the average evaluation on all Cybersecurity
courses, this category has relatively lower
evaluations than the previous category. So, we
would interpret it as a big improvement. Figure
10 presents the student evaluation data for other
new courses taught by the first author. Obviously,

the student’s feedback to this experimental
course was more positive.

Overall, we can tell this is positive feedback to the
course materials. The strength of the course
materials is their technical quality: easy to

understand and follow. The weakness of the
course materials is its coverage and depth (these
can only be revealed by students’ text remarks).
Only two student remarks were recorded: “This
course content was up to date,” and “very
cooperative and way of explanation is very nice”.

Figure 11 illustrates the score distribution of the
student evaluation.

Figure 11: Score Distribution of Student

Evaluation

While the course emphasizes practical technical
skills, it would benefit from a strong integration

of soft skills, which are essential for cybersecurity
professionals who must often collaborate with
diverse teams and communicate complex
technical issues to non-technical stakeholders.
Regarding students’ soft skills development
through this course study, we only focused on
collecting data for teamwork and professional

communication.

Of the 10 assignments/labs, 5 require team

effort. Students are encouraged to take on
different roles within their teams - some involving
leadership, others followership. A student may
lead one team in one assignment while acting as

a follower in another. The key lesson to impart is
how to contribute effectively to the team to
achieve a 1+1>2 level of efficiency.

Of the 10 assignments/labs, 2 require technical
communication:

1. Open Source Security

Read the Open Source Security and Risk
Analysis Report 2023 and provide your
summary and insight

2. File size increased after compilation
Explain why the compiled program vuln1
has a much larger size than the size of
the source program vuln1.c.

From the students’ grades, these
labs/assignments well developed their soft skill.

4. FUTURE WORK

Currently we have eight labs designed for the
course, which are not sufficient for a regular
semester course. We shall add 4~6 more labs to
the course in the future. Case studies will be good
fits. The instructor can ask students to study the
SolarWinds incident, Log4j exploitation, and the
outages caused by CrowdStrike updates. These

cases were similar but had different root causes.
Analyzing them will help students better
understand the dangers of the real cyber world
and establish their best practices to protect
software from supply chain attacks. Another
promising research direction will be the problem
of inter-vendor compatibility. A software product

may integrate multiple 3rd-party libraries.
However, if they have potential conflicts with

each other, this will be a big problem to challenge
the security professionals. One more regular
semester at least is required for us to prepare and
add manuals for the new labs. A minimum of one

faculty member and one student worker will be
required.

As aforementioned, the experimental lecturing
and lab practices were based on Linux
environment. Given the big differences between
Windows, iOS, Android, and Linux operating

systems, it is necessary to develop similar
modules for the other operating systems than
only for the Linux environment. Because iOS and
Android somehow can be treated as variants of

Linux OS, firstly developing iOS and Android
specific modules seems a good choice because
more course materials can be reused. We

estimate that one or two regular semesters will
be needed before we can develop the course
materials for iOS, Android, and Windows
platforms. A minimum of two faculty members
and two student workers will be required.

Besides following academic standards, we can
also integrate industry standards in the course

https://semo.instructure.com/courses/24582/modules/items/1244727
https://semo.instructure.com/courses/24582/modules/items/1244727
https://semo.instructure.com/courses/24582/modules/items/1244727

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6192

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

development. The following ideas seam

promising:

Align Course Objectives with National Institute of

Standards and Technology (NIST) Standards.
Specifically, the five core functions (Identify,
Protect, Detect, Respond, Recover) of the NIST
Cybersecurity Framework (CSF) can be used to
guide students on protecting software supply
chain.

Use the NICE Framework for Competency-based
Learning. Specifically, we can map the course
content to the work roles defined in NICE
Framework. Or in a fine granularity, map the
course content to the tasks and KSAs
(Knowledge, Skills, and Abilities) defined in NICE

Framework.

Use real-world case studies where NIST
guidelines and the NICE framework were applied
in software supply chain security breaches.

We plan to integrate these industry standard -

based ideas into a new research paper.

5. CONCLUSION

Developing Software Supply Chain Security
courses is urgent and demanding in the
Cybersecurity program of NCAE-CD institutions.

In this article, we present our Linux-environment-
based, experimental course materials including

the outline, lab practices, as well as the idea. Our

major contributions in this paper include timely

response to the urgent call for the course
materials of Software Supply Chain Security; the
easy-to-follow methodology for developing the

Software Supply Chain Security course as well as
other emerging cybersecurity courses; the
hands-on lab development framework; and
preliminary learning effectiveness analysis. The
preliminary feedback from the students, who
attended the experimental summer course,
indicates that the organization of the course

modules seemed effective.

 6. REFERENCES

DEF. (2024). Retrieved from

https://binmile.com/blog/build-secure-scm-
software/.

KU. (2024). Retrieved from
https://dl.dod.cyber.mil/wp-
content/uploads/cae/pdf/unclass-cae-
cd_ku.pdf.

TAX. (2024). Retrieved from

https://www.flickr.com/photos/vandycft/294
28436431

https://dl.dod.cyber.mil/wp-content/uploads/cae/pdf/unclass-cae-cd_ku.pdf
https://dl.dod.cyber.mil/wp-content/uploads/cae/pdf/unclass-cae-cd_ku.pdf
https://dl.dod.cyber.mil/wp-content/uploads/cae/pdf/unclass-cae-cd_ku.pdf
https://www.flickr.com/photos/vandycft/29428436431
https://www.flickr.com/photos/vandycft/29428436431

