
2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Action Research to Enhance Enterprise-Specific

Chatbot (ESCB) Security & Performance

Zach Wood

zkw8126@uncw.edu

Geoff Stoker

stokerg@uncw.edu

Congdon School
University of North Carolina Wilmington

Wilmington, NC 28403 USA

Abstract

Previously, we conducted three action research cycles to develop a chatbot customized to answer
questions particular to the chatbot-creating organization. This enterprise-specific chatbot (ESCB)
creation technique uses a corpus of local policy documents (CLPD) as a knowledge base, readily available
software tools, a basic level of programming competence, and user community feedback. The ESCB
development process leverages the power of Artificial Intelligence (AI), Natural Language Processing
(NLP), and proprietary local data to transcend some of the typical limitations of conventional chatbots.
Utilizing two additional action research cycles, we evolved the ESCB to improve resource utilization and

prevent some forms of misuse. Using new advancements for context window size, we included more
information within each query, lexical complexity analysis of user queries, and a large language model
(LLM) firewall (FW). This work continues to underscore the significant potential of AI-powered chatbots
for data interaction and the affordability of AI implementation, paving the way for organizations with
limited resources to leverage the power of AI in their own local operations.

Keywords: Chatbot, LLM Firewall, AI, Action Research

1. INTRODUCTION

In previous work (Wood & Stoker, 2024), we
demonstrated a practicable approach to building
an enterprise-specific chatbot (ESCB) that any

organization with access to a basic level of
programming competence and readily available
software tools should be able to follow to build an

ESCB of their own. Given the challenges some
commercial website chatbots face when adhering
to a rigid question-answer pathway (Ayanouz et
al., 2020) and some of the difficulty they have

handling local information and dealing with the
varied phrasings of user queries (Nuruzzaman &
Hussain, 2018), we were motivated to create a
tool that could answer local organization policy
questions and convey them in a human-like
manner. In Figure 1, we provide a high-level

conceptual sketch of the final form of the business
process for user-chatbot data exchange from that
previous work. In brief, our previous ESCB
version integrated OpenAI’s Generative Pre-
Trained Transformer (GPT) large language model

(LLM) application programming interface (API)
and worked as follows:
1. A user types a query.

2. The ESCB tokenizes [1] the query, generates

word embeddings [2] (vector) for each token,

and calculates a single centroid vector [3]

that represents the entire query.

3. The organization’s corpus of local policy

documents (CLPD, AKA Local Data),

preprocessed into 200-token chunks with

corresponding centroid vectors, is compared,

using cosine similarity [4], to the query

https://openai.com/api/
https://platform.openai.com/tokenizer
https://en.wikipedia.org/wiki/Word_embedding
https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/Cosine_similarity

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

centroid vector and the 10 highest-scoring

chunks are extracted.

4. The query text and the plaintext of the 10

extracted chunks are sent to the GPT API,

which generates a response for the user.

Figure 1: A logical depiction of significant

steps in the original user-ESCB information
exchange (top-to-bottom) and key

components involved.

We believe that the demonstrated advantages of
our initial approach include:

• Cost-efficiency and time-savings by

eliminating extensive training requirements.

• Immediate updates to the underlying
knowledge base.

• The ability to pose abstract queries from
various knowledge backgrounds by
leveraging an existing LLM.

• Allowing customer service representatives to
dedicate their efforts more effectively by
automating responses to simple queries.

The explosion of public interest in LLMs over the
past ~18 months has raised concerns over how
to safely and securely integrate LLMs into

organizational processes. Many people have
recently demonstrated ways to misuse LLMs and
prompt the various AIs to generate malware,

provide bad financial, legal, or health advice,
create hate speech, or generate other undesired
or illegal information (Shen et al., 2024).

In this paper, we present our extension to the
initial work that attempts to avoid some of the
misuse scenarios and improve the ESCB's

performance. The remainder of this paper is

organized as follows: Section 2 provides a
literature review; Section 3 describes the action
research method we followed as well as the

significant components of the ESCB; in Section 4,
we present some results and discuss their
implications; Section 5 identifies some future
work; and Section 6 concludes.

2. LITERATURE REVIEW

With the introduction of ChatGPT in November
2022 (OpenAI), the general public was introduced
to the idea of a trained LLM and the concept of
generative artificial intelligence (GenAI or GAI).
People had already begun experimenting with
ways to abuse LLMs and make them respond in

unintended ways. Directly disclosing their
investigations to OpenAI in May 2022 but not
revealing publicly until late September,
researchers at preamble, an AI-Safety-as-a-
Service company, demonstrated what they
termed command injection against the beta
version of the text-davinci-002 LLM (preamble,

2022; Branch et al., 2022). They provided
examples where GPT-3 was manipulated to
falsely report if a given word was included in a
sentence, to provide detailed instructions on
building a fertilizer bomb, and to create a hateful
story about an ugly duckling.

Publicly, Riley Goodside posted to X (formerly
Twitter) on September 11, 2022, a simple

example of exploiting GPT-3 with malicious inputs
(Figure 2). The next day, Simon Willison blogged
about the post and seems to have coined the term
prompt injection (2022), which, in the absence

of a more authoritative definition, we note that
Wikipedia defines as:

a family of related computer security exploits
carried out by getting a machine learning
model (such as an LLM), which was trained to
follow human-given instructions to follow
instructions provided by a malicious user.

(“Prompt engineering,” 2024)

Figure 2: One of Riley Goodside’s examples

of exploiting GPT-3 (Goodside, 2022).

https://www.preamble.com/

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

Researchers at AE.Studio went beyond providing

prompt injection examples, studied particular
attack types, and proposed the PromptInject
framework to explore the attacks (Perez &

Ribeiro, 2022). In early 2023, security
researchers demonstrated indirect prompt
injection, where an LLM accepts input from
sources that an attacker controls, like a website
or file (Greshake et al., 2023; Greshake, 2023).
These studies, as well as subsequent ones (Yi Liu
et al., 2023; Yupei Liu et al., 2023; X. Liu et al.,

2024; Piet et al., 2023; Toyer et al., 2023; Yip et
al., 2024), showed different categories of attacks,
proposed various potential attacker objectives,
and explored defensive ideas.

In May 2023, the Open Worldwide Application

Security Project (OWASP) foundation announced
that it would continue its popular Top 10 series to
include one for LLMs (Wilson, 2023). Version 1.1
of the OWASP Top 10 for LLM Applications was
published in October 2023 and includes the
vulnerability types listed below (OWASP, 2023).
For each vulnerability type, OWASP provides a

comprehensive description, common examples,
prevention/mitigation strategies, and example
attack scenarios.

• LLM01: Prompt Injection
• LLM02: Insecure Output Handling
• LLM03: Training Data Poisoning
• LLM04: Model Denial of Service

• LLM05: Supply Chain Vulnerabilities
• LLM06: Sensitive Information Disclosure

• LLM07: Insecure Plugin Design
• LLM08: Excessive Agency
• LLM09: Overreliance
• LLM10: Model Theft

This paper explores continued ESCB development
to integrate measures to protect against a subset
of the vulnerability types enumerated by OWASP.
We focus on LLM01 Prompt Injection, LLM04
Model Denial of Service, and LLM09 Overreliance.
Prompt Injection (LLM01) protection efforts

revolve around preventing prompts that return
undesirable information. To mitigate the effects
of Model Denial of Service (LLM04), we try to
avoid allowing users to submit queries that might

be overly resource-consuming. To avoid
Overreliance (LLM09), we try to ensure the ESCB
does not provide inaccurate information.

3. METHODOLOGY

In this paper, we again follow an action research
approach to evolve the ESCB as we continue to
address “questions in one’s immediate work

environment, with the goal of solving an ongoing
problem in that environment” (Leedy & Ormrod,

2010, p. 44). The canonical action research

process model (Susman & Evered, 1978), Figure
3 (Davison et al., 2004), is followed to help
ensure systematic rigor is applied to the problem.

Steps include:
• Diagnosis – conduct a thorough examination

of the current organizational circumstances
• Planning – the diagnosis results directly

inform all planning; intended actions should
be specified before being undertaken

• Action – planned actions are implemented in

the order specified (if any)
• Evaluation – once planned actions are

complete, outcomes are compared to project
objectives and expectations

• Reflection – explicitly reflect on the activities
taken and the outcomes achieved; decide

whether to exit the cycle or iterate

Figure 3: A canonical action research

process model (Fig. 1. Davison et al., 2004)

Diagnosis and Planning
Our initial work on the ESCB successfully

produced a chatbot capable of providing a
dynamic customer service-oriented experience
and of answering organization-specific questions.

However, as we continued to use the system, it
became apparent that the ESCB performance
quality was achieved with well-behaved users and
would not necessarily continue when used by

those with ill intent. We also noticed that users’
varying query behavior might benefit from
changes intended to improve performance. For
example, frequently similar queries might provide
an opportunity to use a cache to enhance
performance. In contrast, the varied nature

https://ae.studio/

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

(especially length) of other queries led us to

suspect that the initial single LLM solution could
be improved. It seemed apparent that with the
diverse information requirements of an enterprise

environment, the ESCB would benefit from a
more nuanced approach to LLM employment, i.e.,
the ability to leverage more than one LLM.

To evolve the ESCB, we planned to continue to
follow an iterative action research approach
involving tool evaluation, coding, user interaction

and feedback, and explicit results reflection. We
iterated through two cycles to achieve the current
state of the ESCB. Our aim remained to forge a
replicable technique that other organizations
could follow to develop and evolve their own
ESCB. We modified the high-level conceptual

sketch (Figure 1) and continued to refine it as we
worked. The updated concept sketch in Figure 4
shows key components in rounded rectangles at
the top, significant steps listed top-to-bottom,
and arrows that indicate information flow
between components. While this high-level
sketch necessarily simplifies some of the more

complex aspects of the process, it provides a clear
overview of the ESCB's current operation.

From the diagnosis and planning steps conducted
across two action research cycles, we envisioned
the following improvements:
• Implement mechanisms to prevent the ESCB

from returning undesirable information
• Make use of caching to return answers to

recently asked similar queries quickly
• Analyze query complexity to guide LLM

selection to improve ESCB performance

The following paragraphs briefly enumerate the
actions taken to address the improvements. We
will discuss some of the challenges and
implementation details of these action steps in
Section 4, Results & Discussion.

Action – LLM Firewall (FW)

Given prompt injection concerns, it seemed clear
that user query input text should be processed
more carefully before calling the GPT API. For this
task, we created an LLM firewall (FW) that

evaluated the query text and rejected it if it
seemed likely to generate an undesirable
response (more details in Section 4).

Action – Query Cache
Since users often have similar questions about
organizational policy, some queries are very
much like other queries. To take advantage of this
fact for performance reasons, we implemented

the well-known concept of caching so that
answers to similarly phrased queries could be

returned immediately without calling an API

(more details in Section 4).

Figure 4: A logical depiction of significant

steps in user-ESCB information exchange
(top-to-bottom) and key components

involved for the evolved ESCB

Action – Lexical Analysis & LLM Selection
For the initial ESCB, we looked at one LLM
provider, evaluated the model offerings, and

chose a single LLM API to service all queries.
Given the availability of different LLM providers,
each with multiple models of varied pricing and
capability, we decided to explore the potential
benefits of dynamically selecting which LLM API
to call based on analysis of the user query. We
limited the pool of possible APIs to three models,

each from OpenAI and Anthropic (more details in
Section 4).

Evaluation
To assess the functional performance of the
evolved ESCB in order to guide development, we

leveraged two opportunities to have people use
the chatbot and provide feedback – similar to how

we did during our initial three action research
cycles. These settings allowed us to gather input
from a range of users with varying levels of
technical expertise.

For the first of the two latest cycles (fourth
overall), we presented the evolved ESCB at a
university research showcase, engaging with 20+
undergraduate and graduate students and
professors from various disciplines. During the
evaluation phase of the second (fifth) cycle, we

https://platform.openai.com/docs/models
https://www.anthropic.com/pricing#anthropic-api

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

presented to eight software consultants. This

evaluation offered insights from industry
professionals and allowed for more rigorous
testing of the system's capabilities in a more

applied context. Across all five evaluation
opportunities, more than 75 individuals, ranging
from students and academics to IT professionals
and industry consultants, used the ESCB. The
progression of these evaluation cycles enabled us
to make improvements that addressed challenges
identified in earlier iterations.

The overwhelming majority of user feedback was
supportive, quite possibly, in part, because of the
amiable nature of the participants in the collegial
venues at which we presented. As noted in our
initial work, we quickly discerned that the clarity

of the submitted query had a conspicuous effect
on the quality of the ESCB reply, and users
learned to be more specific in follow-up and
subsequent queries. While many participants
used the ESCB in a casual manner and were
satisfied that it could answer basic policy queries,
a few users were willing to spend a little more

time probing the ESCB’s capabilities. None of the
feedback from these few was negative but rather
often helped us see where the ESCB had room to
improve. For example, one student wanted to
know if he could vape inside campus buildings.
Since the CLPD did not specifically address
vaping, the ESCB could not directly answer the

question and instead provided a generic and
largely unhelpful response related to drug use

policies.

Reflection
While the reflection phase of action research is

enumerated last, it is an ongoing process integral
to each cycle. Throughout this extended applied
research activity, we employed deliberate
reflection to assess ESCB development and to
determine the need for additional action research
cycles. The reflection activities helped us
recognize that the ESCB improvements we made

during the most recent two action research
cycles, while non-trivial, were essentially proofs
of concept and that additional cycles would be
needed if more robust behavior was required.

Apparatus
Development and testing of the ESCB were

conducted on a high-performance workstation
configured for lightweight AI and machine
learning tasks with the following specifications:
• Central Processing Unit (CPU): Intel Core i9-

14900K, 3.20 GHz base clock speed

• Memory: 64 Gigabytes of DDR5 RAM

• Graphics Processing Unit (GPU): NVIDIA
GeForce RTX 4090, 24 GB GDDR6X memory

• Storage: 2 TB NVMe SSD

We continued using the original 194-PDF-
document CLPD (AKA Local Data) from our initial

work as we focused on ESCB enhancements
rather than expanding or purifying the knowledge
base.

4. RESULTS AND DISCUSSION

This section examines the key components

implemented during ESCB evolution, how they
enhance security and effectiveness, and notes
some limitations. We present some of the
implementation details of the LLM FW, the Query
Cache, and LLM model selection, which includes
lexical analysis, LangChain frameworks, and

OpenAI word embeddings. Each element
represents an important step in our iterative
development process, addressing specific
challenges and advancing our understanding of
ESCB design and implementation. Figure 5
identifies how these key elements relate to each
action research cycle iteration.

Figure 5: Highlights from the two additional

action research cycles for ESCB evolution.

LLM FW Implementation
Developing an LLM FW was a critical component
of the ESCB research, aimed at creating

https://www.langchain.com/
https://en.wikipedia.org/wiki/LangChain

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

lightweight middleware to intercept and filter

malicious queries. We implemented the LLM FW
via a block list, a violation list, and an LLM prompt
safety check. An allow list was also

conceptualized to maintain the ESCB’s focus on
its intended domain, though this functionality was
primarily implemented as a proof of concept.

Two primary approaches to processing query
language mirror how a traditional network FW
handles network traffic, i.e., deny-by-default vs.

allow-by-default. Established best practice for a
network FW is deny-by-default, where traffic that
is not trusted and explicitly allowed by exception
does not pass the FW. We attempted to follow this
best practice and created an allowlist.json file
containing approved words and phrases against

which user query language could be compared.
Testing quickly revealed that generating an
appropriately robust list that would allow almost
all legitimate user queries was more difficult than
anticipated. So, we left the code that could
implement the allow list in place but disabled it
for this version of the ESCB.

We next implemented a query check against a
blocklist.json file containing words and phrases
deemed inappropriate or out of organizational
scope for the ESCB. We recognize the potential
fragility of this approach as it might fail to block
queries with ill intent that do not use disallowed

words or phrases, while it might also block
innocent queries that happen to contain a

disallowed word or phrase. Despite this
weakness, the testing and evaluation results
demonstrated promise as the LLM FW watched for
phrases such as ‘bypass security’ and ‘ignore

guidelines’ and specific words related to violence
or illegal activities. While simplistic, this approach
effectively flagged queries containing these exact
patterns.

To augment the block list, we created a
violation_calls.json file that contains examples of

previous prompt injections. To potentially catch
cleverly worded user queries trying to circumvent
the block list, we checked the cosine similarity of
queries against the previously attempted exploits

in this file. If the value exceeded a specified value
(heuristically set to .65 after testing), the query
was rejected and added to the JSON file. In this

way, the LLM FW could “learn” about new prompt
injections that should be blocked.

As a final layer of defense, we implemented a
secondary prompt that operates in the
background, unseen by the ESCB user. This

prompt asks the LLM to evaluate whether the
user’s input is safe and aligns with the ESCB’s

intended use. The prompt structure is depicted in

Figure 6 and shows how the user’s query input is
included in the prompt.
This method proved very effective at catching

sophisticated attempts to bypass the block list
and violation database. Testing revealed several
instances where this safety check successfully
intercepted potentially harmful queries that had
evaded the other two layers of protection.

Figure 6: Secondary safety prompt

Query Cache Implementation
This feature stores all user queries, enabling

immediate responses to previously asked
questions, thus reducing redundant API calls and
improving response times. Implementing an
ESCB query cache was a response to observing
the repetition of similar queries. We developed a
no-SQL database structured in JSON format,

stored locally on the ESCB’s host system. We

stored historical chat data in key-value pairs,
including the original question, the provided
answer, and a word embedding of the question
generated using the Sentence Transformers
Python library and the lightweight language
model paraphrase-MiniLM-L6-v2.

When a query gets past the LLM FW, the system
checks the cache, and if a similar query is found,
the stored answer is returned immediately,
bypassing the need for an LLM API call. This
approach reduces latency, improves cost
efficiency by reducing the number of API calls to

external LLM services, and provides consistent

answers for similar queries.

Implementing a query cache presents challenges.
As the cache grows, adequate storage and
retrieval mechanisms become crucial to maintain
performance. Looking forward, we see potential

for further improvements here. These could
include implementing a time-based expiration for
stored answers to ensure information freshness,
developing more sophisticated similarity-
matching algorithms to identify semantically

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

equivalent questions with different phrasings, and

exploring distributed caching solutions for
scalability in enterprise environments.
Dynamic LLM Selection

During evaluation, it seemed apparent that not all
queries required calls to the most advanced (and
expensive) LLM API. Since LLM choice can impact
ESCB performance, cost-efficiency, and
capability, we researched various LLM providers
and models. We narrowed our focus to two AI
leaders and their models: OpenAI’s GPT-3.5-

turbo, GPT-4-turbo, and GPT-4, and Anthropic’s,
Claude-3-haiku-20240307, Claude-3-sonnet-
20240229, and Claude-3-opus-20240229.

We tested these models and noted differences in
their output quality and appropriateness for

various queries, confirming our intuition that the
ESCB could benefit from dynamic LLM selection.
Our analysis primarily focused on the relationship
between model size, as indicated by parameter
count and computational requirements, and the
quality and relevance of responses. We observed
that larger models generally produced more

nuanced and contextually appropriate responses,
especially for complex queries. However, this
performance involved increased latency and
higher API call costs. Interestingly, we found that
the difference in response quality among models
was less pronounced for simpler, more
straightforward queries. Although we could not

conduct an exhaustive comparison between the
models, we noted that OpenAI models seemed to

excel in general knowledge tasks, while Anthropic
models showed strength in maintaining context
over longer conversations.

For the ESCB to dynamically select an LLM, we
determined to evaluate the lexical complexity of
user queries and incorporate it into the selection
apparatus. Based on the lexical complexity score,
the ESCB automatically selects the most
[presumably] suitable LLM for each query.

Lexical Complexity Analysis
Drawing inspiration from readability metrics used
in linguistics, we calculated the lexical complexity
for each query using the formula in Figure 7 that

uses the following five components:
• Readability Score: We employ the Flesch

Reading Ease score, implemented using the

textstat Python library, to assess the overall
readability of the query.

• Lexical Richness: Calculated as a type-token
ratio, this measure reflects the diversity of
vocabulary used in the query.

• Semantic Diversity: This is computed as the

average cosine similarity between the vectors
of all unique word pairs in the text, providing

insight into the semantic range of the query.

• spaCy Vector Norm: We use the average word
vector for the text, leveraging the spaCy
library’s pre-trained word embeddings.

• Contextual Embedding Norm: This is derived
using BERT embeddings, with the mean value
serving as the norm. This component
captures deeper contextual nuances.

Figure 7: Lexical complexity formula

We found that this method of lexical analysis
offers several advantages:

• It provides a more objective basis for LLM
selection than simple keyword or length-
based approaches.

• The multi-faceted score helps account for

different types of complexity (e.g.,
vocabulary richness vs. semantic depth).

• It allows for fine-tuned thresholds that can be
adjusted based on the specific needs and
resources of different ESCB implementations.

We also recognized some limitations in this

approach. For instance, short queries with
insufficient content can lead to unreliable scores.
Additionally, some queries using simple language
may still require complex reasoning, which our
current lexical analysis might not fully capture.

A notable limitation in our lexical analysis

approach occurs when dealing with multi-step
reasoning questions. Queries using simple words
but requiring complex, multi-step reasoning to
answer adequately often resulted in selecting a
less capable LLM. However, this limitation
extends beyond our specific implementation –

LLMs have historically struggled with multi-step
reasoning problems. While this is largely outside
the scope of expected use for an ESCB, it remains
an important consideration.

LangChain Framework
The rapid evolution of AI technologies presented

a challenge in maintaining the ESCB's relevance
and functionality. Within a year of initial
development, we found that OpenAI was
discontinuing the API structure and endpoint we
had used. This situation underscored the need for
an adaptable and future-proof approach to ESCB
development. We turned to open-source

frameworks, specifically LangChain, for its
extensive libraries and readily available pre-built
components. LangChain offers the advantages of
flexibility, standardization, and community

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

support that align with our research goals. For

ESCB implementation, we specifically utilized the
following LangChain components:
• ChatAnthropic: allows seamless integration

with Anthropic's Claude models, enabling us
to leverage their unique capabilities.

• ChatOpenAI: facilitates interaction with
OpenAI's GPT models, maintaining our ability
to use these widely adopted LLMs.

• StrOutputParser: helps process and
standardize the output from different LLMs,

ensuring consistency in ESCB responses.
• ChatPromptTemplate: allows for dynamic

prompt construction, which is crucial for our
adaptive query handling approach.

The adoption of LangChain significantly

streamlined our development process. It allowed
us to structure and format API calls consistently
across different LLMs, facilitating easier
comparison and integration of various models.
Moreover, the framework's extensive
documentation and examples provided a solid
foundation for future experimentation and

expansion of the ESCB's capabilities.

OpenAI Text Chunk Word Embeddings
We transitioned to using LangChain’s integration
with OpenAI’s text chunking and embedding
services. This shift was motivated by the need for
improved efficiency and simplification of our

codebase. We now utilize LangChain’s document
loader, text splitter, and vector store components

in conjunction with OpenAI’s embedding API. This
approach allows us to maintain control over
chunk size and number while leveraging the
power of OpenAI’s state-of-the-art embedding

model. The new method offers improved
embedding quality through continuously updated
OpenAI models, reduced local computation
requirements, a streamlined codebase, and
easier maintenance.

*Code details available upon request

5. FUTURE WORK

The action research cycles covered in this paper

have illuminated several avenues for enhancing
the ESCB. These potential improvements span
security, efficiency, and scalability domains, each

offering opportunities to refine and expand the
capabilities of the ESCB.

Our experience with the LLM FW suggests that a
more nuanced approach to detecting and
mitigating potential misuse could be beneficial.

This could involve developing more sophisticated
algorithms for identifying emerging patterns of

malicious queries, moving beyond simple

keyword blocking to a more context-aware
security model. Further refinement of system
prompts through advanced prompt engineering

techniques could help address a broader range of
edge cases, bolstering the ESCB's resilience
against evolving prompt injection attacks.

Regarding efficiency, the current implementation
of the Retrieval-Augmented Generation (RAG)
process, while functional, leaves room for

improvement. Future iterations could focus on
streamlining the information retrieval process,
potentially through more aggressive pre-
processing and filtering of local documents to
ensure that only the most relevant information is
included in the ESCB's knowledge base.

Furthermore, implementing a system of
preemptive semantic sorting for document
chunks could enhance the speed and accuracy of
information retrieval during chat sessions.

Scalability represents a key consideration for the
practical deployment of ESCBs in enterprise

environments. Our research suggests that
transitioning to a cloud-based infrastructure could
offer significant advantages. By leveraging cloud
services such as AWS, Azure, or Google Cloud, we
could overcome local hardware limitations and
facilitate easier scaling of the ESCB system. A
particularly promising direction is serverless

architecture. For instance, using AWS services
like Lambda for chatbot logic and DynamoDB for

data storage could enable a more flexible and
scalable system that can dynamically adjust to
varying usage demands.

However, transitioning to a serverless model
would require careful testing and optimization.
Notably, we would need to ensure that the
lightweight machine learning models integral to
our system, such as those used for semantic
similarity calculations, can operate efficiently
within the constraints of serverless environments.

This might involve re-engineering specific
components of the system or exploring
alternative, cloud-optimized implementations of
key algorithms.

These potential improvements, identified through
the action research process, offer a roadmap for

the continued evolution of our ESCB system. We
aim to develop a more robust, adaptable, and
enterprise-ready chatbot solution by addressing
these security, efficiency, and scalability aspects.
Future efforts will focus on implementing and
evaluating these enhancements, further refining

our understanding of effective ESCB design and
deployment in real-world enterprise contexts.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

An additional avenue for improvement centers on
consolidating language models within our ESCB
system. The current implementation utilizes

various models for tasks such as embedding
generation, query analysis, and response
generation. While this approach has allowed us to
leverage the specific strengths of different
models, it has also increased the complexity of
our codebase and potentially introduced
inefficiencies in processing time. Transitioning to

a single, versatile, lightweight LLM capable of
handling all these tasks could streamline our
system architecture and enhance overall
performance. This consolidation would simplify
our code and potentially decrease latency by
eliminating inter-model switching.

6. CONCLUSION

This paper presented the results of our continued
use of applied research cycles to evolve the
enterprise-specific chatbot (ESCB) project we
introduced in earlier work (Wood & Stoker, 2024).

Our research, now spanning five action research
cycles after the two additional cycles described in
this paper, demonstrated the potential of an ESCB
and explored some of the challenges involved in
its development.

Key aspects of this paper include the

effectiveness of a multi-layered security
approach, the benefits of dynamic LLM selection

based on query complexity, and the advantages
of leveraging open-source frameworks like
LangChain for adaptability. The ESCB's evolution
showcased improved capabilities in query

filtering, response relevance, and operational
efficiency. This research has significant
implications for enterprise AI integration,
highlighting the importance of balancing security,
performance, and cost-effectiveness in chatbot
implementations. As AI technologies advance, the
insights gained from this study provide a

foundation for developing more robust, efficient,
and adaptable enterprise-specific AI solutions.

7. END NOTES

[1] tokenizes – breaks the query text into
component words or word parts (Figure 8)

Figure 8: 34 chars. broken into 9 tokens

[2] word embeddings – a natural language
processing (NLP) technique that represents words
as numbers in a way that preserves semantics

[3] centroid vector – a single vector representing
an arithmetic mean, calculated by combining the
vectors of each token created from the tokenized

query or from the tokenized chunks of the CLPD.

[4] cosine similarity – ranging from -1 to 1, it is a
metric that determines how alike two vectors
(calculated from words) are

8. REFERENCES

Ayanouz, S., Abdelhakim, B. A., & Benhmed, M.

(2020, March). A smart chatbot architecture
based NLP and machine learning for health
care assistance. In Proceedings of the 3rd
international conference on networking,

information systems & security (pp. 1-6).
https://dl.acm.org/doi/10.1145/3386723.33
87897

Branch, H. J., Cefalu, J. R., McHugh, J., Hujer, L.,
Bahl, A., Iglesias, D. d. C., Heichman, R., &
Darwishi, R. (2022, September 5). Evaluating
the Susceptibility of Pre-Trained Language

Models via Handcrafted Adversarial
Examples. https://doi.org/10.48550/arXiv.
2209.02128

Davison, R., Martinsons, M. G., & Kock, N.
(2004). Principles of canonical action
research. Information Systems Journal,
14(1), 65-86. https://onlinelibrary.wiley.
com/doi/pdf/10.1111/j.1365-2575.2004.
00162.x

Goodside, R. [@goodside]. (2022, September
11). Exploiting GPT-3 prompts with malicious
inputs that order the model to ignore its
previous directions. https://x.com/goodside/

status/1569128808308957185

Greshake, K., Abdelnabi, S., Mishra, S., Endres,
C., Holz, T., & Fritz, M. (2023, February 23).
Not what you've signed up for: Compromising
Real-World LLM-Integrated Applications with
Indirect Prompt Injection. https://doi.org/10.
48550/arXiv.2302.12173

Greshake, K. (2023, April 27). How We Broke
LLMs: Indirect Prompt Injection. https://kai-

greshake.de/posts/llm-malware/

Leedy, P. D., & Ormrod, J. E. (2010). Practical
research, planning and design, 9th edn, New
Jersey: Pearson. https://josemartimast.net/
wp-content/uploads/2021/07/AP-Capstone-

Research-Planning-and-Designing-E-
Book.pdf

Liu, Yi, Deng, G., Li, Y., Wang, K., Wang, Z.,
Wang, X., Zhang, T., Liu, Y., Wang, H.,

https://dl.acm.org/doi/10.1145/3386723.3387897
https://dl.acm.org/doi/10.1145/3386723.3387897
https://doi.org/10.48550/arXiv.2209.02128
https://doi.org/10.48550/arXiv.2209.02128
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2575.2004.00162.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2575.2004.00162.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2575.2004.00162.x
https://x.com/goodside/status/1569128808308957185
https://x.com/goodside/status/1569128808308957185
https://doi.org/10.48550/arXiv.2302.12173
https://doi.org/10.48550/arXiv.2302.12173
https://kai-greshake.de/posts/llm-malware/
https://kai-greshake.de/posts/llm-malware/
https://josemartimast.net/wp-content/uploads/2021/07/AP-Capstone-Research-Planning-and-Designing-E-Book.pdf
https://josemartimast.net/wp-content/uploads/2021/07/AP-Capstone-Research-Planning-and-Designing-E-Book.pdf
https://josemartimast.net/wp-content/uploads/2021/07/AP-Capstone-Research-Planning-and-Designing-E-Book.pdf
https://josemartimast.net/wp-content/uploads/2021/07/AP-Capstone-Research-Planning-and-Designing-E-Book.pdf

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6195

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

Zheng, Y., & Liu, Y. (2023, June 8). Prompt

Injection Attack against LLM-integrated
Applications. https://doi.org/10.48550/arXiv.
2306.05499

Liu, Yupei, Jia, Y., Geng, R., Jia, J., & Gong, N.
(2023, October 19). Formalizing and
Benchmarking Prompt Injection Attacks and
Defenses. https://doi.org/10.48550/arXiv.
2310.12815

Liu, X., Yu, Z., Zhang, Y., Zhang, N., & Xiao, C.
(2024, March 7). Automatic and Universal

Prompt Injection Attacks against Large
Language Models. https://doi.org/10.48550/
arXiv.2403.04957

Nuruzzaman, M., & Hussain, O. K. (2018,

October). A survey on chatbot
implementation in customer service industry

through deep neural networks. In 2018 IEEE
15th International Conference on e-Business
Engineering (ICEBE) (pp. 54-61). IEEE.
https://doi.org/10.1109/ICEBE.2018.00019

OpenAI. (2022, November 30). Introducing
ChatGPT. https://openai.com/index/chatgpt/

OWASP. (2023, October 16). OWASP Top 10 for

LLM Applications, Version 1.1. https://owasp
.org/www-project-top-10-for-large-language
-model-applications/assets/PDF/OWASP-
Top-10-for-LLMs-2023-v1_1.pdf

Perez, F., & Ribeiro, I. (2022, November 17).

Ignore previous prompt: Attack techniques
for language models. https://doi.org/10.

48550/arXiv.2211.09527

Piet, J., Alrashed, M., Sitawarin, C., Chen, S.,
Wei, Z., Sun, E., Alomair, B., & Wagner, D.
(2023, December 29). Jatmo: Prompt
Injection Defense by Task-Specific
Finetuning. https://doi.org/10.48550/arXiv.

2312.17673

preamble. (2022, September 22). Declassifying
the Responsible Disclosure of the Prompt
Injection Attack Vulnerability of GPT-3.
https://www.preamble.com/prompt-injection
-a-critical-vulnerability-in-the-gpt-3-
transformer-and-how-we-can-begin-to-solve

-it?trk=article-ssr-frontend-pulse_little-text-

block

Prompt Engineering. (2024, June 14). In
Wikipedia. https://en.wikipedia.org/wiki/

Prompt_engineering#Prompt_injection

Shen, X., Chen, Z., Backes, M., Shen, Y., &
Zhang, Y. (2024, May 15). "Do Anything
Now": Characterizing and Evaluating In-The-
Wild Jailbreak Prompts on Large Language
Models. https://doi.org/10.48550/arXiv.
2308.03825

Susman, G. & Evered, R. (1978). An Assessment
of The Scientific Merits of Action Research.
Administrative Science Quarterly, (23) 4,
582-603. https://doi.org/10.2307/2392581

Toyer, S., Watkins, O., Mendes, E. A., Svegliato,
J., Bailey, L., Wang, T., Ong, I., Elmaaroufi,

K., Abbeel, P., Darrell, T., Ritter, A., &
Russell, S. (2023). Tensor trust:
Interpretable prompt injection attacks from
an online game. https://doi.org/10.48550/
arXiv.2311.01011

Willison, S. (2022, September 12). Prompt
injection attacks against GPT-3.

https://simonwillison.net/2022/Sep/12/prom
pt-injection/

Wilson, S. (2023, May 23). Announcing the
OWASP Top 10 for Large Language Models
(AI) Project. https://www.linkedin.com/

pulse/announcing-owasp-top-10-large-
language-models-ai-project-steve-wilson/

Wood, Z. & Stoker, G., (2024). An Action
Research Approach to Building an Enterprise-
Specific Chatbot (ESCB). Journal of
Information Systems Applied Research 17(2)
pp 61-73. https://doi.org/10.62273/
RAON2946

Yip, D., Esmradi, A., & Chan, C. (2024, January
2). A Novel Evaluation Framework for
Assessing Resilience Against Prompt Injection
Attacks in Large Language Models.
https://doi.org/10.48550/arXiv.2401.00991

https://doi.org/10.48550/arXiv.2306.05499
https://doi.org/10.48550/arXiv.2306.05499
https://doi.org/10.48550/arXiv.2310.12815
https://doi.org/10.48550/arXiv.2310.12815
https://doi.org/10.48550/arXiv.2403.04957
https://doi.org/10.48550/arXiv.2403.04957
https://doi.org/10.1109/ICEBE.2018.00019
https://openai.com/index/chatgpt/
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf
https://doi.org/10.48550/arXiv.2211.09527
https://doi.org/10.48550/arXiv.2211.09527
https://doi.org/10.48550/arXiv.2312.17673
https://doi.org/10.48550/arXiv.2312.17673
https://www.preamble.com/prompt-injection-a-critical-vulnerability-in-the-gpt-3-transformer-and-how-we-can-begin-to-solve-it?trk=article-ssr-frontend-pulse_little-text-block
https://www.preamble.com/prompt-injection-a-critical-vulnerability-in-the-gpt-3-transformer-and-how-we-can-begin-to-solve-it?trk=article-ssr-frontend-pulse_little-text-block
https://www.preamble.com/prompt-injection-a-critical-vulnerability-in-the-gpt-3-transformer-and-how-we-can-begin-to-solve-it?trk=article-ssr-frontend-pulse_little-text-block
https://www.preamble.com/prompt-injection-a-critical-vulnerability-in-the-gpt-3-transformer-and-how-we-can-begin-to-solve-it?trk=article-ssr-frontend-pulse_little-text-block
https://www.preamble.com/prompt-injection-a-critical-vulnerability-in-the-gpt-3-transformer-and-how-we-can-begin-to-solve-it?trk=article-ssr-frontend-pulse_little-text-block
https://en.wikipedia.org/wiki/Prompt_engineering#Prompt_injection
https://en.wikipedia.org/wiki/Prompt_engineering#Prompt_injection
https://doi.org/10.48550/arXiv.2308.03825
https://doi.org/10.48550/arXiv.2308.03825
https://doi.org/10.2307/2392581
https://doi.org/10.48550/arXiv.2311.01011
https://doi.org/10.48550/arXiv.2311.01011
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://www.linkedin.com/pulse/announcing-owasp-top-10-large-language-models-ai-project-steve-wilson/
https://www.linkedin.com/pulse/announcing-owasp-top-10-large-language-models-ai-project-steve-wilson/
https://www.linkedin.com/pulse/announcing-owasp-top-10-large-language-models-ai-project-steve-wilson/
https://doi.org/10.62273/RAON2946
https://doi.org/10.62273/RAON2946
https://doi.org/10.48550/arXiv.2401.00991

