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Abstract  

 

Previously, we conducted three action research cycles to develop a chatbot customized to answer 
questions particular to the chatbot-creating organization. This enterprise-specific chatbot (ESCB) 
creation technique uses a corpus of local policy documents (CLPD) as a knowledge base, readily available 
software tools, a basic level of programming competence, and user community feedback. The ESCB 
development process leverages the power of Artificial Intelligence (AI), Natural Language Processing 
(NLP), and proprietary local data to transcend some of the typical limitations of conventional chatbots. 
Utilizing two additional action research cycles, we evolved the ESCB to improve resource utilization and 

prevent some forms of misuse. Using new advancements for context window size, we included more 
information within each query, lexical complexity analysis of user queries, and a large language model 
(LLM) firewall (FW). This work continues to underscore the significant potential of AI-powered chatbots 
for data interaction and the affordability of AI implementation, paving the way for organizations with 
limited resources to leverage the power of AI in their own local operations. 
 
Keywords: Chatbot, LLM Firewall, AI, Action Research 

 
1. INTRODUCTION 

 
In previous work (Wood & Stoker, 2024), we 
demonstrated a practicable approach to building 
an enterprise-specific chatbot (ESCB) that any 

organization with access to a basic level of 
programming competence and readily available 
software tools should be able to follow to build an 

ESCB of their own. Given the challenges some 
commercial website chatbots face when adhering 
to a rigid question-answer pathway (Ayanouz et 
al., 2020) and some of the difficulty they have 

handling local information and dealing with the 
varied phrasings of user queries (Nuruzzaman & 
Hussain, 2018), we were motivated to create a 
tool that could answer local organization policy 
questions and convey them in a human-like 
manner. In Figure 1, we provide a high-level 

conceptual sketch of the final form of the business 
process for user-chatbot data exchange from that 
previous work. In brief, our previous ESCB 
version integrated OpenAI’s Generative Pre-
Trained Transformer (GPT) large language model 

(LLM) application programming interface (API) 
and worked as follows: 
1. A user types a query. 

2. The ESCB tokenizes [1] the query, generates 

word embeddings [2] (vector) for each token, 

and calculates a single centroid vector [3] 

that represents the entire query. 

3. The organization’s corpus of local policy 

documents (CLPD, AKA Local Data), 

preprocessed into 200-token chunks with 

corresponding centroid vectors, is compared, 

using cosine similarity [4], to the query 

https://openai.com/api/
https://platform.openai.com/tokenizer
https://en.wikipedia.org/wiki/Word_embedding
https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/Cosine_similarity
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centroid vector and the 10 highest-scoring 

chunks are extracted. 

4. The query text and the plaintext of the 10 

extracted chunks are sent to the GPT API, 

which generates a response for the user. 

 

 
Figure 1: A logical depiction of significant 

steps in the original user-ESCB information 
exchange (top-to-bottom) and key 

components involved. 
 

We believe that the demonstrated advantages of 
our initial approach include: 

• Cost-efficiency and time-savings by 

eliminating extensive training requirements. 

• Immediate updates to the underlying 
knowledge base. 

• The ability to pose abstract queries from 
various knowledge backgrounds by 
leveraging an existing LLM. 

• Allowing customer service representatives to 
dedicate their efforts more effectively by 
automating responses to simple queries. 

 

The explosion of public interest in LLMs over the 
past ~18 months has raised concerns over how 
to safely and securely integrate LLMs into 

organizational processes. Many people have 
recently demonstrated ways to misuse LLMs and 
prompt the various AIs to generate malware, 

provide bad financial, legal, or health advice, 
create hate speech, or generate other undesired 
or illegal information (Shen et al., 2024). 
 
In this paper, we present our extension to the 
initial work that attempts to avoid some of the 
misuse scenarios and improve the ESCB's 

performance. The remainder of this paper is 

organized as follows: Section 2 provides a 
literature review; Section 3 describes the action 
research method we followed as well as the 

significant components of the ESCB; in Section 4, 
we present some results and discuss their 
implications; Section 5 identifies some future 
work; and Section 6 concludes. 
 

2. LITERATURE REVIEW 
 

With the introduction of ChatGPT in November 
2022 (OpenAI), the general public was introduced 
to the idea of a trained LLM and the concept of 
generative artificial intelligence (GenAI or GAI). 
People had already begun experimenting with 
ways to abuse LLMs and make them respond in 

unintended ways. Directly disclosing their 
investigations to OpenAI in May 2022 but not 
revealing publicly until late September, 
researchers at preamble, an AI-Safety-as-a-
Service company, demonstrated what they 
termed command injection against the beta 
version of the text-davinci-002 LLM (preamble, 

2022; Branch et al., 2022). They provided 
examples where GPT-3 was manipulated to 
falsely report if a given word was included in a 
sentence, to provide detailed instructions on 
building a fertilizer bomb, and to create a hateful 
story about an ugly duckling.  
 

Publicly, Riley Goodside posted to X (formerly 
Twitter) on September 11, 2022, a simple 

example of exploiting GPT-3 with malicious inputs 
(Figure 2). The next day, Simon Willison blogged 
about the post and seems to have coined the term 
prompt injection (2022), which, in the absence 

of a more authoritative definition, we note that 
Wikipedia defines as: 

a family of related computer security exploits 
carried out by getting a machine learning 
model (such as an LLM), which was trained to 
follow human-given instructions to follow 
instructions provided by a malicious user. 

(“Prompt engineering,” 2024) 
 

 
Figure 2: One of Riley Goodside’s examples 

of exploiting GPT-3 (Goodside, 2022). 
 

https://www.preamble.com/
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Researchers at AE.Studio went beyond providing 

prompt injection examples, studied particular 
attack types, and proposed the PromptInject 
framework to explore the attacks (Perez & 

Ribeiro, 2022). In early 2023, security 
researchers demonstrated indirect prompt 
injection, where an LLM accepts input from 
sources that an attacker controls, like a website 
or file (Greshake et al., 2023; Greshake, 2023). 
These studies, as well as subsequent ones (Yi Liu 
et al., 2023; Yupei Liu et al., 2023; X. Liu et al., 

2024; Piet et al., 2023; Toyer et al., 2023; Yip et 
al., 2024), showed different categories of attacks, 
proposed various potential attacker objectives, 
and explored defensive ideas. 
 
In May 2023, the Open Worldwide Application 

Security Project (OWASP) foundation announced 
that it would continue its popular Top 10 series to 
include one for LLMs (Wilson, 2023). Version 1.1 
of the OWASP Top 10 for LLM Applications was 
published in October 2023 and includes the 
vulnerability types listed below (OWASP, 2023). 
For each vulnerability type, OWASP provides a 

comprehensive description, common examples, 
prevention/mitigation strategies, and example 
attack scenarios. 

• LLM01: Prompt Injection 
• LLM02: Insecure Output Handling 
• LLM03: Training Data Poisoning 
• LLM04: Model Denial of Service 

• LLM05: Supply Chain Vulnerabilities 
• LLM06: Sensitive Information Disclosure 

• LLM07: Insecure Plugin Design 
• LLM08: Excessive Agency 
• LLM09: Overreliance 
• LLM10: Model Theft 

 
This paper explores continued ESCB development 
to integrate measures to protect against a subset 
of the vulnerability types enumerated by OWASP. 
We focus on LLM01 Prompt Injection, LLM04 
Model Denial of Service, and LLM09 Overreliance. 
Prompt Injection (LLM01) protection efforts 

revolve around preventing prompts that return 
undesirable information. To mitigate the effects 
of Model Denial of Service (LLM04), we try to 
avoid allowing users to submit queries that might 

be overly resource-consuming. To avoid 
Overreliance (LLM09), we try to ensure the ESCB 
does not provide inaccurate information. 

 
3. METHODOLOGY 

 
In this paper, we again follow an action research 
approach to evolve the ESCB as we continue to 
address “questions in one’s immediate work 

environment, with the goal of solving an ongoing 
problem in that environment” (Leedy & Ormrod, 

2010, p. 44). The canonical action research 

process model (Susman & Evered, 1978), Figure 
3 (Davison et al., 2004), is followed to help 
ensure systematic rigor is applied to the problem. 

Steps include: 
• Diagnosis – conduct a thorough examination 

of the current organizational circumstances 
• Planning – the diagnosis results directly 

inform all planning; intended actions should 
be specified before being undertaken 

• Action – planned actions are implemented in 

the order specified (if any) 
• Evaluation – once planned actions are 

complete, outcomes are compared to project 
objectives and expectations 

• Reflection – explicitly reflect on the activities 
taken and the outcomes achieved; decide 

whether to exit the cycle or iterate 
 

 
Figure 3: A canonical action research 

process model (Fig. 1. Davison et al., 2004) 
 
Diagnosis and Planning 
Our initial work on the ESCB successfully 

produced a chatbot capable of providing a 
dynamic customer service-oriented experience 
and of answering organization-specific questions. 

However, as we continued to use the system, it 
became apparent that the ESCB performance 
quality was achieved with well-behaved users and 
would not necessarily continue when used by 

those with ill intent. We also noticed that users’ 
varying query behavior might benefit from 
changes intended to improve performance. For 
example, frequently similar queries might provide 
an opportunity to use a cache to enhance 
performance. In contrast, the varied nature 

https://ae.studio/
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(especially length) of other queries led us to 

suspect that the initial single LLM solution could 
be improved. It seemed apparent that with the 
diverse information requirements of an enterprise 

environment, the ESCB would benefit from a 
more nuanced approach to LLM employment, i.e., 
the ability to leverage more than one LLM. 
 
To evolve the ESCB, we planned to continue to 
follow an iterative action research approach 
involving tool evaluation, coding, user interaction 

and feedback, and explicit results reflection. We 
iterated through two cycles to achieve the current 
state of the ESCB. Our aim remained to forge a 
replicable technique that other organizations 
could follow to develop and evolve their own 
ESCB. We modified the high-level conceptual 

sketch (Figure 1) and continued to refine it as we 
worked. The updated concept sketch in Figure 4 
shows key components in rounded rectangles at 
the top, significant steps listed top-to-bottom, 
and arrows that indicate information flow 
between components. While this high-level 
sketch necessarily simplifies some of the more 

complex aspects of the process, it provides a clear 
overview of the ESCB's current operation.  
 
From the diagnosis and planning steps conducted 
across two action research cycles, we envisioned 
the following improvements: 
• Implement mechanisms to prevent the ESCB 

from returning undesirable information 
• Make use of caching to return answers to 

recently asked similar queries quickly 
• Analyze query complexity to guide LLM 

selection to improve ESCB performance 
 

The following paragraphs briefly enumerate the 
actions taken to address the improvements. We 
will discuss some of the challenges and 
implementation details of these action steps in 
Section 4, Results & Discussion. 
 
Action – LLM Firewall (FW) 

Given prompt injection concerns, it seemed clear 
that user query input text should be processed 
more carefully before calling the GPT API. For this 
task, we created an LLM firewall (FW) that 

evaluated the query text and rejected it if it 
seemed likely to generate an undesirable 
response (more details in Section 4). 

 
Action – Query Cache 
Since users often have similar questions about 
organizational policy, some queries are very 
much like other queries. To take advantage of this 
fact for performance reasons, we implemented 

the well-known concept of caching so that 
answers to similarly phrased queries could be 

returned immediately without calling an API 

(more details in Section 4).  
 

 
Figure 4: A logical depiction of significant 

steps in user-ESCB information exchange 
(top-to-bottom) and key components 

involved for the evolved ESCB 
 
Action – Lexical Analysis & LLM Selection 
For the initial ESCB, we looked at one LLM 
provider, evaluated the model offerings, and 

chose a single LLM API to service all queries. 
Given the availability of different LLM providers, 
each with multiple models of varied pricing and 
capability, we decided to explore the potential 
benefits of dynamically selecting which LLM API 
to call based on analysis of the user query. We 
limited the pool of possible APIs to three models, 

each from OpenAI and Anthropic (more details in 
Section 4). 
 
Evaluation 
To assess the functional performance of the 
evolved ESCB in order to guide development, we 

leveraged two opportunities to have people use 
the chatbot and provide feedback – similar to how 

we did during our initial three action research 
cycles. These settings allowed us to gather input 
from a range of users with varying levels of 
technical expertise. 
 

For the first of the two latest cycles (fourth 
overall), we presented the evolved ESCB at a 
university research showcase, engaging with 20+ 
undergraduate and graduate students and 
professors from various disciplines. During the 
evaluation phase of the second (fifth) cycle, we 

https://platform.openai.com/docs/models
https://www.anthropic.com/pricing#anthropic-api
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presented to eight software consultants. This 

evaluation offered insights from industry 
professionals and allowed for more rigorous 
testing of the system's capabilities in a more 

applied context. Across all five evaluation 
opportunities, more than 75 individuals, ranging 
from students and academics to IT professionals 
and industry consultants, used the ESCB. The 
progression of these evaluation cycles enabled us 
to make improvements that addressed challenges 
identified in earlier iterations.  
 
The overwhelming majority of user feedback was 
supportive, quite possibly, in part, because of the 
amiable nature of the participants in the collegial 
venues at which we presented. As noted in our 
initial work, we quickly discerned that the clarity 

of the submitted query had a conspicuous effect 
on the quality of the ESCB reply, and users 
learned to be more specific in follow-up and 
subsequent queries. While many participants 
used the ESCB in a casual manner and were 
satisfied that it could answer basic policy queries, 
a few users were willing to spend a little more 

time probing the ESCB’s capabilities. None of the 
feedback from these few was negative but rather 
often helped us see where the ESCB had room to 
improve. For example, one student wanted to 
know if he could vape inside campus buildings. 
Since the CLPD did not specifically address 
vaping, the ESCB could not directly answer the 

question and instead provided a generic and 
largely unhelpful response related to drug use 

policies.  
 
Reflection 
While the reflection phase of action research is 

enumerated last, it is an ongoing process integral 
to each cycle. Throughout this extended applied 
research activity, we employed deliberate 
reflection to assess ESCB development and to 
determine the need for additional action research 
cycles. The reflection activities helped us 
recognize that the ESCB improvements we made 

during the most recent two action research 
cycles, while non-trivial, were essentially proofs 
of concept and that additional cycles would be 
needed if more robust behavior was required. 

 
Apparatus 
Development and testing of the ESCB were 

conducted on a high-performance workstation 
configured for lightweight AI and machine 
learning tasks with the following specifications: 
• Central Processing Unit (CPU): Intel Core i9-

14900K, 3.20 GHz base clock speed 

• Memory: 64 Gigabytes of DDR5 RAM 

• Graphics Processing Unit (GPU): NVIDIA 
GeForce RTX 4090, 24 GB GDDR6X memory 

• Storage: 2 TB NVMe SSD 

 
We continued using the original 194-PDF-
document CLPD (AKA Local Data) from our initial 

work as we focused on ESCB enhancements 
rather than expanding or purifying the knowledge 
base. 
 

4. RESULTS AND DISCUSSION 
 
This section examines the key components 

implemented during ESCB evolution, how they 
enhance security and effectiveness, and notes 
some limitations. We present some of the 
implementation details of the LLM FW, the Query 
Cache, and LLM model selection, which includes 
lexical analysis, LangChain frameworks, and 

OpenAI word embeddings. Each element 
represents an important step in our iterative 
development process, addressing specific 
challenges and advancing our understanding of 
ESCB design and implementation. Figure 5 
identifies how these key elements relate to each 
action research cycle iteration. 

 

 
Figure 5: Highlights from the two additional 

action research cycles for ESCB evolution. 
 
LLM FW Implementation 
Developing an LLM FW was a critical component 
of the ESCB research, aimed at creating 

https://www.langchain.com/
https://en.wikipedia.org/wiki/LangChain
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lightweight middleware to intercept and filter 

malicious queries. We implemented the LLM FW 
via a block list, a violation list, and an LLM prompt 
safety check. An allow list was also 

conceptualized to maintain the ESCB’s focus on 
its intended domain, though this functionality was 
primarily implemented as a proof of concept. 
 
Two primary approaches to processing query 
language mirror how a traditional network FW 
handles network traffic, i.e., deny-by-default vs. 

allow-by-default. Established best practice for a 
network FW is deny-by-default, where traffic that 
is not trusted and explicitly allowed by exception 
does not pass the FW. We attempted to follow this 
best practice and created an allowlist.json file 
containing approved words and phrases against 

which user query language could be compared. 
Testing quickly revealed that generating an 
appropriately robust list that would allow almost 
all legitimate user queries was more difficult than 
anticipated. So, we left the code that could 
implement the allow list in place but disabled it 
for this version of the ESCB. 

 
We next implemented a query check against a 
blocklist.json file containing words and phrases 
deemed inappropriate or out of organizational 
scope for the ESCB. We recognize the potential 
fragility of this approach as it might fail to block 
queries with ill intent that do not use disallowed 

words or phrases, while it might also block 
innocent queries that happen to contain a 

disallowed word or phrase. Despite this 
weakness, the testing and evaluation results 
demonstrated promise as the LLM FW watched for 
phrases such as ‘bypass security’ and ‘ignore 

guidelines’ and specific words related to violence 
or illegal activities. While simplistic, this approach 
effectively flagged queries containing these exact 
patterns. 
 
To augment the block list, we created a 
violation_calls.json file that contains examples of 

previous prompt injections. To potentially catch 
cleverly worded user queries trying to circumvent 
the block list, we checked the cosine similarity of 
queries against the previously attempted exploits 

in this file. If the value exceeded a specified value 
(heuristically set to .65 after testing), the query 
was rejected and added to the JSON file. In this 

way, the LLM FW could “learn” about new prompt 
injections that should be blocked. 
 
As a final layer of defense, we implemented a 
secondary prompt that operates in the 
background, unseen by the ESCB user. This 

prompt asks the LLM to evaluate whether the 
user’s input is safe and aligns with the ESCB’s 

intended use. The prompt structure is depicted in 

Figure 6 and shows how the user’s query input is 
included in the prompt. 
This method proved very effective at catching 

sophisticated attempts to bypass the block list 
and violation database. Testing revealed several 
instances where this safety check successfully 
intercepted potentially harmful queries that had 
evaded the other two layers of protection.  
 

 
Figure 6: Secondary safety prompt 

 
Query Cache Implementation 
This feature stores all user queries, enabling 

immediate responses to previously asked 
questions, thus reducing redundant API calls and 
improving response times. Implementing an 
ESCB query cache was a response to observing 
the repetition of similar queries. We developed a 
no-SQL database structured in JSON format, 

stored locally on the ESCB’s host system. We 

stored historical chat data in key-value pairs, 
including the original question, the provided 
answer, and a word embedding of the question 
generated using the Sentence Transformers 
Python library and the lightweight language 
model paraphrase-MiniLM-L6-v2. 

 
When a query gets past the LLM FW, the system 
checks the cache, and if a similar query is found, 
the stored answer is returned immediately, 
bypassing the need for an LLM API call. This 
approach reduces latency, improves cost 
efficiency by reducing the number of API calls to 

external LLM services, and provides consistent 

answers for similar queries. 
 
Implementing a query cache presents challenges. 
As the cache grows, adequate storage and 
retrieval mechanisms become crucial to maintain 
performance. Looking forward, we see potential 

for further improvements here. These could 
include implementing a time-based expiration for 
stored answers to ensure information freshness, 
developing more sophisticated similarity-
matching algorithms to identify semantically 



2024 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Baltimore, MD  v10 n6195 

 

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7 
https://iscap.us/proceedings/ 

equivalent questions with different phrasings, and 

exploring distributed caching solutions for 
scalability in enterprise environments. 
Dynamic LLM Selection 

During evaluation, it seemed apparent that not all 
queries required calls to the most advanced (and 
expensive) LLM API. Since LLM choice can impact 
ESCB performance, cost-efficiency, and 
capability, we researched various LLM providers 
and models. We narrowed our focus to two AI 
leaders and their models: OpenAI’s GPT-3.5-

turbo, GPT-4-turbo, and GPT-4, and Anthropic’s, 
Claude-3-haiku-20240307, Claude-3-sonnet-
20240229, and Claude-3-opus-20240229.  
 
We tested these models and noted differences in 
their output quality and appropriateness for 

various queries, confirming our intuition that the 
ESCB could benefit from dynamic LLM selection. 
Our analysis primarily focused on the relationship 
between model size, as indicated by parameter 
count and computational requirements, and the 
quality and relevance of responses. We observed 
that larger models generally produced more 

nuanced and contextually appropriate responses, 
especially for complex queries. However, this 
performance involved increased latency and 
higher API call costs. Interestingly, we found that 
the difference in response quality among models 
was less pronounced for simpler, more 
straightforward queries. Although we could not 

conduct an exhaustive comparison between the 
models, we noted that OpenAI models seemed to 

excel in general knowledge tasks, while Anthropic 
models showed strength in maintaining context 
over longer conversations. 
 

For the ESCB to dynamically select an LLM, we 
determined to evaluate the lexical complexity of 
user queries and incorporate it into the selection 
apparatus. Based on the lexical complexity score, 
the ESCB automatically selects the most 
[presumably] suitable LLM for each query. 
 

Lexical Complexity Analysis 
Drawing inspiration from readability metrics used 
in linguistics, we calculated the lexical complexity 
for each query using the formula in Figure 7 that 

uses the following five components: 
• Readability Score: We employ the Flesch 

Reading Ease score, implemented using the 

textstat Python library, to assess the overall 
readability of the query. 

• Lexical Richness: Calculated as a type-token 
ratio, this measure reflects the diversity of 
vocabulary used in the query. 

• Semantic Diversity: This is computed as the 

average cosine similarity between the vectors 
of all unique word pairs in the text, providing 

insight into the semantic range of the query. 

• spaCy Vector Norm: We use the average word 
vector for the text, leveraging the spaCy 
library’s pre-trained word embeddings. 

• Contextual Embedding Norm: This is derived 
using BERT embeddings, with the mean value 
serving as the norm. This component 
captures deeper contextual nuances. 

 

 
Figure 7: Lexical complexity formula 

 

We found that this method of lexical analysis 
offers several advantages: 

• It provides a more objective basis for LLM 
selection than simple keyword or length-
based approaches. 

• The multi-faceted score helps account for 

different types of complexity (e.g., 
vocabulary richness vs. semantic depth). 

• It allows for fine-tuned thresholds that can be 
adjusted based on the specific needs and 
resources of different ESCB implementations. 

 
We also recognized some limitations in this 

approach. For instance, short queries with 
insufficient content can lead to unreliable scores. 
Additionally, some queries using simple language 
may still require complex reasoning, which our 
current lexical analysis might not fully capture. 

 
A notable limitation in our lexical analysis 

approach occurs when dealing with multi-step 
reasoning questions. Queries using simple words 
but requiring complex, multi-step reasoning to 
answer adequately often resulted in selecting a 
less capable LLM. However, this limitation 
extends beyond our specific implementation – 

LLMs have historically struggled with multi-step 
reasoning problems. While this is largely outside 
the scope of expected use for an ESCB, it remains 
an important consideration.  
 
LangChain Framework 
The rapid evolution of AI technologies presented 

a challenge in maintaining the ESCB's relevance 
and functionality. Within a year of initial 
development, we found that OpenAI was 
discontinuing the API structure and endpoint we 
had used. This situation underscored the need for 
an adaptable and future-proof approach to ESCB 
development. We turned to open-source 

frameworks, specifically LangChain, for its 
extensive libraries and readily available pre-built 
components. LangChain offers the advantages of 
flexibility, standardization, and community 
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support that align with our research goals. For 

ESCB implementation, we specifically utilized the 
following LangChain components: 
• ChatAnthropic: allows seamless integration 

with Anthropic's Claude models, enabling us 
to leverage their unique capabilities. 

• ChatOpenAI: facilitates interaction with 
OpenAI's GPT models, maintaining our ability 
to use these widely adopted LLMs. 

• StrOutputParser: helps process and 
standardize the output from different LLMs, 

ensuring consistency in ESCB responses. 
• ChatPromptTemplate: allows for dynamic 

prompt construction, which is crucial for our 
adaptive query handling approach. 

 
The adoption of LangChain significantly 

streamlined our development process. It allowed 
us to structure and format API calls consistently 
across different LLMs, facilitating easier 
comparison and integration of various models. 
Moreover, the framework's extensive 
documentation and examples provided a solid 
foundation for future experimentation and 

expansion of the ESCB's capabilities. 
 
OpenAI Text Chunk Word Embeddings 
We transitioned to using LangChain’s integration 
with OpenAI’s text chunking and embedding 
services. This shift was motivated by the need for 
improved efficiency and simplification of our 

codebase. We now utilize LangChain’s document 
loader, text splitter, and vector store components 

in conjunction with OpenAI’s embedding API. This 
approach allows us to maintain control over 
chunk size and number while leveraging the 
power of OpenAI’s state-of-the-art embedding 

model. The new method offers improved 
embedding quality through continuously updated 
OpenAI models, reduced local computation 
requirements, a streamlined codebase, and 
easier maintenance. 
 
*Code details available upon request 

 
5. FUTURE WORK 

 
The action research cycles covered in this paper 

have illuminated several avenues for enhancing 
the ESCB. These potential improvements span 
security, efficiency, and scalability domains, each 

offering opportunities to refine and expand the 
capabilities of the ESCB. 
 
Our experience with the LLM FW suggests that a 
more nuanced approach to detecting and 
mitigating potential misuse could be beneficial. 

This could involve developing more sophisticated 
algorithms for identifying emerging patterns of 

malicious queries, moving beyond simple 

keyword blocking to a more context-aware 
security model. Further refinement of system 
prompts through advanced prompt engineering 

techniques could help address a broader range of 
edge cases, bolstering the ESCB's resilience 
against evolving prompt injection attacks. 
 
Regarding efficiency, the current implementation 
of the Retrieval-Augmented Generation (RAG) 
process, while functional, leaves room for 

improvement. Future iterations could focus on 
streamlining the information retrieval process, 
potentially through more aggressive pre-
processing and filtering of local documents to 
ensure that only the most relevant information is 
included in the ESCB's knowledge base. 

Furthermore, implementing a system of 
preemptive semantic sorting for document 
chunks could enhance the speed and accuracy of 
information retrieval during chat sessions. 
 
Scalability represents a key consideration for the 
practical deployment of ESCBs in enterprise 

environments. Our research suggests that 
transitioning to a cloud-based infrastructure could 
offer significant advantages. By leveraging cloud 
services such as AWS, Azure, or Google Cloud, we 
could overcome local hardware limitations and 
facilitate easier scaling of the ESCB system. A 
particularly promising direction is serverless 

architecture. For instance, using AWS services 
like Lambda for chatbot logic and DynamoDB for 

data storage could enable a more flexible and 
scalable system that can dynamically adjust to 
varying usage demands. 
 

However, transitioning to a serverless model 
would require careful testing and optimization. 
Notably, we would need to ensure that the 
lightweight machine learning models integral to 
our system, such as those used for semantic 
similarity calculations, can operate efficiently 
within the constraints of serverless environments. 

This might involve re-engineering specific 
components of the system or exploring 
alternative, cloud-optimized implementations of 
key algorithms. 
 
These potential improvements, identified through 
the action research process, offer a roadmap for 

the continued evolution of our ESCB system. We 
aim to develop a more robust, adaptable, and 
enterprise-ready chatbot solution by addressing 
these security, efficiency, and scalability aspects. 
Future efforts will focus on implementing and 
evaluating these enhancements, further refining 

our understanding of effective ESCB design and 
deployment in real-world enterprise contexts. 
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An additional avenue for improvement centers on 
consolidating language models within our ESCB 
system. The current implementation utilizes 

various models for tasks such as embedding 
generation, query analysis, and response 
generation. While this approach has allowed us to 
leverage the specific strengths of different 
models, it has also increased the complexity of 
our codebase and potentially introduced 
inefficiencies in processing time. Transitioning to 

a single, versatile, lightweight LLM capable of 
handling all these tasks could streamline our 
system architecture and enhance overall 
performance. This consolidation would simplify 
our code and potentially decrease latency by 
eliminating inter-model switching. 

 
6. CONCLUSION 

 
This paper presented the results of our continued 
use of applied research cycles to evolve the 
enterprise-specific chatbot (ESCB) project we 
introduced in earlier work (Wood & Stoker, 2024). 

Our research, now spanning five action research 
cycles after the two additional cycles described in 
this paper, demonstrated the potential of an ESCB 
and explored some of the challenges involved in 
its development.  
 
Key aspects of this paper include the 

effectiveness of a multi-layered security 
approach, the benefits of dynamic LLM selection 

based on query complexity, and the advantages 
of leveraging open-source frameworks like 
LangChain for adaptability. The ESCB's evolution 
showcased improved capabilities in query 

filtering, response relevance, and operational 
efficiency. This research has significant 
implications for enterprise AI integration, 
highlighting the importance of balancing security, 
performance, and cost-effectiveness in chatbot 
implementations. As AI technologies advance, the 
insights gained from this study provide a 

foundation for developing more robust, efficient, 
and adaptable enterprise-specific AI solutions. 
 

7. END NOTES 

 
[1] tokenizes – breaks the query text into 
component words or word parts (Figure 8) 

 

 
Figure 8: 34 chars. broken into 9 tokens 

 
[2] word embeddings – a natural language 
processing (NLP) technique that represents words 
as numbers in a way that preserves semantics 

 

[3] centroid vector – a single vector representing 
an arithmetic mean, calculated by combining the 
vectors of each token created from the tokenized 

query or from the tokenized chunks of the CLPD. 
 
[4] cosine similarity – ranging from -1 to 1, it is a 
metric that determines how alike two vectors 
(calculated from words) are 
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