
2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Training a large language model to

code qualitative research data:
Results from discussions of ethical issues

David M. Simmonds
dsimmond@aum.edu

Management Information Systems
Aburn University at Montgomery

Montgomery, AL 36117

Russell Haines

hainesrp@appstate.edu
Computer Information Systems

Appalachian State University
Boone, NC, 28608, USA

Abstract

Comment coding is an important part of qualitative research, but it is a labor intensive process.
Furthermore, researchers need to assess whether or not comments were coded accurately and

reliability. Here, we present a process for arranging the original comments and using them to train a
Google BERT large language model (LLM) that was able to code comments with 73% reliability. This
process can be extended by future researchers to potentially code comments made in less-structured

research settings, or potentially have the LLM create the comment groupings automatically.

Keywords: transformer model, attention mechanism, text analytics, qualitative research

1. INTRODUCTION

In qualitative research, coding data is an
important part of the data analysis process
(Sarker et al., 2013). Classifying answers to open
ended questions is inherently challenging and
humans make mistakes and have disagreements
about which label to be applied to a given

comment (Faraj et al., 2015). Whenever coding
of text is involved, raters are expected to operate
reliably, meaning they code similar responses in
a similar way, every time. The Kappa statistic
measures Inter-rater reliability and is used to
determine whether there is an acceptable level of
match between coders (Haines et al., 2014). An

acceptable level of Kappa is considered
substantial at .61 according to McHugh (2012).

In this paper, we examine the research question:

Can a large language model be trained to code
qualitative data in a reliable way? We use the data
from Haines et al. (2014) as a training and
evaluation set. In that study, they coded
comments in discussions about whether actions
were ethical or not. Here, the focus is turned to
the use of a Large Language model (LLM) for

comment coding to determine whether a LLM
could provide a comparable reliability to human
coders.

In the following, we report both the methods and
the results of our LLM training with the idea that
other researchers can use the same or similar

techniques. Ultimately, our model was able to
achieve 73% agreement with the human coder,
which is quite good considering that the model

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

could not be expected to perform better than the

consensus between human beings, which in
Haines et al. was 89% with a Kappa of .71.

TRANSFORMERS & the BERT Model
In the seminal paper “Attention is all you need”
(Vaswani et al., 2017), Google introduced the
Transformer architecture which has
revolutionized Natural Language Processing. In
2018, Open AI took the transformer model and
split it in half to focus on text generation. This

only required the decoder-the second half of the
transformer. These foundation models have been
pretrained for weeks of thousands of graphical
processing units (GPUs) to understand human
language and general knowledge along with some
domain knowledge. They have gone on to be

embedded in Google Colab for code prediction
and Co-pilot in Microsoft Office products. Before
transformer models, the AI landscape was
dominated by models like the TF-IDF bag of
words model for classifying text, or basic neural
networks such as RNNs for text generation.

The transformer is made up of an encoder and
decoder model. The encoder model makes
statistical sense and creates a representation of
the patterns and relationships between words and
concepts inside the text fed to it. The decoder is
then able to generate text from that
representation. The big improvement introduced

by the transformer model is the ability of the
model to remember the relationships between

words far away from each other and create more
new relationships. Limited only by the size of the
input text, transformers can make a map of the
strength of the connection between every single

word and every other word in the input. This
makes them extremely memory hungry, but at
the same time, they never forget the
relationships. Additionally, transformers are fed
word embeddings, which are multi-dimensional
vectors of size, 512, 768, 1024 or more. Each
position in the vector captures some aspect of the

meaning of a word, such that words which mean
similar things like dog and puppy have very
similar embeddings. Additionally, the difference
between words is captured, such that the vectors

representing Washington D.C. and USA will have
a mathematically similar difference to the vectors
representing Berlin and Germany.

For this study, we use Google’s BERT transformer
model (Devlin et al., 2019). The core of the
transformer model is the attention mechanism.
There are 3 main types of attention mechanisms:
self-attention, multi-head attention and scaled-

dot-product attention. Figure 1 shows a diagram
which illustrates the attention mechanism and

reflects the history and original purpose of

transformer models which was language
translation. In the diagram, we can see English
words with their French equivalent. French and

other languages cannot be translated one word at
a time, because equivalent words are placed at
different relative positions in the sentence. The
attention mechanism allows transformers to
create a mapping (weights) which indicate the
word in the translated language that the
translator should pay attention to when

translating words from the original language.

Figure 1: Attention mechanism showing

mapping of French and English sentences

An attention function can be described as
mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and

output are all vectors. The output is computed as
a weighted sum of the values, where the weight
assigned to each value is computed by a
compatibility function of the query with the
corresponding key (Devlin et al., 2019). The
attention mechanism used in the BERT model is
called "Scaled Dot-Product Attention" (see Figure

2). The input consists of queries (Q) and keys of
dimension (K), and values of dimension (V), and
the dot products of the three are computed.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

Figure 2: Scaled dot-product attention
mechanism reproduced from Vaswani et al.
(2017)

In the case of comment classification, attention
similarly tells the classifier which words or
phrases to pay attention to in order to predict the
correct label for the comment. An example
comment in our dataset is “just because it's

misleading doesn't mean its unethical”. Before
transformers, using techniques like bag-of-words
and TF-IDF models, the classifier would see the
word “misleading” and interpret it as “unethical”.
However, the BERT model has been trained on
English language and generally knows that any
phrase between “just because” and “doesn’t

mean” implies that the words in between these
two phrases do not determine the overall intent
of the sentence. And in fact, the speaker usually
means the opposite of the words which come
after “doesn’t mean” – in this case “it’s unethical”.
So, a transformer-based classifier knows to pay
less attention to the fact that the action is

misleading because of its model weights; thus,
the overall meaning taken from the sentence is
the opposite of the next words “it is unethical”.
These associations (model weights) are then
reinforced in the model’s fine-tuning on the
training dataset since the target label provided in

the training dataset indicates that the student
was giving support for the action being ethical.

2. METHODOLOGY

DATASET
The Haines et al. (2014) dataset was collected

during an experimental study of ethical decision
making. A total of 219 participants in 42 groups
of either five or six members met virtually in chat
rooms for three or four minutes to discuss the
ethics of five different marketing scenarios. Their
final dataset consists of 5,955 “thoughts,” which

are the comments made by participating students

during the online discussions. All of the comments
made during the discussions were human coded
via a standardized coding sheet according to their

contents. Here, we give the codes and their titles,
but readers are encouraged to consult the original
article if they wish a more extensive explanation
of the codes and their definitions. The codes are:
supportive remark (SR) stating that the behavior
was ethical, a supportive argument (SA) giving
reasons why the behavior was ethical, critical

remark (CR) stating that the behavior was
unethical, critical argument (CR) giving reasons
why the behavior was unethical, compromise or
accept part of others opinions (CP), neural
remark or neural response to other's opinion
(NR), agreement on others' opinions (AO),

disagreement on other's opinion (DO), query for
clarification or explanation (QC), query for
solution (QS), answer to questions (AN),
comments on related topic but off track (OT),
summary of consensus (SU), uncoded text (UC),
humorous comments (HU), off topic comments
(OF). Although Haines et al. (2014) reports two

coders, only one of which coded all of the
comments, the dataset we obtained has three
coders, two of which coded all of the comments.

The standard for AI model accuracy is Bayes
Optimal Error because AI cannot be expected to
perform better than a group of human experts

who agree. Therefore, comments with
mismatched coding were not considered useful.

In the original dataset, a few of the comments
span over multiple lines of text, meaning that the
student broke up a sentence into parts as they
participated in the chat. This meant that some of

the comments were unlabeled. Comments
without a label are also not useful, since there is
no ground truth label for the model to be
evaluated on. Overall, from our training set, we
excluded labels which were empty, uncoded or
mismatched between human coders. We dropped
those records, leaving 1820 records which had

agreement between all 3 coders. 70% of the data
(1274 records) were used for the model training,
while 30% of the data was used as hold out
validation/test sets (273 or 15% each). During

hyper-parameter tuning, the validation set was
used to determine accuracy of the model after
each epoch. This was used for finetuning instead

of the model loss since loss does not have a
proportional or direct relationship with accuracy.
The test set was used to test the final model’s
accuracy and also generate the predictions.

The code used to denote human coding consisted

of the following. The codes themselves had an
imbalanced representation of records in the

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

dataset as shown in Table 1. The training set has

312 critical arguments but only 2 that were coded
QE, QR, or QP. The coding sheet does not contain
either of the last three labels, but looking at the

comments themselves, they seem to be miscoded
queries that should have been coded either QC or
QS. The code used for the label dictionary is as
follows:

label_dict: {'SR': 0, 'SA': 1, 'CR': 2, 'OT': 3,
'QP': 4, 'CA': 5, 'CP': 6, 'AN': 7, 'QE': 8, 'OF':

9, 'COM': 10, 'QS': 11, 'QR': 12, 'QC': 13,
'NR': 14, 'HU': 15, 'SU': 16, 'AO': 17, 'DO':
18}

Rebalancing the dataset improved the accuracy.
This came at the cost of stability of the results,

since selecting a different training set and test set
tended to change the validation accuracy
slightly, since prediction of the codes with much
less records tended to depend on which of the
actual messages were included in the training set.
But on average, accuracy increased by about 3%
after the rebalancing.

Label Number of Records
CA 312

EY 259

SA 239

AO 235

CR 209

OF 188

UC 89

NR 80

SR 79

CP 76

QC 39

HU 34

DO 30

QS 30

COM 29

OT 19

SU 15

AN 10

QE 5

QR 2

QP 2

Table 1: Number of records per comment
label

The training data was rebalanced by
oversampling to become a dataset of 2,000
records with at least 50 records for each label, so
the model could get adequate exposure and
training to each label. Validation and test sets are

not oversampled since they can produce

unrealistically high accuracy figures, due to
overfitting of the model on the smaller labels
which have high consistency due to their

repetition.

Columns
The columns used for training included Comment,
label, Sequence-# and Scenario-# which was
replaced with scenario description. The sequence
number was used to reset the sliding window of

comments, so that when the sequence # changed
to 1, all past comments were erased so that the
model would consider only comments related to
the particular conversation thread.

Model Training

BERT is a foundation model which can be trained
on 2 objectives. The first is next-sentence-
prediction. In order to finetune BERT for this
objective, it is trained on a dataset which has 2
sentences and a label indicating whether the 2nd
sentence follows from the first, or not. The second
objective is masked word prediction. BERT can be

trained to discover which word is missing
(masked) in a sentence in a manner similar to fill
in the blank questions given to students on an
exam. This makes it suitable for classification of
sentences since the comments in this study are
responses to the previous comments

Tokenization
Large Language models cannot process text.

They ingest numbers which represent each word
(token) in the text fed to it. Hence tokenization is
a necessary first step to process text. The dataset
was tokenized using the BERT base uncased

tokenizer to create model readable tokens. Both
model and tokenizer are hosted on Hugging face
(www.huggingface.com) and the correct
tokenizer is automatically loaded when the
checkpoint for the model is used.

Each word or sub-word which can be understood

by the model, is part of the tokenizer’s
vocabulary. Each of these words is represented
by a number, from 0 to the vocabulary size (-1).
First each sentence is split into words separated

by spaces. Sentence1 and Sentence 1 are
represented by tokens, numbers which represent
each word in the model. When the model predicts

a next token, it uses a feedforward output layer
with an output head the size of the number of
possible predictions. In a text generation LLM,
that would be the size of the vocabulary, in the
order of 10s of thousands of predictions.

Padding is added to make all the input tokens the
same length, since the model can only ingest

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

rectangular batches--having the same number of

tokens. Truncation is allowed in order to ensure
that sentences that are too long for the 512 token
limit are reduced to fit. Sentences are then

batched which speeds up training since the GPUs
can parallelize the calculations.

Token types are either 0 or 1. 0 indicates that the
tokens belong to the first sentence while 1
indicates that the tokens are taken from the
second sentence.

Label: is the numeric representation of the code
given to the current comment. In this case, since
we are only predicting 22 labels, the feedforward
layer only has 22 outputs. The tokenizer can only
use numbers as labels, so the program creates a

dynamic dictionary of codes present in the
training dataset. This dictionary automatically
changes when different codes are left out of the
training set. In order to test the model and create
predictions which are human-readable, the
dictionary is used to translate the codes back to
the original labels.

Input_ids: are the actual tokens representing
each word, as described above.

Token-type-ids: allow the model to distinguish
between the two sentences fed to it. Every token
belonging to the first sentence is assigned a 1.

Tokens in the second sentence are assigned a 0.

Attention Mask: indicates which tokens are
actual words and which are zeroes added for
padding. The model knows to ignore the words
used only for padding.

After Tokenization, renaming the label column as
‘labels’ and removing the columns which will not
be used for training, the dataset looks like this:

{'labels': tensor(5),

 'input_ids': tensor([

 101, 1001, 1001, 1001, 2917, 200

3, 1037, 11967, 2445, 2000,

 2493, 1012, 2027, 2020, 2356, 20

00, 7615, 2006, 3251, 1996,

 11967, 2001, 12962, 2030, 2025,

1001, 1001, 1001, 1996, 12698,

 2005, 1037, 2275, 1997, 10899, 2

881, 2000, 5574, 2000, 1021,

 1011, 2000, 2340, 1011, 2095, 1

011, 19457, 2024, 3491, 2076,

 13941, 1998, 2060, 2336, 1005,

1055, 3454, 1012, 2122, 12698,

 3444, 1037, 2440, 1011, 4094, 6

579, 2686, 2103, 2007, 2929,

 1998, 3311, 1997, 5200, 2521, 3

458, 2008, 2029, 6526, 1999,

 1996, 10899, 1012, 1001, 1001, 1

001, 2917, 2024, 1016, 7928,

 2029, 16218, 2094, 1996, 11967, 1

999, 3408, 1997, 3251, 2030,

 2025, 1996, 11967, 2001, 12962, 1

012, 1001, 1001, 1001, 7615,

 1011, 1015, 1024, 1045, 5993, 1

012, 7615, 1011, 1016, 1024,

 1045, 2228, 2023, 6433, 1037, 2

843, 1012, 102, 1001, 1001,

 1001, 2917, 2003, 1996, 6745, 7

615, 14120, 2000, 1996, 3025,

 11967, 1012, 1001, 1001, 1001,

1045, 2123, 2102, 2228, 2017,

 2064, 2655, 2023, 2428, 16655, 23

048, 2389, 1999, 2026, 5448,

 1001, 1001, 1001, 2241, 2006, 1

996, 2126, 8280, 1996, 11967,

 1998, 3025, 7928, 1010, 3443, 1

037, 3830, 2005, 1996, 6745,

 7615, 1012, 102, 0, 0, 0, 0

, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0,

0]),

 'token_type_ids': tensor([

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

),

 'attention_mask': tensor([

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

}

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

All LLMs have a maximum input size, which is 512

in the case of BERT. This roughly means the total
number of words in the input sentence(s) should
not exceed 512 words. But it also does sub-word

tokenization where it breaks down a word such as
ethically into subwords like ethic + al + ly. This
allows the tokenizer to represent a bigger
vocabulary with less tokens, but eats into the
input size allowed. It also uses start of sentence
and end of sentence tokens, along with tokens for
punctuation, so that 512 is not as much as it may

sound. In order to accommodate this limitation,
the scenario and actions were summarized so that
the scenario description along with comments
was able to fit into the tokenizer’s max length of
512 tokens.

The model is then finetuned (trained) on the
dataset, over a number of epochs (passes
through the dataset). Model training consists of
selecting several parameters including Learning
Rate, Gamma (rate of reduction of learning rate)
and optimizer step size (the number of steps
taken down the gradient before learning rate is

reduced by multiplying by Gamma.

Model
The model used was a pretrained model from
HuggingFace.com. It was downloaded as a model
checkpoint: "google-bert/bert-base-uncased".
The tokenizer was automatically selected from

hugging face using the from_pretrained method
to ensure compatibility with the model. The size

of the model on disk is only 536 MB, but in
training, especially depending on the batch size,
the memory requirements for the model alone
grows 16 to 20 times, easily taking up 10Gb of

GPU memory.

Coding Environment
Google Colab was used as the coding
environment, which has a variable watch window,
code completion, code prediction, and code
generation. These features were instrumental in

generating code to create a balanced dataset by
oversampling the rarer labels (such as QP, QR,
QE and AN which only had 2,2,5 & 10 records
respectively, compared to CA which had 223

records respectively. The prompt to generate this
was:

prompt: split the InstructTuning_df
dataframe into a random sample of 70%
train and 30% validationtest. Then
generate extra records to oversample
the Train set to create a dataset that is
balanced by label. Then split the

validation test into equal parts. Show

the label_column distribution for all 3

resulting datasets.

Model Training

Google Colab also gives access to GPUs which are
necessary for parallelizing the layers inside the
transformer model used by BERT. An L4 GPU on
Google Colab with 22Gb of GPU memory was able
to accommodate 64 records per batch of training
data, training the model in 25 seconds per epoch.
With 20 epochs taking between 9 and 10 minutes.

The concept of LLM “loss” is based on statistics,
being the difference between a set of predictions
made by the model and the actual values in the
dataset. It is founded in in mathematical
optimization and statistics. In statistical

regression, the software tries several lines of best
fit to match the datapoints. It then calculates loss
using ordinary least squares (OLS) and accepts
the solution with the lowest OLS. Training an LLM
is very similar, since the training objective is to
minimize the model loss. In LLM, the gradient
descent is used to achieve the minimal loss-or

best model. At the start of training, model
weights (similar to regression coefficients) are
randomly initialized. In each of the several
“epochs”, The model uses weights to generate
predictions which are compared to target labels.
The loss is then calculated and backward
propagation occurs, in which a fraction of the loss

is subtracted from the model weights. Trial and
error is required to find the optimal

hyperparameters (learning rate, gamma, step
size). Several runs need to be done in order to
determine the best combination of batch_size,
epochs, learning rate, gamma and optimizer step

size.

The model was eventually trained for 7 epochs
with a learning rate of 5.1 e-5, optimizer step size
of 1 and gamma of .81. We arrived at these
parameters after adjusting the learning rate from
7, 6, 5, 4, 5.5 with several more tweaks and

finally 5.1 (e-5). Gamma started at .99 and went
to 0.91, 0.8, 0.7, 0.85 with several more
adjustments and finally .81. The training graph is
shown in Figure 3 below. The ShedulerLR

optimizer was used, which allows for a decay in
the training rate as it approaches the lowest loss.
The learning rate needs to be sufficiently large in

the beginning to achieve high accuracy. The loss
decay is necessary because as the model
approaches its lowest possible loss, it needs to
creep to the minimum loss without overshooting.
Hence an exponentially decreasing learning rate
is required as provided by StepLR. The learning

rate is multiplied by GammaTrainSteps and since
Gamma is < 1, the learning rate approaches zero.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

For example, with a Gamma of .82, on the 20th

training step the learning rate would become
0.8220 = 2% of the initial learning rate.

Figure 3: Training accuracy and gamma over
training epochs

3. RESULTS

After training, a hold out dataset was used to test
the overall accuracy of the model and generate
predictions which could be compared by humans
against the ground truth labels. A predicted label
as well as a prediction confidence was produced.
This allowed us to differentiate between
comments that were labeled incorrectly with low

confidence vs those with high confidence. We

achieved a finetuned model with a training loss of
.051 and validation accuracy of 73%. The model
was used to predict the labels on our test set.
González-Carvajal, & Garrido-Merchán (2020)
categorized Portugese News items and achieved
accuracy of 91%. The first dataset had 9

categories, equivalent to ours, but most articles
had between 300 and 700 words, significantly
longer than our messages. They also achieved a
score of 83% on the categorization of tweets into
real or non-real disasters. In the 2nd case, they
used 10875 tweets multiples of our dataset and

with only 2 categories compared to our 9.

4. LIMITATIONS AND CHALLENGES

The study would have benefited a lot from more
data. Studies of this type typically have many
thousands of rows of data, for example González-

Carvajal et al (2020) which used 167,000 and
10,800 records. By increasing the data available,
the classifier would be able to learn about the
patterns. We had 5000 records but excluded the
ones that the human beings did not agree on. This
could have been an avenue of improvement. The
length of the messages is also a big problem.

Many messages were as short as "OK" which

gives practically no indication what they were
responding to. Possibly even more challenging is
the fact that the messages were captured in a

continuous stream, not as responses to any
particular previous message. It is very possible
for a message to be a response to one 20
messages ago, depending on typing speeds.

5. DISCUSSION AND CONCLUSIONS

The ability of any model to classify a set of
comments will be heavily influenced by the initial
training data. It means researchers should try to
collect training data about many scenarios, from
many different sources. A meta study would then
be able to remove local and situation biases in

attitudes to ethics from affecting the study.

LLMs are generally trained with the objective of
next word prediction by minimizing the loss
between predicted words and actual words given
to it in a training dataset. BERT is special in that
it is trained to also do next sentence prediction:

whether a second sentence follows from a first.
To allow BERT to achieve this, a special
classification layer is added to the other layers to
allow for classification (Devlin et al., 2019). The
model can then be finetuned on pairs of sentences
as in our case. Though the foundation model was
trained with a classification head that produces a

0 or 1: whether or not sentence-2 follows
sentence-1, it can be finetuned to produce many

classes, given the right number of training data.
In our case, this was 9 classes.

Whereas a regular LLM uses an input sentence to

predict the next word, our code and configuration
meant BERT was essentially using 2 sentences to
produce a next word – which in our case is the
comment label. Another analogy might be a
conversation between a person and an LLM: the
person says “Hi”, the regular LLM would be limited
to saying “Hello”. Our BERT model takes this a

step further to act as an observer between the
two people in the conversation. Supposing it is
finetuned on a conversation between two polite
speakers. It is then asked to assess 2 sentences

-- Sentence-1: “Hi, how are you?”, Sentence-2:
Hello I am well, how about you?” BERT would
predict a “1” (yes 2nd sentence follows from the

1st). If it were fed a conversation in which one
impolite person is involved. Sentence-1: “Hi, how
are you?”, Sentence-2: “We need to go to lunch
right now because I am hungry?” it should predict
a 0 (no 2nd sentence does not follow from the 1st
because some pleasantries should precede the 2nd

response).

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6205

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

In conclusion, we are confident that the answer

to our research question is that an LLM can indeed
be used for comment coding. Our accuracy of
73% would be somewhat convincing if we were

trying to predict 2 labels, but is even more
convincing because we are in fact predicting 9
labels. We were able to take this step by building
on Adhikari et al. (2019) and finetuning BERT to
predict more than 2 classes, by asking the BERT
model: How does the second sentence follow the
first? Is it agreement, disagreement, neutral,

critical or supportive? This code and configuration
allowed us to label 9 different classes of
comments with a substantial level of reliability,
before any finetuning measures are even applied.
Future researchers can build on these results by
examining other comment coding situations. For

example, it might be possible to code more
categories, longer and less-focused comments, or
to even have the transformer model define the
classifications itself.

6. FUTURE RESEARCH

There are some things we can attempt in order to
improve the accuracy of the classifier. One thing
is Prompt finetuning in which we include the
thought process which the LLM should use, in
classifying each comment. Also including the
scenario being discussed could be a fruitful
approach. By using chain of thought reasoning,

we may be able to increase the accuracy further.
There is the possibility of looking at the actual

codes used to classify. It became apparent after
a quick review, that there were codes which were
confused with each other, and the realization that
a human would have probably confused them too.

We also plan to explore ways in which the
classifier could actually challenge the human
ratings. That is to say, using generative AI to
explain why it chose a particular code. So, it
would not just be right or wrong, just more or less
reasonable.

We plan to address the empty and mislabeled
comments in a future study. We will look where
we address the creation of an optimal set of labels

which avoid the overlap with other labels and the

gaps between labels. But for this study, we
decided to limit the discussion to the use of BERT
to assist human coders.

7. REFERENCES

Adhikari, A., Ram, A., Tang, R., & Lin, J. (2019).
DocBERT: BERT for Document Classification
(arXiv:1904.08398). arXiv.
http://arxiv.org/abs/1904.08398

Devlin, J., Chang, M.-W., Lee, K., & Toutanova,

K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding (arXiv:1810.04805). arXiv.
http://arxiv.org/abs/1810.04805

Faraj, S., Kudaravalli, S., HEC Paris, & Wasko,
M. (2015). Leading Collaboration in Online

Communities. MIS Quarterly, 39(2), 393–
412.
https://doi.org/10.25300/MISQ/2015/39.2.0
6

Haines, R., Hough, J., Cao, L., & Haines, D.
(2014). Anonymity in Computer-Mediated
Communication: More Contrarian Ideas with

Less Influence. Group Decision and
Negotiation, 23(4), 765.

McHugh, M. L. (2012). Interrater reliability: The
kappa statistic. Biochemia Medica, 22(3),
276–282.

Sarker, S., Xiao, X., & Beaulieu, T. (2013).
Guest Editorial: Qualitative Studies in

Information Systems: A Critical Review and
Some Guiding Principles. MIS Quarterly,
37(4), iii–xviii.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz,
& Polosukhin, I. (2017). Attention is All you

Need. Advances in Neural Information
Processing Systems, 30.
https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html

