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Abstract  
 
Comment coding is an important part of qualitative research, but it is a labor intensive process. 
Furthermore, researchers need to assess whether or not comments were coded accurately and 

reliability. Here, we present a process for arranging the original comments and using them to train a 
Google BERT large language model (LLM) that was able to code comments with 73% reliability. This 
process can be extended by future researchers to potentially code comments made in less-structured 

research settings, or potentially have the LLM create the comment groupings automatically. 
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1. INTRODUCTION 

 
In qualitative research, coding data is an 
important part of the data analysis process 
(Sarker et al., 2013). Classifying answers to open 
ended questions is inherently challenging and 
humans make mistakes and have disagreements 
about which label to be applied to a given 

comment (Faraj et al., 2015). Whenever coding 
of text is involved, raters are expected to operate 
reliably, meaning they code similar responses in 
a similar way, every time. The Kappa statistic 
measures Inter-rater reliability and is used to 
determine whether there is an acceptable level of 
match between coders (Haines et al., 2014). An 

acceptable level of Kappa is considered 
substantial at .61 according to McHugh (2012).  
 

In this paper, we examine the research question: 

Can a large language model be trained to code 
qualitative data in a reliable way? We use the data 
from Haines et al. (2014) as a training and 
evaluation set. In that study, they coded 
comments in discussions about whether actions 
were ethical or not. Here, the focus is turned to 
the use of a Large Language model (LLM) for 

comment coding to determine whether a LLM 
could provide a comparable reliability to human 
coders. 
 
In the following, we report both the methods and 
the results of our LLM training with the idea that 
other researchers can use the same or similar 

techniques. Ultimately, our model was able to 
achieve 73% agreement with the human coder, 
which is quite good considering that the model 
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could not be expected to perform better than the 

consensus between human beings, which in 
Haines et al. was 89% with a Kappa of .71. 
 

TRANSFORMERS & the BERT Model 
In the seminal paper “Attention is all you need” 
(Vaswani et al., 2017), Google introduced the 
Transformer architecture which has 
revolutionized Natural Language Processing. In 
2018, Open AI took the transformer model and 
split it in half to focus on text generation.  This 

only required the decoder-the second half of the 
transformer. These foundation models have been 
pretrained for weeks of thousands of graphical 
processing units (GPUs) to understand human 
language and general knowledge along with some 
domain knowledge.  They have gone on to be 

embedded in Google Colab for code prediction 
and Co-pilot in Microsoft Office products. Before 
transformer models, the AI landscape was 
dominated by models like the TF-IDF bag of 
words model for classifying text, or basic neural 
networks such as RNNs for text generation.  
 

The transformer is made up of an encoder and 
decoder model. The encoder model makes 
statistical sense and creates a representation of 
the patterns and relationships between words and 
concepts inside the text fed to it. The decoder is 
then able to generate text from that 
representation. The big improvement introduced 

by the transformer model is the ability of the 
model to remember the relationships between 

words far away from each other and create more 
new relationships. Limited only by the size of the 
input text, transformers can make a map of the 
strength of the connection between every single 

word and every other word in the input. This 
makes them extremely memory hungry, but at 
the same time, they never forget the 
relationships. Additionally, transformers are fed 
word embeddings, which are multi-dimensional 
vectors of size, 512, 768, 1024 or more. Each 
position in the vector captures some aspect of the 

meaning of a word, such that words which mean 
similar things like dog and puppy have very 
similar embeddings. Additionally, the difference 
between words is captured, such that the vectors 

representing Washington D.C. and USA will have 
a mathematically similar difference to the vectors 
representing Berlin and Germany. 

 
For this study, we use Google’s BERT transformer 
model (Devlin et al., 2019). The core of the 
transformer model is the attention mechanism. 
There are 3 main types of attention mechanisms: 
self-attention, multi-head attention and scaled-

dot-product attention. Figure 1 shows a diagram 
which illustrates the attention mechanism and 

reflects the history and original purpose of 

transformer models which was language 
translation. In the diagram, we can see English 
words with their French equivalent. French and 

other languages cannot be translated one word at 
a time, because equivalent words are placed at 
different relative positions in the sentence. The 
attention mechanism allows transformers to 
create a mapping (weights) which indicate the 
word in the translated language that the 
translator should pay attention to when 

translating words from the original language.  

 
Figure 1: Attention mechanism showing 

mapping of French and English sentences 

An attention function can be described as 
mapping a query and a set of key-value pairs to 
an output, where the query, keys, values, and 

output are all vectors. The output is computed as 
a weighted sum of the values, where the weight 
assigned to each value is computed by a 
compatibility function of the query with the 
corresponding key (Devlin et al., 2019). The 
attention mechanism used in the BERT model is 
called "Scaled Dot-Product Attention" (see Figure 

2). The input consists of queries (Q) and keys of 
dimension (K), and values of dimension (V), and 
the dot products of the three are computed.  
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Figure 2: Scaled dot-product attention 
mechanism reproduced from Vaswani et al. 
(2017) 

In the case of comment classification, attention 
similarly tells the classifier which words or 
phrases to pay attention to in order to predict the 
correct label for the comment. An example 
comment in our dataset is “just because it's 

misleading doesn't mean its unethical”. Before 
transformers, using techniques like bag-of-words 
and TF-IDF models, the classifier would see the 
word “misleading” and interpret it as “unethical”. 
However, the BERT model has been trained on 
English language and generally knows that any 
phrase between “just because” and “doesn’t 

mean” implies that the words in between these 
two phrases do not determine the overall intent 
of the sentence. And in fact, the speaker usually 
means the opposite of the words which come 
after “doesn’t mean” – in this case “it’s unethical”. 
So, a transformer-based classifier knows to pay 
less attention to the fact that the action is 

misleading because of its model weights; thus, 
the overall meaning taken from the sentence is 
the opposite of the next words “it is unethical”. 
These associations (model weights) are then 
reinforced in the model’s fine-tuning on the 
training dataset since the target label provided in 

the training dataset indicates that the student 
was giving support for the action being ethical. 
 

2. METHODOLOGY 
 

DATASET 
The Haines et al. (2014) dataset was collected 

during an experimental study of ethical decision 
making. A total of 219 participants in 42 groups 
of either five or six members met virtually in chat 
rooms for three or four minutes to discuss the 
ethics of five different marketing scenarios. Their 
final dataset consists of 5,955 “thoughts,” which 

are the comments made by participating students 

during the online discussions. All of the comments 
made during the discussions were human coded 
via a standardized coding sheet according to their 

contents. Here, we give the codes and their titles, 
but readers are encouraged to consult the original 
article if they wish a more extensive explanation 
of the codes and their definitions. The codes are: 
supportive remark (SR) stating that the behavior 
was ethical, a supportive argument (SA) giving 
reasons why the behavior was ethical, critical 

remark (CR) stating that the behavior was 
unethical, critical argument (CR) giving reasons 
why the behavior was unethical, compromise or 
accept part of others opinions (CP), neural 
remark or neural response to other's opinion 
(NR), agreement on others' opinions (AO), 

disagreement on other's opinion (DO), query for 
clarification or explanation (QC), query for 
solution (QS), answer to questions (AN), 
comments on related topic but off track (OT), 
summary of consensus (SU), uncoded text (UC), 
humorous comments (HU), off topic comments 
(OF). Although Haines et al. (2014) reports two 

coders, only one of which coded all of the 
comments, the dataset we obtained has three 
coders, two of which coded all of the comments. 
 
The standard for AI model accuracy is Bayes 
Optimal Error because AI cannot be expected to 
perform better than a group of human experts 

who agree. Therefore, comments with 
mismatched coding were not considered useful. 

In the original dataset, a few of the comments 
span over multiple lines of text, meaning that the 
student broke up a sentence into parts as they 
participated in the chat. This meant that some of 

the comments were unlabeled. Comments 
without a label are also not useful, since there is 
no ground truth label for the model to be 
evaluated on. Overall, from our training set, we 
excluded labels which were empty, uncoded or 
mismatched between human coders. We dropped 
those records, leaving 1820 records which had 

agreement between all 3 coders. 70% of the data 
(1274 records) were used for the model training, 
while 30% of the data was used as hold out 
validation/test sets (273 or 15% each). During 

hyper-parameter tuning, the validation set was 
used to determine accuracy of the model after 
each epoch. This was used for finetuning instead 

of the model loss since loss does not have a 
proportional or direct relationship with accuracy. 
The test set was used to test the final model’s 
accuracy and also generate the predictions.  
 
The code used to denote human coding consisted 

of the following. The codes themselves had an 
imbalanced representation of records in the 
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dataset as shown in Table 1. The training set has 

312 critical arguments but only 2 that were coded 
QE, QR, or QP. The coding sheet does not contain 
either of the last three labels, but looking at the 

comments themselves, they seem to be miscoded 
queries that should have been coded either QC or 
QS. The code used for the label dictionary is as 
follows: 
 

label_dict:  {'SR': 0, 'SA': 1, 'CR': 2, 'OT': 3, 
'QP': 4, 'CA': 5, 'CP': 6, 'AN': 7, 'QE': 8, 'OF': 

9, 'COM': 10, 'QS': 11, 'QR': 12, 'QC': 13, 
'NR': 14, 'HU': 15, 'SU': 16, 'AO': 17, 'DO': 
18} 
 

Rebalancing the dataset improved the accuracy. 
This came at the cost of stability of the results, 

since selecting a different training set and test set 
tended to change the validation accuracy 
slightly, since prediction of the codes with much 
less records tended to depend on which of the  
actual messages were included in the training set. 
But on average, accuracy increased by about  3% 
after the rebalancing. 

 

Label Number of Records 
CA 312 

EY 259 

SA 239 

AO 235 

CR 209 

OF 188 

UC 89 

NR 80 

SR 79 

CP 76 

QC 39 

HU 34 

DO 30 

QS 30 

COM 29 

OT 19 

SU 15 

AN 10 

QE 5 

QR 2 

QP 2 

Table 1: Number of records per comment 
label 
 

The training data was rebalanced by 
oversampling to become a dataset of 2,000 
records with at least 50 records for each label, so 
the model could get adequate exposure and 
training to each label. Validation and test sets are 

not oversampled since they can produce 

unrealistically high accuracy figures, due to 
overfitting of the model on the smaller labels 
which have high consistency due to their 

repetition.  
 
Columns 
The columns used for training included Comment, 
label, Sequence-# and Scenario-# which was 
replaced with scenario description. The sequence 
number was used to reset the sliding window of 

comments, so that when the sequence # changed 
to 1, all past comments were erased so that the 
model would consider only comments related to 
the particular conversation thread.  
 
Model Training 

BERT is a foundation model which can be trained 
on 2 objectives. The first is next-sentence-
prediction. In order to finetune BERT for this 
objective, it is trained on a dataset which has 2 
sentences and a label indicating whether the 2nd 
sentence follows from the first, or not. The second 
objective is masked word prediction. BERT can be 

trained to discover which word is missing 
(masked) in a sentence in a manner similar to fill 
in the blank questions given to students on an 
exam. This makes it suitable for classification of 
sentences since the comments in this study are 
responses to the previous comments  
 

Tokenization 
Large Language models cannot process text. 

They ingest numbers which represent each word 
(token) in the text fed to it. Hence tokenization is 
a necessary first step to process text. The dataset 
was tokenized using the BERT base uncased 

tokenizer to create model readable tokens. Both 
model and tokenizer are hosted on Hugging face 
(www.huggingface.com) and the correct 
tokenizer is automatically loaded when the 
checkpoint for the model is used.  
 
Each word or sub-word which can be understood 

by the model, is part of the tokenizer’s 
vocabulary. Each of these words is represented 
by a number, from 0 to the vocabulary size (-1). 
First each sentence is split into words separated 

by spaces. Sentence1 and Sentence 1 are 
represented by tokens, numbers which represent 
each word in the model. When the model predicts 

a next token, it uses a feedforward output layer 
with an output head the size of the number of 
possible predictions. In a text generation LLM, 
that would be the size of the vocabulary, in the 
order of 10s of thousands of predictions. 
 

Padding is added to make all the input tokens the 
same length, since the model can only ingest 
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rectangular batches--having the same number of 

tokens. Truncation is allowed in order to ensure 
that sentences that are too long for the 512 token 
limit are reduced to fit. Sentences are then 

batched which speeds up training since the GPUs 
can parallelize the calculations.  
 
Token types are either 0 or 1. 0 indicates that the 
tokens belong to the first sentence while 1 
indicates that the tokens are taken from the 
second sentence. 

 
Label: is the numeric representation of the code 
given to the current comment. In this case, since 
we are only predicting 22 labels, the feedforward 
layer only has 22 outputs. The tokenizer can only 
use numbers as labels, so the program creates a 

dynamic dictionary of codes present in the 
training dataset. This dictionary automatically 
changes when different codes are left out of the 
training set. In order to test the model and create 
predictions which are human-readable, the 
dictionary is used to translate the codes back to 
the original labels. 

 
Input_ids: are the actual tokens representing 
each word, as described above.  
 
Token-type-ids: allow the model to distinguish 
between the two sentences fed to it. Every token 
belonging to the first sentence is assigned a 1. 

Tokens in the second sentence are assigned a 0.  
 

Attention Mask: indicates which tokens are 
actual words and which are zeroes added for 
padding. The model knows to ignore the words 
used only for padding.   

 
After Tokenization, renaming the label column as 
‘labels’ and removing the columns which will not 
be used for training, the dataset looks like this: 

{'labels': tensor(5), 

 'input_ids': tensor([   

 101,  1001,  1001,  1001,  2917,  200

3,  1037, 11967,  2445,  2000, 

 2493,  1012,  2027,  2020,  2356,  20

00,  7615,  2006,  3251,  1996, 

  11967,  2001, 12962,  2030,  2025,  

1001,  1001,  1001,  1996, 12698, 

  2005,  1037,  2275,  1997, 10899,  2

881,  2000,  5574,  2000,  1021, 

  1011,  2000,  2340,  1011,  2095,  1

011, 19457,  2024,  3491,  2076, 

   13941,  1998,  2060,  2336,  1005,  

1055,  3454,  1012,  2122, 12698, 

  3444,  1037,  2440,  1011,  4094,  6

579,  2686,  2103,  2007,  2929, 

  1998,  3311,  1997,  5200,  2521,  3

458,  2008,  2029,  6526,  1999, 

  1996, 10899,  1012,  1001,  1001,  1

001,  2917,  2024,  1016,  7928, 

  2029, 16218,  2094,  1996, 11967,  1

999,  3408,  1997,  3251,  2030, 

  2025,  1996, 11967,  2001, 12962,  1

012,  1001,  1001,  1001,  7615, 

  1011,  1015,  1024,  1045,  5993,  1

012,  7615,  1011,  1016,  1024, 

  1045,  2228,  2023,  6433,  1037,  2

843,  1012, 102,  1001,  1001, 

  1001,  2917,  2003,  1996,  6745,  7

615, 14120,  2000,  1996,  3025, 

   11967,  1012,  1001,  1001,  1001,  

1045,  2123,  2102,  2228,  2017, 

  2064,  2655,  2023,  2428, 16655, 23

048,  2389,  1999,  2026,  5448, 

  1001,  1001,  1001,  2241,  2006,  1

996,  2126,  8280,  1996, 11967, 

  1998,  3025,  7928,  1010,  3443,  1

037,  3830,  2005,  1996,  6745, 

  7615,  1012, 102,   0,   0,   0,   0

,   0,   0,   0, 

   0,   0,   0,   0,   0,   0,   0,   

0,   0,   0, 

   0,   0,   0,   0,   0,   0,   0,   

0,   0,   0, 

   0,   0,   0,   0,   0,   0,   0,   

0,   0,   0, 

   0,   0,   0,   0,   0,   0,   0,   

0]), 

 'token_type_ids': tensor([ 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

), 

 'attention_mask': tensor([ 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

} 
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All LLMs have a maximum input size, which is 512 

in the case of BERT. This roughly means the total 
number of words in the input sentence(s) should 
not exceed 512 words. But it also does sub-word 

tokenization where it breaks down a word such as 
ethically into subwords like ethic + al + ly. This 
allows the tokenizer to represent a bigger 
vocabulary with less tokens, but eats into the 
input size allowed. It also uses start of sentence 
and end of sentence tokens, along with tokens for 
punctuation, so that 512 is not as much as it may 

sound.  In order to accommodate this limitation, 
the scenario and actions were summarized so that 
the scenario description along with comments 
was able to fit into the tokenizer’s max length of 
512 tokens.  
 

The model is then finetuned (trained) on the 
dataset, over a number of epochs (passes 
through the dataset). Model training consists of 
selecting several parameters including Learning 
Rate, Gamma (rate of reduction of learning rate) 
and optimizer step size (the number of steps 
taken down the gradient before learning rate is 

reduced by multiplying by Gamma. 
 
Model 
The model used was a pretrained model from 
HuggingFace.com. It was downloaded as a model 
checkpoint: "google-bert/bert-base-uncased". 
The tokenizer was automatically selected from 

hugging face using the from_pretrained method 
to ensure compatibility with the model. The size 

of the model on disk is only 536 MB, but in 
training, especially depending on the batch size, 
the memory requirements for the model alone 
grows 16 to 20 times, easily taking up 10Gb of 

GPU memory.  
 
Coding Environment 
Google Colab was used as the coding 
environment, which has a variable watch window, 
code completion, code prediction, and code 
generation. These features were instrumental in 

generating code to create a balanced dataset by 
oversampling the rarer labels (such as QP, QR, 
QE and AN which only had 2,2,5 & 10 records 
respectively, compared to CA which had 223 

records respectively. The prompt to generate this 
was:  
 

# prompt: split the InstructTuning_df 
dataframe into a random sample of 70% 
train and 30% validationtest. Then 
generate extra records to oversample 
the Train set to create a dataset that is 
balanced by label. Then split the 

validation test into equal parts. Show 

the label_column distribution for all 3 

resulting datasets.  
 
Model Training 

Google Colab also gives access to GPUs which are 
necessary for parallelizing the layers inside the 
transformer model used by BERT. An L4 GPU on 
Google Colab with 22Gb of GPU memory was able 
to accommodate 64 records per batch of training 
data, training the model in 25 seconds per epoch. 
With 20 epochs taking between 9 and 10 minutes. 

 
The concept of LLM “loss” is based on statistics, 
being the difference between a set of predictions 
made by the model and the actual values in the 
dataset. It is founded in in mathematical 
optimization and statistics. In statistical 

regression, the software tries several lines of best 
fit to match the datapoints. It then calculates loss 
using ordinary least squares (OLS) and accepts 
the solution with the lowest OLS. Training an LLM 
is very similar, since the training objective is to 
minimize the model loss. In LLM, the gradient 
descent is used to achieve the minimal loss-or 

best model. At the start of training, model 
weights (similar to regression coefficients) are 
randomly initialized. In each of the several 
“epochs”, The model uses weights to generate 
predictions which are compared to target labels. 
The loss is then calculated and backward 
propagation occurs, in which a fraction of the loss 

is subtracted from the model weights. Trial and 
error is required to find the optimal 

hyperparameters (learning rate, gamma, step 
size). Several runs need to be done in order to 
determine the best combination of batch_size, 
epochs, learning rate, gamma and optimizer step 

size. 
 
The model was eventually trained for 7 epochs 
with a learning rate of 5.1 e-5, optimizer step size 
of 1 and gamma of .81. We arrived at these 
parameters after adjusting the learning rate from 
7, 6, 5, 4, 5.5 with several more tweaks and 

finally 5.1 (e-5). Gamma started at .99 and went 
to 0.91, 0.8, 0.7, 0.85 with several more 
adjustments and finally .81. The training graph is 
shown in Figure 3 below. The ShedulerLR 

optimizer was used, which allows for a decay in 
the training rate as it approaches the lowest loss. 
The learning rate needs to be sufficiently large in 

the beginning to achieve high accuracy. The loss 
decay is necessary because as the model 
approaches its lowest possible loss, it needs to 
creep to the minimum loss without overshooting. 
Hence an exponentially decreasing learning rate 
is required as provided by StepLR. The learning 

rate is multiplied by GammaTrainSteps and since 
Gamma is < 1, the learning rate approaches zero. 
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For example, with a Gamma of .82, on the 20th 

training step the learning rate would become 
0.8220 = 2% of the initial learning rate. 
 

 
Figure 3: Training accuracy and gamma over 
training epochs 

3. RESULTS 
 

After training, a hold out dataset was used to test 
the overall accuracy of the model and generate 
predictions which could be compared by humans 
against the ground truth labels. A predicted label 
as well as a prediction confidence was produced. 
This allowed us to differentiate between 
comments that were labeled incorrectly with low 

confidence vs those with high confidence. We 

achieved a finetuned model with a training loss of 
.051 and validation accuracy of 73%. The model 
was used to predict the labels on our test set. 
González-Carvajal, & Garrido-Merchán (2020) 
categorized Portugese News items and achieved 
accuracy of 91%. The first dataset had 9 

categories, equivalent to ours, but most articles 
had between 300 and 700 words, significantly 
longer than our messages. They also achieved a 
score of 83% on the categorization of tweets into 
real or non-real disasters. In the 2nd case, they 
used 10875 tweets multiples of our dataset and 

with only 2 categories compared to our 9. 
 

4. LIMITATIONS AND CHALLENGES  
 

The study would have benefited a lot from more 
data. Studies of this type typically have many 
thousands of rows of data, for example González-

Carvajal et al (2020) which used 167,000 and 
10,800 records. By increasing the data available, 
the classifier would be able to learn about the 
patterns. We had 5000 records but excluded the 
ones that the human beings did not agree on. This 
could have been an avenue of improvement. The 
length of the messages is also a big problem. 

Many messages were as short as "OK" which 

gives practically no indication what they were 
responding to. Possibly even more challenging is 
the fact that the messages were captured in a 

continuous stream, not as responses to any 
particular previous message. It is very possible 
for a message to be a response to one 20 
messages ago, depending on typing speeds. 

 
5. DISCUSSION AND CONCLUSIONS  

 

The ability of any model to classify a set of 
comments will be heavily influenced by the initial 
training data. It means researchers should try to 
collect training data about many scenarios, from 
many different sources. A meta study would then 
be able to remove local and situation biases in 

attitudes to ethics from affecting the study.  
 
LLMs are generally trained with the objective of 
next word prediction by minimizing the loss 
between predicted words and actual words given 
to it in a training dataset. BERT is special in that 
it is trained to also do next sentence prediction: 

whether a second sentence follows from a first. 
To allow BERT to achieve this, a special 
classification layer is added to the other layers to 
allow for classification (Devlin et al., 2019). The 
model can then be finetuned on pairs of sentences 
as in our case. Though the foundation model was 
trained with a classification head that produces a 

0 or 1: whether or not sentence-2 follows 
sentence-1, it can be finetuned to produce many 

classes, given the right number of training data. 
In our case, this was 9 classes. 
 
Whereas a regular LLM uses an input sentence to 

predict the next word, our code and configuration 
meant BERT was essentially using 2 sentences to 
produce a next word – which in our case is the 
comment label. Another analogy might be a 
conversation between a person and an LLM: the 
person says “Hi”, the regular LLM would be limited 
to saying “Hello”. Our BERT model takes this a 

step further to act as an observer between the 
two people in the conversation. Supposing it is 
finetuned on a conversation between two polite 
speakers. It is then asked to assess 2 sentences 

-- Sentence-1: “Hi, how are you?”, Sentence-2: 
Hello I am well, how about you?” BERT would 
predict a “1” (yes 2nd sentence follows from the 

1st). If it were fed a conversation in which one 
impolite person is involved. Sentence-1:  “Hi, how 
are you?”, Sentence-2: “We need to go to lunch 
right now because I am hungry?” it should predict 
a 0 (no 2nd sentence does not follow from the 1st 
because some pleasantries should precede the 2nd 

response).  
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In conclusion, we are confident that the answer 

to our research question is that an LLM can indeed 
be used for comment coding. Our accuracy of 
73% would be somewhat convincing if we were 

trying to predict 2 labels, but is even more 
convincing because we are in fact predicting 9 
labels. We were able to take this step by building 
on Adhikari et al. (2019) and finetuning BERT to 
predict more than 2 classes, by asking the BERT 
model: How does the second sentence follow the 
first? Is it agreement, disagreement, neutral, 

critical or supportive? This code and configuration 
allowed us to label 9 different classes of 
comments with a substantial level of reliability, 
before any finetuning measures are even applied. 
Future researchers can build on these results by 
examining other comment coding situations. For 

example, it might be possible to code more 
categories, longer and less-focused comments, or 
to even have the transformer model define the 
classifications itself. 
 

6. FUTURE RESEARCH 
 

There are some things we can attempt in order to 
improve the accuracy of the classifier. One thing 
is Prompt finetuning in which we include the 
thought process which the LLM should use, in 
classifying each comment. Also including the 
scenario being discussed could be a fruitful 
approach. By using chain of thought reasoning, 

we may be able to increase the accuracy further. 
There is the possibility of looking at the actual 

codes used to classify. It became apparent after 
a quick review, that there were codes which were 
confused with each other, and the realization that 
a human would have probably confused them too.  

We also plan to explore ways in which the 
classifier could actually challenge the human 
ratings. That is to say, using generative AI to 
explain why it chose a particular code. So, it 
would not just be right or wrong, just more or less 
reasonable. 
 

We plan to address the empty and mislabeled 
comments in a future study. We will look  where 
we address the creation of an optimal set of labels 

which avoid the overlap with other labels and the 

gaps between labels. But for this study, we 
decided to limit the discussion to the use of BERT 
to assist human coders. 
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