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Abstract  
 
This project aimed to analyze biometric data from participants engaged in a Virtual Reality (VR) driving 
simulation to understand how gender influences physiological responses to driving stress. Utilizing 
statistical methods like mixed linear models, Autoregressive Integrated Moving Average (ARIMA) 
modeling, Mann-Whitney U tests, and quantile regression, we examined the metrics of electrodermal 

activity (EDA), pulse rate, and temperature. Our findings indicated significant gender-based differences 
in these biometric responses, with female participants showing more pronounced changes in EDA and 
temperature compared to their male counterparts. Participants also provided valuable feedback for 
improving the VR experience.   
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1. INTRODUCTION 

 
Driving is a complex activity involving cognitive 
and physical tasks, including visual and 

perceptual integration, decision making, vehicle 
control, and responding to dynamic environments 
(Caffò et al., 2020; Calvi et al., 2020). Learning 
to drive requires time and effort, and VR 
technology has emerged as a powerful tool to 
enhance this process. By simulating real-world 
experiences, VR helps new drivers grasp driving 

fundamentals in an engaging manner, increasing 
retention of critical information (Alonso et al., 
2023). Additionally, VR simulators offer a safe, 
effective method for evaluating driving 
performance by integrating perceptual input, 
cognitive processing, and behavioral output, 

proving to be reliable and valid tools (Bédard et 
al., 2010; Davenne et al., 2012). Studies have 
also shown VR to be useful in examining driving 
behavior in various conditions, such as rural road 
intersections (Basu et al., 2022), and in assessing 
driver stress (Wickens et al., 2015). 
 

Building on this, research has highlighted 
significant differences in driving behavior based 
on gender, which have implications for risk 
perception, traffic accident involvement, and 
driving performance. Studies indicate that female 
drivers often experience higher stress levels, and 
exhibit more pronounced physiological responses 

in stressful driving scenarios compared to men 
(Ferrante et al., 2019). For instance, female 

drivers tend to show lower HRV (Heart Rate 
Variability) under stress, indicating higher 
physiological stress levels that correlate with 
poorer driving outcomes (Arca et al., 2022). 

Additionally, women often report higher levels of 
stress and anxiety in driving situations, which 
leads to more significant physiological reactions 
such as increased heart rates and EDA Maxwell et 
al., 2021; Matthews et al., 1999). 
 
Further evidence suggests that male and female 

drivers exhibit different behaviors during stopping 
maneuvers in urban environments, with men 
generally performing these maneuvers more 
carefully than women (De Blasiis et al., 2017). 

Driving simulator studies have also shown that 
female drivers are more likely to be involved in 
crashes due to errors in yielding, gap acceptance, 

and speed regulation (Ferrante et al., 2019). 
These findings highlight the importance of 
considering gender differences when designing 
and implementing VR driving simulations. 
 
Incorporating these insights into VR driver 

training programs can enhance effectiveness by 
addressing specific stressors and tailoring 

interventions based on individual biometric 

profiles. Recognizing and accommodating the 
unique physiological and psychological responses 
of different genders can provide a more 

comprehensive training experience, ultimately 
contributing to safer driving practices. 
 
As such, we implemented a VR driving game in 
address some of these findings. In our work, we 
attempt to address the following questions: 
 

• RQ1: Were the participants less or more 
stressed as they played the VR Driving 
Game? 

 
• RQ2: Which physiological metric was the 

most significant for the participants, and 

which were the most consistently 
statistically significant overall? 
 

• RQ3: Were there any significant findings 
in terms of gender? 

 
• RQ4: Did the VR Driving Game have a 

positive impact on the participants? 
 
Section 2 of our paper discusses related works, 
while Section 3 details our experiment and VR 
driving game. Section 4 presents initial results 
from the participants’ self-report questionnaires, 
and Section 5 covers data collection and 

preprocessing. Section 6 provides the analysis 
and results. Finally, Section 7 concludes the 

paper, and Section 8 discusses future work for 
our game. 
 

2. RELATED LITERATURE 

 
Using VR Driving Simulators to Measure 
Stress 
Evaluating stress through physiological signals in 
a VR driving environment is a significant research 
area due to its profound impact on driving 
performance. Stress triggers physiological 

responses such as increased heart rate, elevated 
blood pressure, altered breathing patterns, and 
muscle tension, all of which can impair reaction 
time, decision-making, and overall driving 

performance (Kerautret et al., 2021).  
 
In a VR driving environment, real-time 

monitoring and analysis of physiological 
responses provide valuable insights into how 
stress influences driving behavior. This 
understanding aids in developing interventions to 
manage stress, ultimately improving road safety 
(Antoun et al., 2017). 

 
Building on this, a 2023 study by Mateos-García 
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developed a system using biometric sensors in VR 

simulations to recognize driver stress. Using a 
PPG (Photoplethysmography) sensor, they found 
that heart rate closely correlates with stress 

levels, with ML (Machine Learning) algorithms 
classifying stress in real-time, demonstrating the 
feasibility of wearable devices for stress detection 
in driving scenarios (Mateos-García et al., 2023). 
Similarly, their 2022 study utilized PPG sensors to 
detect stress through HRV data, validated with VR 
experiments, further supporting the use of 

wearable devices for non-invasive stress 
detection (Mateos-García et al., 2022). 
 
Expanding on this research, another study 
examined physiological responses such as GSR 
(Galvanic Skin Response), BVP (Blood Volume 

Pulse), and PR (Pupillary Response) in VR driving 
simulators. Testing 24 participants in five 
simulation environments revealed significant 
differences in GSR, highlighting how simulator 
environments affect stress levels. The study 
found that female participants exhibited higher 
stress levels, indicating gender as a crucial factor 

in physiological responses to driving simulations. 
Hybrid GA-SVM (Genetic Algorithm-Support 
Vector machine) and GA-ANN (Genetic Algorithm-
Artificial Neural Network) approaches were used 
for data classification, providing insights into user 
engagement and stress responses (Liu et al., 
2020). 

 
Further exploring physiological responses, a 

study on individuals with ASD (Autism Spectrum 
Disorder) used EEG (Electroencephalography) 
data to classify affective states and mental 
workload during VR driving simulations. Twenty 

adolescents with ASD participated, with high 
classification accuracy achieved using k-nearest 
neighbors algorithm and univariate feature 
selection methods, supporting the feasibility of 
EEG-based models for recognizing affective states 
in driving contexts (Fan et al., 2018). Similar 
findings in earlier studies also found that other 

aspects, such as executive functioning and 
working memory, were noticeably worse in 
autistic individuals, and the incorporation of VR 
Driving simulations resulted in significant 

improvement (D.J Cox et al., 2017; S.M. Cox et 
al., 2015). 
 

In the realm of therapeutic applications, a study 
on VR exposure therapy (VRET) for women with 
driving phobia demonstrated reduced anxiety and 
distorted thoughts after VRET sessions. Thirteen 
women participated and the findings suggested 
VRET can reduce anxiety and facilitate in vivo 

exposure for driving phobia without associated 
risks (Costa et al., 2018). 

A cross-sectional study evaluated risky driving 

behavior across age groups using driving 
simulators. The sample included 115 drivers 
divided into young inexperienced (18-21 years), 

adult experienced (25-55 years), and older adult 
(70-86 years) groups. Participants were tested on 
scenarios with varying mental workloads. The 
study found that moderate scenario complexity 
highlighted differences in driving ability and 
elicited realistic behavior, with novel driving 
measures providing useful, non-redundant 

information (Michaels et al., 2017). 
 
Investigating the impact of time pressure, one 
study involved 54 participants driving a 6.9-km 
urban track with and without time constraints. 
Measurements included driving performance, eye 

movement, pupil diameter, cardiovascular and 
respiratory activity. Under time pressure, 
participants drove faster, exhibited increased 
physiological activity, and altered their driving 
strategies. The findings emphasize the 
importance of managing stress to improve driving 
performance (Rendon-Velez et al., 2016).  

 
Another study explored the relationship between 
flow states and HRV in driving simulations. 
Eighteen psychology students participated in 
tasks with varying demand levels to induce flow, 
anxiety, or boredom. HRV measures indicated 
that balanced skill-demand levels induced flow, 

while too high or low demands caused anxiety or 
boredom. The study demonstrates how VR 

environments can effectively investigate 
psychological states and their impact on 
physiological responses (Tozman et al., 2015). 
 

Remarks 
These studies collectively underscore the 
significant role of VR driving simulators and 
physiological data in understanding and 
managing stress in driving. Leveraging advanced 
methodology and tools, we can develop effective 
interventions to enhance driver safety and 

performance. The versatility and effectiveness of 
VR driving simulators in enhancing driving skills, 
assessing driver behavior, and improving traffic 
safety are well-established.  

 
Despite progress, notable research gaps remain: 

• Personalized Models: Many studies develop 

models that are personalized to the 

individual subjects in the study. While this 

can improve the accuracy of stress 

detection for those individuals, it comes at 

a cost of generalizability. 
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• Realism of VR Simulations: The realism of 

the VR simulations used in these studies can 

also be a limiting factor. If the VR 

environment does not accurately reflect 

real-world driving conditions, the 

physiological responses observed may not 

accurately represent the stress responses of 

drivers in real-world situations. 

• There is no standardized way to determine 

the appropriate complexity of driving 

scenarios, affecting stress levels and 

engagement. 

Our work differs from previous studies by using 
more generalized scenarios, allowing our VR 
driving game to reach a wider audience. 

Additionally, our emphasis on statistical analysis 
provides deeper insights into our results, 
enhancing the overall understanding and 
applicability of our findings. 

 
3. EXPERIMENT 

 
The experiment was done at Kennesaw State 
University in an Experimental Studies Lab, that 
featured a Logitec Car Simulator, with a monitor 
hooked up to it. A total of 14 participants partook 

in the study (8 males: Mean = 22.89 years, STD 
= 2.67 years, 6 females: Mean = 21.20 years. 
STD = 1.30 years). All participants were 18 and 
over.  
 

Participant Recruitment 

Information about the study was disseminated via 
email, flyers, and the university's Reddit page. 
Interested students received a self-report 
questionnaire to gather basic information about 
their driving experience, health history, and 
general well-being, including their physical and 
mental health and experiences with driving and 

VR technology. 
 
After completing the questionnaire, participants 
were emailed a consent form to fill out and return 
to the PIs. Session times for the study were then 
scheduled using the online tool Doodle. Each one-
on-one study session lasted 45-55 minutes, with 

3 to 5 minute breaks as needed. 
 
Upon arrival, participants were asked about their 
current mental and physical health and familiarity 
with VR. They then received brief instructions on 
the game controls before beginning the game. 

 
VR Driving Game 
The VR Driving Game was developed by a team 
of four undergraduate students using the Unity 
3D game engine during  spring semester (January 

to April). The Researcher coordinated with the 

team through weekly meetings to ensure the 
game aligned with the study's objectives. The 
game featured low-poly textures for optimized 

performance and ran on a Windows 10 ASUS 
laptop with an NVIDIA 2060 GPU, Intel Core i5 
processor, and 16 GB of RAM.  
 
The VR Driving Game consisted of 3 levels, briefly 
explained below: 
 

• Scenario 1: This takes place at a Grocery 
Store. Participants need to find and enter 
a parking space. As they reverse, a 
pedestrian or shopping cart unexpectedly 
appears behind the vehicle, requiring an 
abrupt stop to avoid a collision. 

 
• Scenario 2: This also includes a scenario 

set in a grocery store. However, the 
participant must then leave the grocery 
store to navigate a moderate-traffic, 
daytime urban simulation. A key event 
during this simulation is a sudden stop by 

police for an alleged traffic violation. 
 

• Scenario 3: Following a preset route, the 
key event is a sudden brake by the 
vehicle in front, causing a minor accident. 

 
In the game, participants used Meta Quest 2 

controllers for steering and menu navigation. A 
calming voice guided participants through the 

game, aiming to reduce stress. 
 
At startup, participants navigated the main menu 
using Meta Quest 2 controllers, selecting levels by 

gently turning the steering wheel to the right, as 
see in Figure 1. Different sound effects and 
visuals represented each scenario.  
 
As seen in Figures 2a, 2b and 2c, the participants 
were instructed to sit inside the car simulator to 
simulate the feeling of sitting in an actual vehicle. 

 

   
 
 
 

  
After clearing each scenario, participants were 
asked if they wanted a 3 to 5 minute break. If 
they declined, they continued immediately. Upon 

Figure 2a: Car 
Simulator Set 

up 

2b: Male 
Participant 

2c: Female 
Participant 
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completing all three scenarios, they were 

questioned about their feelings on the game and 
the guiding voice, and asked for improvement 
suggestions. Participants then received a $30 

Amazon gift card and filled out a post-study 
questionnaire. 
 
First Level 
In the first level, set in a grocery store, players 
are guided to drive into a parking space, with a 
voice praising their turns and reminding them to 

stay aware of their surroundings. Blue circular 
waypoints indicate where players need to go. As 
they approach, they are warned about a family 
putting away groceries and instructed to back up 
to give a car space to exit. They are also 
cautioned about a nearby child chasing a ball, 

prompting extra caution. Next, players are 
directed to a shopping cart waypoint to have 
enough room to back into a parking spot. While 
attempting to park, they encounter a pedestrian, 
requiring careful maneuvering to avoid hitting 
them. Figures 3a, 3b, and 3c display pictures of 
this grocery level. 

 
If players successfully navigate the level, the 
voice praises their caution. If they fail, hitting the 
family, child, or pedestrian, the voice gently 
reminds them that accidents happen and 
encourages them to take a deep breath and try 
again. Notably, only one participant hit the 

pedestrian behind their car while backing into the 
parking spot. When this happens, the pedestrian 

shouts, "Watch it!" 
 
Second Level 
In Scenario 2, players are instructed to back out 

of their parking space to leave the grocery store, 
with reminders to check their surroundings and 
mirrors. Blue waypoints guide them on where to 
drive. Upon approaching a turn, they are 
instructed to make a right turn. Shortly after, a 
police siren is heard, prompting the player to pull 
over. The police officer explains the reason for the 

stop and then allows the player to continue 
driving. Figure 4 shows a snapshot of the second 
level. 
 

 
 
 
 

 

Third Level 

The third level and last level of the game takes 
place after the second level. In the third level of 
the game, the players are instructed to drive on 

the road. At some point in the game, the player 
is warned that a car in front of them is breaking 
hard. A blue waypoint appears in front of the 
player, close to the car in front of them so that 
they may brake in time, not hitting the car. Figure 
5 demonstrates a snapshot of this. 
 

 
 
 
 
 
 

 
 
 
 
 
 
If players crash into the car ahead, they fail the 

level and are respawned to try again. After 
successfully braking, the car in front drives away. 
Shortly after, another car hits the player from 
behind. Players are reminded to stay calm and 
drive to the nearest gas station. A blue waypoint 
guides them to a parking spot. Upon parking, the 
car that hit the player arrives, and the driver 

apologizes and takes responsibility. Figure 6 
illustrates this interaction. 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

4. INTIAL ANALYSIS: SELF REPORT 
QUESTIONAIRE RESULTS 

 

Upon reviewing the self-report questionnaire, 
participants identified several driving difficulties, 
categorized into Situational Awareness, Specific 
Maneuvers, Multitasking and Cognitive Load, and 
Distance and Speed Management. The number of 
responses for each category out of 14 participants 

is detailed in Figure 7. As shown in the pie chart, 
"Specific Maneuvers" received the highest 

Figure 4: 2nd Level 

- Policeman. 

Figure 5: Level 3 
scenario. 

 

Figure 6: Driver in Green shirt. 
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number of responses, indicating it as the most 

cited difficulty among participants. Additionally, 
participants rated their driving skills on a scale 
from poor to excellent. The majority rated their 

skills as "good," as depicted in Figure 8. 
Comparing genders, male participants more often 
rated their driving skills as "good" or "excellent," 
while female participants were more likely to rate 
themselves as "average." 
 

 

 
 
 

 
 
 

 
5. DATA COLLECTION AND PREPROCESSING 

 
Data Collection 
Physiological data was collected using the 
EmbracePlus Smartwatch while participants 

engaged with the VR game. The EmbracePlus, a 
medical-grade wearable, gathered various 
physiological parameters, which were transferred 

via Bluetooth to the Empatica CareLab app. The 
app analyzed the data, extracted digital 
biomarkers, and uploaded the information to the 
Empatica Cloud for secure storage and access via 
the Care Portal. This portal allowed team 
members to manage studies and visualize 

participants’ biomarkers. Data was organized into 
a primary "participant_data" folder with 

subfolders for different dates. 

 
Data Preprocessing 
Preprocessing involved examining and modifying 

the data stored in a hierarchical directory 
structure. A Python script verified the directory, 
traversed subdirectories, and targeted 
'digital_biomarkers' and 'aggregated_perminute.' 
It listed CSV files, loaded them into pandas 
DataFrames, converted timestamps to Eastern 
Time, and dropped 'missing_value_reason' 

columns. Cleaned data was saved back in a 
suitable format for analysis. 
 
To address missing values, the script generated 
random values within specified ranges for EDA, 
pulse rate, and temperature, filling in missing 

data appropriately. Given the small dataset size, 
dropping rows was not a viable option as it would 
result in significant data loss and reduce the 
statistical power of the analysis. While 
regression-driven data imputation was 
considered, it was deemed less practical due to 
the limited data points and potential overfitting 

risks. Additionally, generating random values 
allowed for greater control over the imputation 
process, ensuring consistency and reliability in 
the data. This method ensured complete, properly 
formatted data covering the ideal time range for 
each participant. 
 

Finally, the script identified all ‘modified.csv’ files, 
checked for remaining missing values, and 

confirmed data readiness for analysis by iterating 
over each DataFrame and reporting missing 
values. This quality assurance measure ensured 
comprehensive data for subsequent analysis. 

 
6. DATA ANALYSIS AND RESULTS 

 
Stationarity Testing and Initial Results 
Our data analysis primarily focused on three 
variables: EDA, pulse rate, and temperature, 
using the modified CSV files. Initial exploration 

revealed minimal outliers. To ensure reliable time 
series analysis, we conducted the Augmented 
Dickey-Fuller (ADF) test to check for stationarity 
in our data. We found some non-stationary data, 

which required rectification. 
 
To address this, we implemented a script with a 

loop that, for each metric (EDA, pulse rate, 
temperature), performed the ADF test, checked if 
differencing was required, and applied the 
appropriate order of differencing. If a series 
remained non-stationary after first-order 
differencing, the script applied second-order 

differencing and rechecked for stationarity. This 
process continued until all series were stationary, 

4

5
2

3

Situational Awareness
Specific Maneuvers
Multitasking and Cognitive Load
Distance and Speed Management

Which aspect of driving is 
difficult for you? 

How would you rate your driving? 

83

1
2

Good Average Poor Excellent

Figure 8: Driver Skill Ratings 
Distribution. 

Figure 7: Driver Difficulty 
Category Responses. 
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ensuring our data was primed for accurate and 

meaningful analysis. First-order differencing 
reveals the rate of change between consecutive 
observations, making it easier to analyze 

seasonality and cyclical patterns. Second-order 
differencing is useful for addressing quadratic 
trends by removing the trend in the rate of 
change, highlighting any underlying seasonality 
or long-term cycles. 
 
In our case, many series were initially non-

stationary. EDA and pulse rate series became 
stationary after applying first-order differencing. 
Several temperature series required second-
order differencing to become stationary.  
 
After achieving stationarity, we analyzed how 

EDA, pulse rate, and temperature changed over 
time for all participants. 
 
RQ1: Were the participants less or more 
stressed as they played the VR Driving 
Game? 
Figures 9, 10, and 11 show a general trend (trend 

line shown in red) of reduced stress levels among 
participants playing the VR Driving Game. The 
methods used for the trendlines in Figures 9, 10, 
and 11 were LOESS (Locally Weighted Scatterplot 
Smoothing) for EDA with the frac parameter set 
to 0.20, Polynomial Regression for Pulse Rate 
with the degree set to 5, and Moving Average for 

Temperature with the window size being set to 
10. LOESS is a non-parametric method that can 

flexibly fit curves to data by performing multiple 
localized regressions. This is particularly useful 
when the data exhibits non-linear patterns that a 
simple linear model cannot capture. Furthermore, 

by fitting a polynomial of a specified degree to the 
data, Polynomial Regression can model non-linear 
relationships. This allows the trend line to bend 
and fit the data more accurately than a straight 
line, capturing the underlying patterns more 
effectively.  Given the non-linearity of the 
physiological responses, using regular linear 

regression modelling would have oversimplified 
these responses, leading to inaccurate trend 
readings. 
 

Regarding RQ1, our analysis revealed that 12 out 
of 14 participants experienced a decrease in EDA, 
indicating reduced stress or arousal and 

suggesting increased relaxation over time. 
Similarly, pulse rates decreased in 10 out of 14 
participants, further supporting the notion of 
relaxation. Additionally, 8 out of 14 participants 
showed a decrease in temperature, indicating 
physical cooling down as they played. 

 
Further analysis of gender-specific trends 

revealed some differences. Two out of six female 

participants experienced a temperature decrease, 
and only one had an increased pulse rate. In 
contrast, among male participants, only one 

showed an increase in EDA, while three had 
increased pulse rates, and six experienced a 
decrease in temperature. These variations 
suggest that gender may influence physiological 
responses to stress, but overall, stress reduction 
was observed across both male and female 
participants. 

 
Therefore, the answer RQ1 is that most 
participants, regardless of gender, experienced 
reduced stress, suggesting that the VR Driving 
Game had a generally calming effect over time. 
 

RQ2: Which physiological metric was the 
most significant for the participants, and 
which were the most consistently 
statistically significant overall? 
To answer RQ2, we calculated Cohen's D results 
for the three metrics (EDA, pulse rate, and 
temperature) for each participant, as shown in 

Table 1. Cohen's D measures effect size, 
interpreted as follows: 
 

• Small effect size: d ≈ 0.2 
• Medium effect size: d ≈ 0.5 
• Large effect size: d ≈ 0.8 

 

As such, we can generalize the following findings: 
 

• Pulse Rate vs. Temperature: Pulse rate 
generally shows a positive relationship 
with temperature across participants, 
meaning that higher temperatures tend 

to correlate with higher pulse rates. This 
aligns with the physiological response 
where increased body temperature can 
lead to higher heart rates as the body 
works to regulate its internal 
temperature. 
 

• Pulse rate generally shows higher values 
compared to temperature across 
participants, consistent with the expected 
physiological response where pulse rate 

increases in response to various stimuli or 
activities, whereas body temperature 
fluctuates within a narrower range under 

normal conditions. 
 

• EDA vs. Pulse Rate: Across most 
participants, EDA tends to show either 
lower or higher activity compared to pulse 
rate. This suggests that in some 

individuals, changes in electrodermal 
activity might correlate positively with 
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changes in pulse rate, indicating a 

potential physiological response pattern. 
 
Next, we assessed the statistical significance of 

our results to ensure practical meaning behind 
our findings, as shown in Table 2. Statistically 
significant results were found for the following 
participants in terms of EDA, Pulse Rate and 
Temperature: 
 

• EDA: Participants 1,2, 11, 12, 13 

• Pulse Rate: Participants 7, 9, 10, 11, 13, 
14  

• Temperature: Participants 1, 5, 7, 10, 2, 
11, 12, 13.  

 
Significant changes in EDA were observed for five 

participants, while significant changes in pulse 
rate were noted for six participants, suggesting 
substantial changes in heart rate potentially 
related to stress. Significant changes in 
temperature were observed for eight participants. 
 
To further validate our findings, we used 

bootstrapping for Cohen's D. Bootstrapping, a 
resampling technique, estimates statistics on a 
population by sampling a dataset with 
replacement. It is particularly useful when data 
normality is in doubt, or the sample size is small. 
In our case, the dataset is small, necessitating 
extra caution in interpreting findings. 

Bootstrapping can be particularly useful for the 
following reasons: 

 
• Confidence Intervals: Bootstrapping can 

be used to construct confidence intervals 
around the Cohen’s D statistic. This 

provides a range of plausible values for 
the population parameter and gives an 
indication of how precise the estimates 
are. 
 

• Small Sample Sizes: Cohen’s D is 
sensitive to the assumption of normality. 

When the sample size is small, this 
assumption may not hold, and the 
estimate of Cohen’s D may be biased. 
Bootstrapping does not rely on the 

assumption of normality and can provide 
a more accurate estimate in these cases. 

 

• Stability of the Estimate: By resampling 
the data multiple times and calculating 
Cohen’s D for each sample, we can get a 
sense of the variability or stability of our 
estimate. If the bootstrapped estimates 
of Cohen’s D vary widely, it suggests that 

the original estimate may not be reliable. 
 

Significance across all participants was 

determined by examining the confidence intervals 
(CI Low and CI High) of Cohen's D values for each 
metric. A metric is considered significant if its 

confidence interval does not include zero, 
indicating a reliable effect size. 
 
Based on this analysis, as shown in Table 3, 
temperature emerged as the most consistently 
significant metric, with significant results in nine 
participants. EDA was significant for six 

participants, and pulse rate for five participants. 
As such, we can conclude that for RQ2, 
temperature is likely the most reliable indicator of 
physiological changes, showing consistent 
significance across participants. 
 

RQ3: Were there any significant findings in 
terms of gender? 
The analysis next focused on potential gender-
based differences, as detailed in Table 4. We 
found that pulse rate increases were more 
pronounced in male participants compared to 
females. Female participants showed mixed 

results, with some displaying positive effect sizes 
and others negative. Overall, significant 
differences between male and female participants 
were observed. 
 
Notably, as shown in Tables 5 through 7, gender 
had a significant effect on both EDA (P>|z| = 

0.000) and temperature (P>|z| = 0.001). These  
results indicate meaningful physiological 

differences between males and females for these 
metrics. 
 
To further refine our understanding, we employed 

Quantile Regression in addition to traditional 
mixed models. Unlike standard models, which 
assume normally distributed residuals, quantile 
regression does not require this assumption. This 
makes it better suited to handling non-normal 
data and outliers, allowing for a more nuanced 
exploration of the relationships between gender 

and physiological metrics such as EDA, pulse rate, 
and temperature. By estimating the conditional 
median or other quantiles, quantile regression 
provided insights that traditional models might 

have missed, especially in skewed distributions. 
 
Specifically, we were interested in how the 

relationships between gender and outcomes 
(e.g., EDA, pulse rate, and temperature) varied 
across different parts of the distribution. While 
mixed models offered insight into the average 
effects of gender, quantile regression revealed 
how gender influenced different segments of the 

outcome distribution. This combined approach 
allowed us to capture both overall trends and the 
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specific ways gender affected physiological 

responses, offering a more comprehensive 
understanding of its impact on EDA, pulse rate, 
and temperature. 

 
The results of the quantile regression analysis 
showed that gender had a particularly significant 
effect on EDA for female participants, as 
demonstrated in Table 8. This suggests that the 
physiological response to the VR Driving Game, 
particularly in terms of EDA, differed notably by 

gender, with female participants exhibiting 
distinct patterns compared to their male 
counterparts. Thus, we can conclude that for 
RQ3, there were significant findings in terms of 
gender. 
 

RQ4: Did the VR Driving Game have a 
positive impact on the participants? 
After playing the game, participants completed a 
post-study questionnaire. This questionnaire 
included questions about which level they found 
most stressful and whether the guiding voice was 
helpful in calming them down and providing 

instructions. 
 
As shown in Figure 12, Scenario 1 was the most 
stressful for both male and female participants. 
Interestingly, Scenario 3 was the second most 
stressful among female participants, while none 
of the female participants found Scenario 2 to be 

stressful.  

 

 
 
When evaluating the effectiveness of the calming 
voice in terms of helpful hints, intervention, and 

overall appreciation, none of the participants 
found the voice annoying, and most found the 
voice's interventions effective and helpful. 

Additionally, none of the participants were 
dissatisfied with the game or the voice, finding it 
helpful and calm. 
 
Figure 13 represents the participants' responses 
regarding their satisfaction with the VR game. 

Interestingly, three male participants rated the 
effectiveness of the voice's interventions as 

neutral. Similar findings were observed when 

evaluating whether the voice was helpful and 
when asked about the instructions and guidance 
provided by the voice. Overall, we can conclude 

that for RQ4, the VR driving game had a positive 
impact on the participants. 

 
 
 
 
 

 
 
 
 
 

7. CONCLUSIONS 
 
This project provided a detailed examination of 

biometric data from participants engaged in a 
driving simulation. By utilizing various statistical 
methods, significant insights were gained 
regarding the differences in biometric responses 
based on gender and other factors.  
 
Our findings and analysis revealed that the effect 

of gender on biometric responses was significant. 
Our analysis revealed that female participants 

exhibited notable changes in EDA and 
temperature, suggesting a notable physiological 
response to the driving simulation (Kerautret et 
al., 2021). This aligns with broader research 

findings indicating that women often show 
stronger physiological responses to stress in 
driving scenarios compared to men (Mostowfi & 
Kim, 2022). 
 
Studies revealed that women often have faster, 
larger, and longer-lasting stress responses 

compared to men. For example, women have 
more receptors for stress-related 
neurotransmitters, and their stress responses, 
such as increased heart rate and electrodermal 

activity, can be more pronounced and prolonged 
(James et al., 2023; Wang et al., 2007). Studies 
also have observed that women often report 

higher levels of stress and anxiety in driving 
situations compared to men, leading to more 
significant physiological reactions such as 
increased heart rates and electrodermal activity 
(Arca, 2022; Antoun, 2017). 
 

In our case, temperature and EDA have shown to 
be more reliable metrics for measuring driving 

5

3

Satisfaction Ratings

Satisfied Neutral

Figure 13: VR Game Satisfaction 
ratings – Male (left) and Female 

(right) 

5
2

1

Most Stressful level

Scenario 1 Scenario 2 Scenario 3

Figure 12: Stressful Scenario 
Responses – Male (left) and 

Female (right) 
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stress compared to pulse rate. EDA directly 

measures sympathetic nervous system activity, 
providing real-time data on psychological or 
physiological arousal, while temperature changes 

reflect peripheral responses to stress. 
 
While our study's sample size was limited, the 
observed trends are consistent with broader 
research findings on gender differences in 
physiological responses to driving stress. 
 

8. FUTURE WORKS 
 
Even though our VR driving game was successful, 
we plan to expand it based on participants' 
valuable suggestions. Participants recommended 
incorporating additional scenarios to increase 

realism and stress responses, such as inclement 
weather conditions like driving in the rain or 
nighttime driving. One participant suggested that 
the policeman in the simulation should be more 
aggressive, while two others recommended 
adding distractions such as music or phone calls 
to further simulate real-world driving. Enhancing 

the environment by adding more people or livelier 
scenery was another suggestion, as well as 
incorporating more interactive features with the 
Meta Quest 2 controllers, such as honking the 
horn or using turn signals. 
 
In future iterations, we aim to add even more 

varied stress-inducing scenarios, such as 
receiving sudden instructions from a co-pilot, 

being cut off by another driver, engaging in a 
heated argument with passengers, or missing an 
exit due to a vehicle blocking the passing lane. 
These scenarios would provide opportunities to 

explore individual differences in responses to a 
wider range of stressful driving situations. For 
example, while some drivers might remain calm, 
others could experience heightened stress or road 
rage, giving us valuable insights into how 
personality traits influence stress responses. 
 

Another area for improvement involves 
standardizing the breaks between game sessions. 
Consistent break durations will help control for 
reductions in adrenaline levels and ensure 

comparability across scenarios. Future studies 
will implement uniform breaks to maintain 
consistency in the physiological data collected. 

 
We also recognize that the calming voice used in 
this study may have influenced participants' 
stress levels by reducing the emotional impact of 
stressful scenarios. Future studies could 
investigate how different voice tones—such as 

critical or chiding voices—affect participants' 
stress responses. Additionally, introducing 

scenarios where an accident is inevitable, without 

prior warning, could provide insight into how 
drivers react when failure is unavoidable. 
 

Regarding data collection, expanding beyond the 
current reliance on wearables could yield richer 
insights. In future studies, we plan to collect 
additional data, such as facial expressions, eye 
movements, or galvanic skin response, to better 
understand the full range of participants' stress 
responses during driving simulations. If funding 

allows, these enhancements will help provide a 
more comprehensive view of stress dynamics. 
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APPENDIX A – Figures  

 
 
 

 
 
 
 
 
 
 

 
 

 
Figure 1: Main Menu of the game. The three floating rocks represent the levels of the game. 
 

              

 

 
Figure 3: Grocery Level 

 

Figure 3a: Grocery Parking 

lot with Blue waypoint. 
Figure 3b: Child with ball 

(circled in red). 
Figure 3c: Backing into 
Pedestrian (circled in 

blue). 

Figure 9a: Participant 1(M) Figure 9b: Participant 2(M) Figure 9c: Participant 3(M) 

Figure 9e: Participant 5(F) Figure 9f: Participant 6(F) 

Figure 9i: Participant 9(M) 

Figure 9d: Participant 4(F) 

Figure 9h: Participant 8(F) Figure 9g: Participant 7(M) 
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Figure 9: Participant’s EDAs over time. 

 

 

Figure 10a: Participant 1 (M) Figure 10b: Participant 2 (M) Figure 10c: Participant 3 (M) 

Figure 10 d: Participant 4 (F) Figure 10e: Participant 5 (F) Figure 10f: Participant 6 (F) 

Figure 10g: Participant 7 (M) Figure 10h: Participant 8 (F) Figure 10i: Participant 9 (M) 

Figure 10j: Participant 10 (M) Figure 10l: Participant 12 (M) 

Figure 9j: Participant 10(M) Figure 9k: Participant 11(F) Figure 9l: Participant 12(M) 

Figure 9m: Participant 13(F) Figure 9n: Participant 14(M) 

Figure 10k: Participant 11 (F) 
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Figure 10: Participants’ Pulse Rates Over time. 
 

  

 

   

 

   
 

 

 

  

 

 

 
 
 
 

Figure 10m: Participant 13 (F) 

Figure 11a: Participant 1(M) Figure 11b: Participant 2 (M) Figure 11c: Participant 3 (M) 

Figure 11d: Participant 4 (F) Figure 11e: Participant 5 (F) Figure 11f: Participant 6 (F) 

Figure 11g: Participant 7 (M) Figure 11i: Participant 9 (M) 

Figure 11m: Participant 13 (F) 

Figure 10n: Participant 14 (M) 

Figure 11h: Participant 8 (F) 

Figure 11j: Participant 10 (M) Figure 11k: Participant 11 (F) Figure 11l: Participant 12 (M) 

Figure 11n: Participant 14 (M) 

Figure 11: Participants’ Temperatures Over time. 
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APPENDIX B – Tables 

 
Table 1. Participant Metrics with Cohen’s D 

Participant Metric Cohen’s D 

1 EDA -1.438387 

Pulse Rate 0.838545 

Temperature -0.587648 

2 EDA -0.344259 

Pulse Rate -0.233768 

Temperature -0.294475 

3 EDA 0.336248 

Pulse Rate 0.298969 

Temperature 0.181656 

4 EDA -0.039809 

Pulse Rate -0.227438 

Temperature -1.901704 

5 EDA 0.335254 

Pulse Rate 2.067079 

Temperature -2.005618 

6 EDA 0.033700 

Pulse Rate -0.170715 

Temperature -0.546009 

7 EDA 0.188297 

Pulse Rate 1.972688 

Temperature -0.214628 

8 EDA -0.079148 

Pulse Rate 0.791275 

Temperature -0.918734 

9 EDA -1.774026 

Pulse Rate 0.103837 

Temperature -1.393755 

10 EDA -0.796594 

Pulse Rate 0.610066 

Temperature -1.870847 

11 EDA -0.649005 

Pulse Rate -0.456534 

Temperature -2.319676 

12 EDA -2.398581 

Pulse Rate -1.229099 

Temperature 0.420771 

13 EDA 0.030003 

Pulse Rate 2.768771 

Temperature -0.314131 

14 EDA 0.030003 

Pulse Rate 2.768771 

Temperature -0.314131 
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Table 2: Statistical Analysis Results for Participants 

Participant Metric Statistic p-value Adjusted 
p-value 

1 EDA 16 9.68e-11 9.21e-10 

Pulse Rate 631 1.68e-02 3.28e-02 

Temperature 184 5.16e-05 1.34e-04 

2 EDA 74 1.41e-08 5.51e-08 

Pulse Rate 424 5.58e-01 6.16e-01 

Temperature 116 4.96e-07 1.61e-06 

3 EDA 494 3.04e-01 3.95e-01 

Pulse Rate 541.5 6.57e-01 6.92e-01 

Temperature 459 1.46e-01 2.27e-01 

4 EDA 555 1.96e-01 2.84e-01 

Pulse Rate 539 2.88-01 3.88e-01 

Temperature 516 4.66e-01 5.51e-01 

5 EDA 505 5.68e-01 6.16e-01 

Pulse Rate 386 2.56e-01 3.57e-01 

Temperature 18 1.18e-10 9.21e-10 

6 EDA 298.4 1.96e−01 3.95e−01 

Pulse Rate 504.5 1.28e−02 3.18e−02 

Temperature 258.7 5.16e−05 5.51e−06 

7 EDA 560 1.72e-01 2.59e-01 

Pulse Rate 908.5 1.57e-10 1.02e-09 

Temperature 24 2.08e-10 1.16e-09 

8 EDA 533 3.29e-01 4.15e-01 

Pulse Rate 416.5 4.87e-01 5.59e-01 

Temperature 290 1.18e-02 2.55e-02 

9 EDA 520 4.31e-01 5.26e-01 

Pulse Rate 862.5 9.92e-09 4.30e-08 

Temperature 316 3.21e-02 5.70e-02 

10 EDA 445.5 7.83e-01 7.83e-01 

Pulse Rate 642 1.05e-02 2.54e-02 

Temperature 171.5 2.35e-05 6.57e-05 

11 EDA 295 1.24e-02 2.55e-02 

Pulse Rate 626.5 2.01e-02 3.73e-02 

Temperature 0 2.01e-11 6.55e-10 

12 EDA 96.5 8.23e-08 2.91e-07 

Pulse Rate 329.5 5.13e-02 8.70e-02 

Temperature 30 3.59e-10 1.75e-09 

13 EDA 12 4.84e-11 6.55e-10 

Pulse Rate 172 2.30e-05 6.57e-05 

Temperature 641.5 1.10e-02 2.54e-02 

14 EDA 444.5 7.72e-01 7.83e-01 

Pulse Rate 920.5 5.04e-11 6.55e-10 

Temperature 356 1.17e-01 1.90e-01 
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Table 3: Cohen's D Effect Size with 95% Confidence Intervals for EDA, Pulse Rate, and 

Temperature Bootstrap results 
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Table 4: Cohen's D Results for Male and Female Participants 
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Table 5: Mixed Linear Model Results for Temperature 

Mixed Linear Model Regression Results: Temperature 

Model: MixedLM 
Dependent Variable: temperature_celsius 

No. Observations: 7228 
Method: REML 

No. Groups: 14 Scale: 84.7764 

Min. group size: 61 Log-Likelihood: -26306.7 

Max. group size: 6428 Converged: Yes 

Mean group size: 516.3  
Coef. Std. 

Err. 
z P>|z| [0.025 0.975] 

Intercept 31.798 0.374 85.049 0 31.065 32.531 

Gender[T.girl] 0.748 0.221 3.383 0.001 0.315 1.182 

Group Var 0.713 0.099 
    

 

Table 6: Mixed Linear Model Results for Pulse Rate 

Mixed Linear Model Regression Results: Pulse Rate 

Model: MixedLM 
Dependent Variable: pulse_rate_bpm 

No. Observations: 7228 

Method: REML 

No. Groups: 14 Scale: 472.8996 

Min. group size: 61 Log-Likelihood: -32529.4233 

Max. group size: 6428 Converged: Yes   

Mean group size: 516.3  
Coef. Std. 

Err. 
z P>|z| [0.025 0.975] 

Intercept 83.589 2.310 36.185 0.000 79.061 88.116 

Gender[T.girl] 0.646 0.539 1.198 0.231 -0.411 1.703 

Group Var 66.988 1.346 
    

 

Table 7: Mixed Linear Model Results for EDA 

Mixed Linear Model Regression Results: EDA 

Model: MixedLM 

Dependent Variable: eda_scl_usiemens 

No. Observations: 7228 
Method: REML 

No. Groups: 14 Scale: 11.2280   

Min. group size: 61 Log-Likelihood: -19024.4145 

Max. group size: 6428 Converged: Yes 

Mean group size: 516.3  
Coef. Std. 

Err. 
z P>|z| [0.025 0.975] 

Intercept 1.244 0.727 1.712 0.087 -0.180 2.668 

Gender[T.girl] 1.634 0.083 19.576 0.000 1.470 1.798 

Group Var 7.209 0.869 
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Table 8: Quantile Regression Results for EDA 

Results for eda_scl_usiemens (Quantile Regression) 

Dependent Variable: eda_scl_usiemens 

Model: QuantReg 

Method: Least Squares 

Date: Saturday, 13 July 2024 Psuedo R-Squared 0.005317 

Time: 05:11:55 Bandwidth: 0.7388  
Sparcity: 1.681 

 No. Observations: 800 

 Df Residuals:                       798 

 Df Model: 1  

 
Coef. Std. 

Err. 
t P>|t| [0.025 0.975] 

Intercept 0.4000 0.038 10.591 0.000 0.326 0.474 

Gender[T.girl] -0.2000 0.061 -3.270 0.001 -0.320 -0.080 

 

 


