
2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Teaching Case

Using Python to Inspire Novice Cybersecurity

Learners (K-12 and University Level)

Jennifer L. Breese

jzb545@psu.edu
The Pennsylvania State University

Brian Gardner
bkg113@psu.edu

The Pennsylvania State University

Abstract

This teaching case will assist in cybersecurity education from K-12 upward including University level

educational teaching efforts. There are both initial exercises for getting started and detailed directions
to complete analysis for log files. We make the case for Python as a great introductory language for
those with little or no programming experience, especially students from lower socio-economic
technology-barren environments. Further, we make the connection to Python as a language to develop
cybersecurity skills. This teaching case can bring a novice from a basic interest in cyber to a hands-on
application understanding in a matter of hours. Further, this case can be combined to create a camp or
course for hands-on cybersecurity instruction which is much needed to fill cyber industry workforce

gaps.

Keywords: Python for cyber, cybersecurity education, cybersecurity programming development, cyber
camps, cybersecurity curricula, cybersecurity skill development

1. WHY PYTHON

Python is considered to be one of the most
popular and in-demand programming languages
(Saabith et al., 2020). Python is a powerful,
elegant programming language that is easy to
both read and understand. It demonstrates most

features common to many other languages and is
useful for real-world applications. It is also free
(Python, 2021). One of the most pressing issues

is how to teach programming to beginners
without overwhelming novice programmers,
especially those from low socio-economic
technology deprived environments (Ezeamuzie,

2023). Python is a programming language with a
well-organized syntax and strong capabilities for
solving any problem (Raj & Paliwal, 2021). The
‘language’ is similar to basic math reasoning. Raj
and Paliwal (2021) reported that in most top
institutions, Python is selected as the main

programming language for freshmen. Python has

gained increasing popularity with cybersecurity
experts due to its adherence to clear and simple
syntax, availability of an extensive number of
libraries that enables its employment in different
applications and code readability (Odetokun et
al., 2020). For example, utilizing Python’s

Cryptography library can enhance the study of
the subject area by having students utilize the
high-level recipes and low-level interfaces to

common cryptographic algorithms such as
symmetric ciphers, message digests, and key
derivation functions (Bray, 2020).

2. USAGE and PURPOSE

This work considers the research findings by
Phuong et al. (2023), who introduce the Project-
Guided Learning (PGL) model, a wholistic
approach to teach cybersecurity concepts. Their

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

hypothesis was that the learning experience,

efficacy of the approach, and skills proficiency of
the student would improve through combining
student-centered active learning models. The

findings were that student-centered active
learning models like PGL have shown positive
outcomes in the learning experience and
engagement of cybersecurity students (Phuong et
al. (2023). Sherman et al., (2019) reported
findings on how project-based learning provided
inspiration for cybersecurity students. Their

research was based on a four-day camp and while
our exercises are a small slice we contend they
too can be added to a similar overall hands-on
learning experience.

Research conducted by Henttonen and Rathod

(2024) on the importance of programming in

cybersecurity based on a 15-week Python course
for targeted educational needs was also
considered. Similarly to our student population,
their students were comprised of diverse
backgrounds. The study found positive impacts
such as enhanced engagement implementing
cybersecurity specific content into a programming

course (Henttonen & Rathod, 2024). Eckroth
(2018) released a study about teaching a 5-day
25-hour cybersecurity and Python programming
camp for high school students including entering
college freshman. While their pre and post
surveys offered evidence of effectiveness they
also stated some student disappointment with

rushed curriculum as they covered so many
foundational topics and exercises. The
researcher's stated changes were made to
address student feedback. We too suggest
breaking down the module into chunks for better
learning if teaching in an abbreviated timeframe

rather than a 15-week long course.

3. TEACHING CASE DESCRIPTION

This teaching case can be used in cybersecurity
education from K-12 upward, including higher
university-level educational teaching efforts. The

first exercise introduces students to basic Python
language concepts and increases the student’s
comfort level and understanding of the language

overall through a structured programming
exercise. Part 2 of the first exercise walks
students through developing a basic number
guessing game that also includes a primer on

iterative development processes. Our exercise
has been used in multiple cyber camps hosted by
Penn State Schuylkill with K-12 students having
little to no prior programming experience. The
students follow a process adapted from the

software development life cycle (SDLC) to

achieve the activity objectives.

The second exercise incorporates programming

skills with cybersecurity education by providing
detailed instructions on uploading sample log files
and conducting a log file analysis. The second
exercise contains “canned” log analysis files and
additional learning materials developed for CYBER
262 Cyber-Defense Studio; a course required for
second-year students pursuing Penn State’s

undergraduate cybersecurity degree. This fifteen-
module course provides hands-on experience
with a variety of cyber defense tools. The Python
module is one of the many modules created to
develop hands-on cybersecurity skills directly
related to practical industry experience.

The combined activities in the two multi-part
exercises can provide a quick start for novice
programmers to understand both Python and its
application to cybersecurity. Again, we make the
case for Python as a great introductory language
for those with little or no experience with

programming. Furthermore, we make the
connection to Python as a language for
developing cybersecurity skills. These efforts can
bring a novice from a basic interest in cyber to a
hands-on application understanding within a few
instructional hours.

Number Guessing Game

A simple programming activity that can be used
to introduce Python to students with no prior
programming experience is to develop a number
guessing game. The game’s basic objective from

the player’s perspective is to correctly guess a
number within a specific range randomly
generated by the program. The scope of the
student activity can be tailored to fit the amount
of time the facilitator can spend with the
students. For example, walking through an
exercise to implement a basic game that

generates a random number, accepts multiple
user guesses, compares user guesses with the
random number, and outputs an appropriate
message describing the outcome of the game can

be accomplished within a two-hour session.
Incorporating additional game capabilities such
as multi-game/multi-player modes or covering

advanced programming techniques such as
exception handling and graphical user interfaces
can be integrated into additional sessions
depending on the format and schedule of the
student programming event. Eckroth (2018)
published a study of his findings from a five-day

cybersecurity and Python summer camp he

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

facilitated in 2017 which included a similar

activity.

The group programming activity yields the best

results when it is facilitated with a group of
students in person in a controlled lab environment
with a basic Python installation on each machine.
This activity has also been successfully
moderated remotely multiple times over Zoom,
although several risks must be taken into
consideration. These include the variability of the

equipment the students have available to support
the activity, the disparity in internet service plans
the students have access to (many students in
our service area do not have access to speeds
that align with the FCC definition of high-speed
broadband), and of course the limitations

imposed by the meeting software to easily pair
students to collaborate on the solution. Students
participating in remote programming events like
these should receive communication from the
event organizer prior to the start of the event that
outlines the minimum technical configuration
needed to support the activity to minimize any

potential issues that can adversely affect the
experience.

If a basic Python installation cannot be configured
on an available piece of hardware, numerous free
online Python programming environments can be
used to facilitate the exercise. Some of them

include online-python.com, programiz.com, and
replit.com. Of course, a dedicated internet

connection is required to access these platforms.

In addition to introducing the Python
programming elements that will be used to

develop the game solution, it is also worthwhile
to cover the elements of the Software
Development Life Cycle (SDLC), so they
understand that programming has a process
around it. Weaving in the elements of
requirements gathering, solution design, and
coding and testing the game capabilities is a good

way not only to introduce the Python
programming language but also exposes the
students to a widely used methodology for solving
business problems with programming solutions.

To ensure the activity is fun, engaging and
educational, we followed this agenda to achieve

the goal of getting a basic number guessing game
working in a short two-hour session:
1. Collect the program requirements
2. Introduce the Python programming tools
3. Develop the first iteration of the game code
4. Create successive iterations of the original

program
5. Capture/implement additional enhancements

1. Collect the program requirements

The student’s expectations about programming
should be set immediately by describing program
development as an iterative process. The first

step in the activity is to engage them in a short
brainstorming session where they offer ideas
about what capabilities should be in the program.
This is a great ‘ice breaker’ that affords the
students an opportunity to share ideas about
what capabilities the game should be able to
perform. The list of requirements should be

captured on a whiteboard or flipchart in a
classroom setting so that you can review them
later in the activity to see how closely your
solution matches them. Short excerpts of the
requirements can also be captured as comments
inside of the program that serves as program

documentation as you walk through the exercise.

2. Introduce the Python programming tools
Students are introduced to the Python Integrated
Development and Learning Environment (IDLE)
program editor and Python interactive shell
during this step. It is important to distinguish the

purpose of each interface by explaining that the
interactive shell can process Python statements
individually to verify language syntax as well as
display program output (including error/status
messages) whereas the IDLE editor will store the
entire program code that will be compiled and
executed during the activity. Every high-level

programming tutorial starts by showing the
learner how to display the text string ‘Hello

World!’ in the Python shell window using a simple
print statement – e.g., ‘print(“Hello World!”)’.

3. Develop first iteration of game code

The objective of this step is to build the first
iteration of the program by demonstrating basic
Python language elements needed to implement
simple functions such as generating the random
number to be guessed, accepting user inputs as
guesses, and adding conditional logic to compare
the guess against the random number chosen.

The facilitator will methodically work through
some of the requirements identified in step 1 and
explain the corresponding Python code to
implement it. Students will be asked to open the

Python IDLE window to capture all the program
code along with a demonstration on how to run
the program.

The first step is to generate the random number
that the player will guess. The program needs to
import a Python library containing the code to
implement the random number generation
capability. A simple ‘import random’ statement

appearing at the beginning of the code
accomplishes this. Next, the random number can

https://www.online-python.com/
https://www.programiz.com/python-programming/online-compiler/
https://replit.com/

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

be generated using the random.randint(x,y)

function, where ‘x’ is the lowest number in the
range and ‘y’ is the highest number in the range.
It is also important to explain to the students that

the random number has to be stored in a memory
location on their computer and assigned a user-
defined variable name that will be accessed later
in the program, e.g., random_number =
random.randint(1,10). To demonstrate that their
random number function works, the students are
asked to display the contents of the variable using

a simple print statement like the one they used
for the ‘Hello World!’ activity, e.g.
print(random_number). Notice that since we
want to print the number that is stored in the
random_number variable, there should not be
any quotes around the variable name. The

students will move this print statement to the end
of the program after the rest of the program code
is developed.

The next step demonstrates the Python input
statement that accepts their guess from a prompt
that is displayed in the Python shell. The input

statement itself is a relatively easy concept to
understand and includes the verbiage to be
displayed in the text prompt that directs the
player to input their guess. One concept that will
need explanation is that all inputs captured in the
Python shell are stored as character strings. Since
the guesses are entered with the numeric keys on

the keyboard, this may be a source of confusion
for the students. Since the format of the user

input and the random number both need to be
numeric, conversion of the input from a string
literal to an integer is handled simply by wrapping
the input statement inside of Python’s integer

(int) function and saving the number to a
variable, e.g., guess = int(input(“Please enter a
number between 1 and 10”)).

The final step to get this code snippet working is
to explain the concept of conditional logic and
how it can change the flow of the program

execution. Students should be introduced to the
‘if’ statement and how it can be coded to give the
player feedback on whether they guessed the
number correctly. The first pass at coding the if

statement should include a condition that simply
tests for inequality between the user’s guess and
the random number that was picked – e.g., ‘if

guess != random_number:”. An appropriate
message acknowledging the incorrect guess
should be displayed using a print statement right
after the if statement. An else block should also
be linked to the if statement that simply displays
the random number selected by the

random.randint function if the guess is incorrect.

A sample code snippet showing the code so far

can be found in Appendix A under the heading
‘Number Guessing Game Sample Code – Iteration
1’.

4. Create successive iterations of the

original program
When the students get the basic logic working this
far, they will quickly realize that the logic only
supports getting feedback on inputting one guess.
The last major step in building the next iteration

of the program is to add a loop that will execute
the guessing logic a specified number of times
without replicating the statements multiple times
inside of the program. Students should be
brought into the discussion again to decide how
many guesses the game should allow based on

the range of numbers the random.randint
function is set to choose from. A for loop can be
added to support validating multiple guesses
along with removing the display of the secret
number from the print statement in the else block
so that it is not revealed after each wrong guess.
For example, inserting the input statement and if-

else logic inside of a loop that starts with the
statement ‘for i in range(3):’ is a simple way to
execute this logic 3 times. It uses the variable ‘i’
as a counter that keeps track of how many times
the code inside of the loop has been executed
until the value of ‘i’ equals 3, i.e., the value in the
range() function.

One of the remaining issues with the program at

this point is that it will continue to ask for guesses
even if the player guesses correctly before their
last attempt. This can be resolved easily by
adding a sys.exit() statement immediately after

the message that shows the player has guessed
the number correctly is displayed. Secondly, the
print statement used in the first iteration to
display the random number should be added to
the end of the program. This final print statement
should start in column 1 and should not be
indented with the code inside of the loop so that

it only executes once if the player does not guess
the number within the allotted number of tries.

A sample code snippet showing the next iteration

of the code can be found in Appendix A under the
heading ‘Number Guessing Game Sample Code –
Iteration 2’.

5. Capture/implement additional

enhancements
The concepts students are exposed to in a two-
hour student activity like this are typically
covered in an introductory programming course

that could ideally span the first half of an
academic semester. Students should feel a sense

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

of accomplishment from getting this small

program working. You can continue to encourage
discussion around additional requirements for the
program and implement them as time permits.

One enhancement that does not require much
modification from the concepts covered so far is
to change the conditional logic to provide
feedback on whether the player’s guess was
higher or lower than the random number. The
single if statement that tests for the incorrect
guess can be expanded to include two distinct

checks for the guess being greater than or less
than the random number along with a relevant
message that is displayed in the Python
interactive shell. Students can also lend their
creativity to the output messages that appear as
well to make the game more engaging for them.

Also, the level of difficulty of the game can be
changed by either adjusting the number of
guesses the player gets and/or increasing the
range of numbers the random number is selected
from.

A final copy of a complete Python program that

incorporates the concepts discussed in this paper
including the advanced validation logic can be
found in Appendix A under the heading ‘Number
Guessing Game Sample Code – Iteration 3’.

Analyzing Log Files Using Python

This lab requires the student to create a Python
script to analyze the two log files provided. To

start this lab, students must have the Python shell
installed on their native machines. There are four
tasks to be completed in the log analysis:
1. Analyzing “read” events

2. Analyzing “read from keyboard” events
3. Analyzing “read from file” events
4. Challenge section for additional learning and

bonus points.

Students are required to put the following items
in a compressed ZIP archive file and submit to the

Learning Management System (LMS):
• Python program(s)
• Outputs or results (in a txt file)

Students are directed to include first and last
names in the file name of the ZIP archive.
Further, the output from the program can be

saved as a txt file after it has been run. Students
can use the File tab at the top of the Python
interactive shell window to direct the txt file to the
desired save location.

Remarks:

1. Students should write a single Python

program to print to console all the
outputs; alternatively, they may write a
separate Python program for each

individual task.

1. Task 1: Analyzing the “read” events

A. Verify Python Installation

After you have successfully installed Python on
your machine, create a Python script using IDLE.
You can test if your script is working properly by

testing a dummy code:

print(“Hello World!”)

Then, download the log files from Canvas and

make sure that you place them in the same
directory as your Python script. This will make
your job easier as you would not have to specify
the full path of your log files while reading them
in your code.

B. Open log files and assign a variable.

Now open the files and read their contents to a
variable like in the snippet given below.

Figure 1.1 – Opening and Reading log files

The “open” function has two parameters – File
Location and Open mode. Here we have given the
filename as the location as it is in the same
directory as our script, and the open mode “r” is
used to state that we are opening the file in read

only mode.

Then we store the content of each file in 2
variables using the “readlines” function.

C. Parsing the Files

Now we will parse through the file line by line and
find the “read” events.

First we will have to look into the files and find a
unique expression that occurs only in the read

statements. In this case the unique expression
will be “read(”.

The code snippet below shows how to parse
through the content line by line and search for
this expression.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

The code above finds the “read” events in the
LogA file and prints them.

1.1 (Question) – What is the total number of
“read” events in both of the Logs? Hint: You can

do this by incrementing a counter in the for loop.

2. Task 2: Analyzing the “read from
keyboard” events

A. Parsing for “read from keyboard” events

Now, you are supposed to find the “read from
keyboard” events. We can find these events by
looking for “tty” expression in all the “read”

events. You can approach this in multiple possible
ways. The code snippet below is an example
which will help you find the “read from keyboard”
events in the LogA file.

Figure 2.1 – Example of read event showing
“tty” expression

2.1 (Question) – What is the total number of
“read from keyboard” events in both of the
Logs? Hint: You can do this by incrementing a
counter in the for loop.

3. Task 3: Analyzing the “read from file”
events

A. Parsing for “read from file” events

In this task we will understand how to select

something if we cannot put it into an exact
expression.

There are only 3 possible input sources for a
“read” event – keyboard, files or pipe. It is
difficult to make an expression to search for
filenames. But we can easily find the “read from

keyboard” and “read from pipe” events. Then, the
remaining events will be “read from file”.

The code snippet below is an example which will
help you do the same for LogA file.

Figure 3.1 – Finding “read from file” events
for LogA file.

3.1 (Question) – What is the total number of
“read from file” events in both of the Logs? Hint:
You can do this by incrementing a counter in the
for loop.

4. Task 4 Challenge

If you were able to complete all the above
sections, this challenge will just elaborate on that
and help you understand how to present your

findings.

A. Finding file Locations

In this particular task you are supposed to find

the locations of the files that are present in the
“read from file” events.

Every file location is stored between ‘< >’ these
braces. This makes it easier for us to look for the
file locations in a particular line. The code snippet
below is an example on how to do this.

Figure 4.1 – Parsing for filenames

4.1 (Question) - Challenge Task 1 find the
locations of the files that are present in the “read
from file” events.

BONUS - Counting Iterations
After you have found the file names (with full
locations included with them), you will see that
there are repetitions.

So, in this task you are required to keep track of
the number of occurrences of every file and
present them in form of a table.

You can do this by creating 2 separate lists –
filenames[] and filename_count[]. The
filenames[i] will have filename_count[i]

occurrences.

A simple algorithm that you can use to accomplish
this task is given below:
For every line

• find the filename

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

• check if it already exists in the

filenames[] lists
o if it does, just increment the

filename_count[] at that index by 1

o if it doesn’t, add that filename to
filenames[] and set the
filename_count[] at that index to be
1

You will have to use functions like:

• append() – to append to the lists you

have created
• index() – to search for a filename in

filenames[] list and get its index which
you can use to increment the relevant
counter in the filename_count[] list.

Save the output of your algorithm as a txt

file for your lab archive submission.
Your output should be similar to the one

below.

BONUS (Question) - In this BONUS Task you are
required to keep track of the number of
occurrences of every file and present them in
form of a table. The format of your output should

be similar to the above example.

4. ADDITONAL APPLICATIONS/FUTURE
RESEARCH

As we mentioned these exercises can and should
be combined with additional facilitator-led hands-
on projects to create a cohesive learning

environment on Python specifically and
cybersecurity overall. We intend to use these
exercises to publish student perception indicating
their learning experiences and actual outcomes in

future work. Further, the differences in mode of

instruction, particularly online synchronous
versus face-to-face, will be explored.

5. CONCLUSIONS

These exercises were completed in a cyber camp
environment and in-class for 100- and 200-level
learning. These exercises both prepare novice
learners and those moving into concepts in cyber

education. We are excited by this material and
the broad usage. Further, while these exercises
can be used to provide foundational material in a
K-12 camp, they can also be used in a 100-level
General Education course to draw interest in the
major and continue to meet higher level program

requirements in 200-level courses and beyond.
Further, these exercises will be uploaded to
CLARK, the Cybersecurity Labs and Resource
Knowledgebase, which is the largest platform that
provides free cybersecurity curriculum. This site
states, “It is home to high-value, high-impact
cyber curriculum created by top educators and

reviewed for relevance and quality.”

6. ACKNOWLEDGEMENTS

Some of the teaching case instructions, exercises,
and files included in this work were developed by

David Hozza and J. Andrew Landmesser from
Penn State University.

7. REFERENCES

Bray, S. W. (2020). CHAPTER 1 Introduction to

Cryptography and Python in
Implementing Cryptography Using
Python, John Wiley & Sons (p. 8)
https://doi.org/10.1002/978111961221
6.ch1

Eckroth, J. (2018). Teaching cybersecurity and

python programming in a 5-day summer
camp. Journal of Computing Sciences in
Colleges, 33(6), 29-39.

Ezeamuzie, N. O. (2023). Project-first approach
to programming in K–12: Tracking the
development of novice programmers in

technology-deprived environments.
Education and Information Technologies,
28(1), 407-437.
https://doi.org/10.1007/s10639-022-
11180-8

Henttonen, K., & Rathod, P. (2024, May).
Importance of Programming in

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

Cybersecurity: Preliminary Findings from

a Pilot Study Tailoring a Python Course for
Targeted Educational Needs. In 2024
IEEE Global Engineering Education

Conference (EDUCON) (pp. 1-6). IEEE.
https://doi.org/10.1109/EDUCON60312.
2024.10578580

Odetokun, I., & Clarksville, T. N. (2020). AN

ASSESSMENT OF THE EFFECTIVENESS
OF PYTHON IN CYBERSECURITY.

Phuong, C., Saied, N., & Yang, L. (2023,

October). A Hands-on Education
Framework for Cybersecurity. In 2023
IEEE Frontiers in Education Conference
(FIE) (pp. 1-5). IEEE.

https://doi.org/10.1109/FIE58773.2023.
10343268

Python, W. (2021). Python. Python releases for

windows, 24.

Raj, S., & Paliwal, M. (2021). Why Python is Most
Famous. International Journal of
Innovative Research in Computer Science

& Technology, 9(6), 234-238.
https://doi.org/10.55524/ijircst.2021.9.
6.52

Saabith, A. S., Vinothraj, T., & Fareez, M. (2020).

Popular python libraries and their
application domains. International

Journal of Advance Engineering and
Research Development, 7(11).

Sherman, A. T., Peterson, P. A., Golaszewski, E.,

LaFemina, E., Goldschen, E., Khan, M., &
Suess, J. (2019). Project-based learning

inspires cybersecurity students: A
scholarship-for-service research study.
IEEE Security & Privacy, 17(3), 82-88.
https://doi.org/10.1109/MSEC.2019.290
0595

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

Appendix A – Number Guessing Game Sample Code

Number Guessing Game Sample Code – Iteration 1
The following is an example of how the code looks after implementing the first round of Python features
described in step 3.

#import random library to support random number generation
import random

#generate a random number
random_number = random.randint(1,10)
print(random_number)

#prompt the user to input their guess
guess = int(input("Please enter a number between 1 and 10"))

#compare user’s guess against random number
if guess != random_number:
 print(“Sorry, your guess is incorrect. The number is”, random_number)
else:
 print("Congratulations! You won!")

Number Guessing Game Sample Code – Iteration 2
The following is an example of how the code looks after implementing the second round of Python
features that support multiple guesses as described in step 4.

#import random library to support random number generation
import random

#import sys library to support program exit function
import sys

#generate a random number
random_number = random.randint(1,10)

#logic to compare user guesses against random number
for i in range(3):
 #prompt the user to input their guess
 guess = int(input("Please enter a number between 1 and 10"))
 if guess != random_number:
 print(“Sorry, your guess is incorrect")
 else:
 print("Congratulations! You won!")
 sys.exit()

#Display the random number if it is not guessed within the allotted number of turns
print("The number is", random_number)

Number Guessing Game Sample Code – Iteration 3
The following is an example of code that includes the enhanced decision logic that provides more

informative prompts to the player about their guess relative to the random number.

#import random library to support random number generation
import random

#import sys library to support program exit function
import sys

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

#generate a random number
random_number = random.randint(1,10)

#logic to compare user guesses against random number
for i in range(3):
 #prompt the user to input their guess
 guess = int(input("Please enter a number between 1 and 10"))
 if guess < random_number:
 print("Your guess is too low!")
 elif guess > random_number:
 print("Your guess is too high!")
 else:
 print("Congratulations! You won!")
 sys.exit()

#Display the random number if it is not guessed within the allotted number of turns
print("The number is", random_number)

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

Appendix B – Cyber 262 Lab: Analyzing Log Files using Python

Tasks

1. Analyzing “read” events
2. Analyzing “read from keyboard” events
3. Analyzing “read from file” events
4. Challenge

Introduction

This lab requires you to create a Python script to analyze the 2 given Log Files. We are using Python for

this lab because it is a relatively easy language that can handle large amounts of data. To start with this

lab, you must have Python shell installed in your native machines. You can follow the guidelines provided

in the class and on Canvas to install the basic Python interactive shell.

Deliverables for Lab

What to submit:

• Your Python program(s)

• The outputs or results (in a txt file)

Please put all these items in a folder and compress the folder into a single ZIP archive file. Include

your first and last names in the file name of the ZIP archive. Your output from the program can be

saved as a txt file after you run it, refer to the File tab at the top of Python.

Remarks:

• You are encouraged to write a single Python program to print to console all the outputs;

alternatively, you may write a separate Python program for each individual task.

Learning Objectives

The Learning Objectives for this Lab are outlined in the Canvas Lab Assignment page.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 12
https://iscap.us/proceedings/

Task 1: Analyzing the “read” events

A. Verify Python Installation

After you have successfully installed Python on your machine, create a Python script using IDLE. You can

test if your script is working properly by testing a dummy code:

• print(“Hello World!”)

Then, download the Log files from Canvas and make sure that you place them in the same directory as

your Python script. This will make your job easier as you would not have to specify the full path of your

Log files while reading them in your code.

B. Open log files and assign a variable.

Now open the files and read their contents to a variable like in the snippet given below.

Figure 1.1 – Opening and Reading log files

The “open” function has two parameters – File Location and Open mode. Here we have given the

filename as the location as it is in the same directory as our script, and the open mode “r” is used to

state that we are opening the file in read only mode.

Then we store the content of each file in 2 variables using the “readlines” function.

C. Parsing the Files

Now we will parse through the file line by line and find the “read” events.

First, we will have to look into the files and find a unique expression that occurs only in the read

statements. In this case the unique expression will be “ read(“.

The code snippet below shows how to parse through the content line by line and search for this

expression.

The code above finds the “read” events in the LogA file and prints them.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 13
https://iscap.us/proceedings/

1.1 (Question) – What is the total number of “read” events in both of the Logs? Hint: You can do this by
incrementing a counter in the for loop.

Task 2: Analyzing the “read from keyboard” events

A. Parsing for “read from keyboard” events

Now, you are supposed to find the “read from keyboard” events. We can find these events by looking

for “tty” expression in all the “read” events. You can approach this in multiple possible ways. The code

snippet below is an example which will help you find the “read from keyboard” events in the LogA file.

Figure 2.1 – Example of read event showing “tty” expression

2.1 (Question) – What is the total number of “read from keyboard” events in both of the Logs? Hint:
You can do this by incrementing a counter in the for loop.

Task 3: Analyzing the “read from file” events

A. Parsing for “read from file” events

In this task we will understand how to select something if we cannot put it into an exact expression.

There are only 3 possible input sources for a “read” event – keyboard, files or pipe. It is difficult to make

an expression to search for filenames. But we can easily find the “read from keyboard” and “read from

pipe” events. Then, the remaining events will be “read from file”.

The code snippet below is an example which will help you do the same for LogA file.

Figure 3.1 – Finding “read from file” events for LogA file.

3.1 (Question) – What is the total number of “read from file” events in both of the Logs? Hint: You can
do this by incrementing a counter in the for loop.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 14
https://iscap.us/proceedings/

Task 4: Challenge
If you were able to complete all the above sections, this challenge will just elaborate on that and help

you understand how to present your findings.

A. Finding file Locations

In this particular Task you are supposed to find the locations of the files that are present in the “read

from file” events.

Every file location is stored between ‘< >’ these braces. This makes it easier for us to look for the file

locations in a particular line. The code snippet below is an example on how to do this.

Figure 4.1 – Parsing for filenames

4.1 (Question) - Challenge Task 1 find the locations of the files that are present in the “read from file”
events.

BONUS - Counting Iterations

After you have found the file names (with full locations included with them), you will see that there are

repetitions.

So, in this Task you are required to keep track of the number of occurrences of every file and present

them in form of a table.

You can do this by creating 2 separate lists – filenames[] and filename_count[]. The filenames[i] will

have filename_count[i] occurrences.

A simple algorithm that you can use to accomplish this task is given below:

For every line

• find the filename

• check if it already exists in the filenames[] lists
o if it does, just increment the filename_count[] at that index by 1
o if it doesn’t, add that filename to filenames[] and set the filename_count[] at

that index to be 1

You will have to use functions like:

o append() – to append to the lists you have created

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 15
https://iscap.us/proceedings/

o index() – to search for a filename in filenames[] list and get its index which you can use to
increment the relevant counter in the filename_count[] list.

Save the output of your algorithm as a txt file for your lab archive submission.

Your output should be similar to the one below.

BONUS (Question) - In this BONUS Task you are required to keep track of the number of
occurrences of every file and present them in form of a table. The format of your output should
be similar to the above example.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 16
https://iscap.us/proceedings/

Appendix C – Log Analysis Lab Setup Guide (Windows)

The following guide describes the preliminary steps needed to setup a workstation to process a basic
set of log files using a Python script running on a Windows computer. This activity is used as the lead-
in for a detailed lab analysis exercise completed in CYBER 262 Cyber-Defense Studio, a course normally
taken by Penn State’s second-year cybersecurity degree pre-majors. Students will require access to a
working Python configuration either through a local installation on their personal machine, a lab machine
setup by faculty or your local IT department or running inside of a virtual machine. These steps should

be completed to verify you have a working Python environment before you proceed with the rest of the
log analysis steps. This exercise supplies the log files via our Canvas learning management system,
however, you may place a shared copy of the files in any secure location that is convenient for the
students to access.

Downloading the files

1. Create a folder on your hard disk where your script and your trace files will reside.

2. Go to the Lesson 10 module on the Modules page, then click on the Log-A.strace link.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 17
https://iscap.us/proceedings/

3. Right-click on the file name, then left-click on ‘Save link as…’.

4. Navigate to the same folder you created in step 1, then click ‘Save’.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 18
https://iscap.us/proceedings/

5. Return to the Module 10 section of the Modules page in Canvas and repeat this process for the

second file. When you have downloaded both files, verify they exist by navigating to the folder
where they were saved in File Explorer (Windows).

Python programming setup

1. Open IDLE.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 19
https://iscap.us/proceedings/

2. When the IDLE Shell appears, click ‘File → New File’ to open the IDLE editor

3. For this basic test, enter print (“Hello world!”) as the only line of code in your script.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 20
https://iscap.us/proceedings/

4. Click ‘Run → Run module…’.

5. Click ‘OK’ to proceed.

6. Navigate to the same folder where your trace files are located, enter the file name of your script in
the ‘File Name’ field, then click ‘Save’.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 21
https://iscap.us/proceedings/

7. If the string ‘Hello world!’ appears in the IDLE Shell, then your script is starting to take shape. Also

note that the file path in the IDLE shell just above the output should reflect the file name and the
path where your script and trace files are stored.

8. Switch back to the IDLE editor and enter the first part of the code in the assignment that should
look for ‘read’ events in LogA by parsing each record for the string ‘ read(‘. Your code should look
like the following screenshot.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 22
https://iscap.us/proceedings/

9. Click ‘Run → Run Module’ to run the script.

10. Click ‘OK’ to proceed.

2024 Proceedings of the ISCAP Conference ISSN: 2473-4901
Baltimore, MD v10 n6214

©2024 ISCAP (Information Systems and Computing Academic Professionals) Page 23
https://iscap.us/proceedings/

11. Your program should find the LogA trace file in the same folder where your script is running and

produce the following output in the IDLE Shell.

At this point, you can proceed with the remainder of the lab knowing that your Python program can

access the data sources provided in the assignment.

