
2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6304 

 

 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 1 
https://iscap.us/proceedings/ 

 

Enhancing Cyber Defense: A Federated Multi-Modal 
Deep Learning Framework for Privacy-Preserving 

Zero-Day Attack Detection 

 
 

Samuel Sambasivam 
samuel.sambasivam@woodbury.edu 

Computer Science Data Analytics Department 
Woodbury University 

Burbank, CA, United States 
 
 

Abstract 
 

The rapid rise in cyber threats demands smarter security solutions. Traditional Intrusion Detection 
Systems (IDS), based on static rules, often fail against sophisticated and polymorphic attacks, achieving 
only 85–90% accuracy. This study explores AI-driven IDS integrating Machine Learning (ML) and Deep 
Learning (DL), which outperform traditional methods. Using the Network Security Laboratory-Knowledge 
Discovery in Databases (NSL-KDD) dataset (148,517 connections, 41 features), we compare three ML 
models—Random Forest, Support Vector Machines, and Decision Trees—and three DL models: 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Feedforward Neural 
Networks (FNN). Our optimized CNN achieves 98.4% accuracy and 96.7% F1-score, surpassing ML by 
5.2% with a 0.3% false positive rate. Random Forest reaches 96.7%, while LSTM detects zero-day 
attacks with 94.3% accuracy versus 78.5% for traditional IDS. We implement Federated Learning (FL) 

across five nodes to address data privacy, maintaining accuracy within 1.2% of centralized training. 
Real-world CNN deployment on 10Gbps traffic cut false positives by 76%, maintained sub-100ms 

latency, and scaled linearly. These results demonstrate the promise of AI-based IDS to enhance 
detection, reduce false alarms, and protect data privacy. The paper offers deployment strategies and 
benchmarks for scalable, real-time IDS in enterprise environments. 
 
Keywords: Network Intrusion Detection Systems (NIDS), Zero-day Attack Detection, Deep Learning 
(DL), Cybersecurity, Federated Learning (FL), Real-time Threat Detection, Performance Optimization. 
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1. INTRODUCTION 
 

The growing sophistication and frequency of 
cyberattacks present serious organizational 
challenges. Global cybercrime damages are 
projected to exceed $10.5 trillion annually by 

2025 (Morgan, 2023). Traditional Intrusion 
Detection Systems (IDS) based on rule- or 
signature-matching are increasingly ineffective 

against polymorphic and zero-day attacks 
(Bhuyan et al., 2014; Liu & Lang, 2023), 
underscoring the need for adaptive, intelligent 
detection methods. 
 
Research Context and Motivation 

Artificial Intelligence (AI) transforms 
cybersecurity by enabling more effective threat 
detection. Traditional machine learning (ML) 
methods like Random Forest and Support Vector 
Machines detect anomalies from historical data 
(Kumar & Chen, 2023) but rely heavily on manual 
feature engineering and struggle with modern 

network traffic complexity. Deep Learning (DL) 
offers scalable solutions through automated 
feature extraction and hierarchical pattern 
learning (LeCun et al., 2015), improving 
detection rates while reducing false positives. 
 
Zero-day attacks exploit unknown vulnerabilities, 

challenging conventional ML systems trained on 
historical labels. We integrate CNN and LSTM 
models that learn generalized feature 
representations for identifying unseen threats. 
These DL techniques improve anomaly detection 
by recognizing traffic deviations like abnormal 

protocol use or entropy shifts. Hybrid CNN-LSTM 
architecture combines spatial and temporal 

analysis for detecting subtle zero-day threat 
signs. Validation will extend to dynamic datasets 
like CIC-IDS2017 for further generalization. 
 
Research Objectives 

This study addresses major IDS limitations 
through three objectives: 

1. Compare traditional ML and DL 
architectures for real-time threat 
detection, examining accuracy, latency, 
and scalability. 

2. Develop privacy-preserving IDS using 
federated learning for decentralized 

training without exposing raw data. 
3. Optimize model efficiency for deployment 

in resource-constrained environments 
like edge devices. 

These objectives advance practical AI-driven IDS 
deployment. 
 

Technical Innovation 
We propose a hybrid CNN-LSTM model capturing 
spatial and temporal network traffic aspects, 
improving complex attack detection. Our 
federated learning framework preserves privacy 
while maintaining 98.4% detection accuracy with 

local data. An adaptive feature selection 
mechanism reduces computational overhead by 
47%, enabling real-time deployment in 
constrained environments. 
 
Methodology and Dataset 
Models are evaluated using NSL-KDD dataset, a 

refined benchmark addressing KDD'99 
redundancy and imbalance issues (Tavallaee et 
al., 2009). It includes diverse traffic categories 
and 41 features for robust evaluation. 
 
Research Contributions 
This study advances intrusion detection research 

through key contributions. First, comparative 
analysis of machine learning and deep learning 
approaches, including hybrid CNN–LSTM 
architectures. Second, privacy-preserving 
federated learning framework evaluated against 
centralized baselines. Third, multi-metric 

evaluation encompasses accuracy, latency, 
resource consumption, and interpretability. 

Additionally, practical implementation guidelines 
support real-world AI-driven IDS deployment. 
These contributions address critical gaps in model 
generalizability, privacy-preserving deployment, 
and operational feasibility (Table 1, Appendix A). 

Future work will extend validation using CIC-
IDS2017 dataset. 
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2. LITERATURE REVIEW 

 
The growing complexity of cyber threats has 
accelerated Intrusion Detection Systems (IDS) 

advancements. This section outlines IDS 
evolution, contrasts detection techniques, and 
highlights the need for advanced AI-driven 
solutions. 
 
Evolution of IDS: From Traditional to AI-
Driven Approaches 

IDS have evolved through three major 
generations (Figure 1 - Appendix B). 
 
Traditional Approaches  
Early IDS like Snort and Bro were signature-
based (Roesch, 1999). While accurate for known 

threats, they had high false-positive rates, 
struggled with zero-day attacks, and required 
constant signature updates. 
 
Statistical Methods  
The next generation used statistical anomaly 
detection to identify deviations from normal 

behavior (Lunt, 1993). Though more adaptive, 
these systems lacked robustness and generated 
false alarms. 
 
Modern AI-Driven Approaches  
Current IDS leverage AI technologies, especially 
ML and DL architectures (Kumar & Chen, 2023), 

enabling automated feature extraction, real-time 
adaptation, and detection accuracy above 95%. 

 
Basic signature-based models relied on 
predefined patterns but were vulnerable to zero-
day exploits and attack variations. This led to 

anomaly-based IDS detecting deviations from 
normal network behavior (Lunt, 1993), offering 
flexibility but generating high false positives due 
to dynamic legitimate traffic. 
 
AI introduced a major IDS shift (Figure 2 - 
Appendix B). ML models like SVM and Random 

Forest improved pattern recognition and anomaly 
detection accuracy (Kim et al., 2005). Later, DL 
methods like CNNs and RNNs enhanced 
capabilities by managing complex, high-

dimensional data (Yin et al., 2017). 
 
Comparative Analysis of Existing IDS 

Techniques 
Various techniques address IDS requirements: 
signature-based methods are fast and accurate 
for known attacks but lack adaptability, while 
anomaly-based IDS offer flexibility but suffer 
from high false positives. AI-driven models 

combine these strengths, with ML techniques like 
Decision Trees and Gradient Boosting excelling in 

feature extraction and classification (Amor et al., 

2004). DL models such as LSTM networks capture 
temporal dependencies for more effective 
complex threat detection (Shone et al., 2018), 

though they face computational cost and 
interpretability challenges. Table 2 - Appendix A 
and Figure 3 - Appendix B summarizes key 
features and performance from recent studies. 
 
Machine Learning Approaches  
Recent ML-based IDS implementations show 

notable improvements: Random Forests reaching 
94.2% accuracy, SVMs achieving 93.8% 
detection rate (Johnson & Wang, 2023), and 
Gradient Boosting attaining 95.1% precision (Rai 
et al., 2024). 
 

Deep Learning Architectures  
DL models set new performance benchmarks 
(Figure 4 - Appendix B): CNN-based models 
achieving 97.8% accuracy, LSTM networks 
96.5% detection rate, and hybrid architectures—
like ours—reaching 98.4% accuracy. 
 

Limitations and Need for Advanced AI-
Driven Systems 
Despite progress, IDS faces key challenges: 
scalability issues with growing traffic complexity; 
high false positives from anomaly-based systems 
hindering efficiency; limited adaptability requiring 
frequent updates; and privacy risks from 

centralized processing. Advanced AI-driven 
approaches address these through Federated 

Learning for decentralized training protecting 
data privacy (McMahan et al., 2017). Hybrid ML-
DL models enhance detection accuracy and 
resilience. AI-driven IDS offer robust, adaptable, 

scalable cybersecurity addressing evolving 
threats (Figure 5 - Appendix B). 
 
Privacy-Preserving  
IDS Recent privacy-preserving advances address 
data sensitivity through federated learning (Yang 
et al., 2019), differential privacy integration, and 

encrypted inference methods. 
 
Real-time Detection Capabilities  
Recent frameworks enable real-time detection 

with sub-second latency, essential for production 
systems (Figure 6 - Appendix B). 
 

Scalability Challenges  
Scaling efforts include distributed processing, 
stream-based architecture, and optimized 
models. Lightweight DL variants improve edge 
deployment feasibility. 
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Thematic Literature Review and Gaps 

Prior research spans four key areas: scalability, 
zero-day detection, privacy preservation, and 
real-time performance. 

• Scalability: ML models perform well on 
benchmarks like NSL-KDD but falter 
under real-time demands. DL models 
scale better but are computationally 

heavy. 

• Zero-Day Detection: Autoencoders and 
CNN-LSTM hybrids improve zero-day 
detection (Liu & Lang, 2023), though 

most use static datasets. Our hybrid deep 
models plan validation extension to CIC-
IDS2017 for richer attack profiles. 

• Privacy Preservation: FL studies lack 
centralized baseline comparisons and 

overlook client diversity and 
communication overhead (Kim et al., 
2005). 

• Identified Gaps: Research focuses on 
isolated aspects or lacks multi-
dimensional evaluation. Few combine 
hybrid deep learning with privacy-aware 
training, and most rely solely on NSL-
KDD, missing encrypted or modern traffic 
patterns. Our contributions include 

implementing and comparing ML and DL 
models including CNN-LSTM hybrids; 
evaluating accuracy alongside 
operational metrics (latency, 
interpretability, resource use); 

quantifying federated versus centralized 
learning trade-offs; and generalizing 

findings using CIC-IDS2017 for 
contemporary traffic coverage. 

 
 

3. DATASET AND PREPROCESSING 
 

Description of the NSL-KDD Dataset and Its 
Relevance 
The NSL-KDD dataset is a widely used IDS 
evaluation benchmark, addressing KDD'99 issues 
like redundant records and imbalanced data. It 
includes five traffic categories: Normal, DoS 
(Denial of Service), R2L (Remote to Local 

unauthorized access), U2R (User to Root privilege 

escalation), and Probe attacks. The dataset splits 
into training and testing sets with distinct attack 
patterns simulating real-world encounters with 
unseen threats. 
 
Each record contains 41 features in four groups: 

basic features from TCP/IP connection 
parameters (9), content features based on 
domain knowledge (13), time-based traffic 
features over 2-second windows (9), and host-

based traffic features reflecting statistical 

patterns (10) (Shone et al., 2018). These 
comprehensive features make NSL-KDD ideal for 
assessing machine and deep learning IDS models 

(Tavallaee et al., 2009). 
 
Feature Selection and Preprocessing 
Methodology 
 
Data Cleaning and Standardization  
Our preprocessing pipeline includes advanced 

optimization steps: 

• Missing Value Analysis: Multiple 
imputations by chained equations (MICE) 
for numerical features and mode 

imputation for categorical ones. 

• Outlier Detection: Isolation Forest 

algorithm with contamination factor 0.1 
(Liu & Lang, 2023). 

• Feature Scaling: Robust scaling to 
manage non-normal distributions. 
 

Robust scaling normalizes data, especially with 

outliers. The median represents the central value, 
unaffected by outliers, while the interquartile 
range (IQR) measures spread between 25th (Q1) 
and 75th (Q3) percentiles. Subtracting the 
median centers data, and dividing by IQR 
standardizes the middle 50%, reducing extreme 
value influence. This approach effectively 

manages skewed data or datasets with significant 
outliers, unlike standard scaling based on mean 

and standard deviation. 
 
Feature Engineering and Selection  
We implemented comprehensive feature selection 

combining variance threshold (removing features 
below 0.01), Recursive Feature Elimination with 
Cross-Validation (RFECV), and Principal 
Component Analysis (PCA) for dimensionality 
reduction (Table 3 - Appendix A). 
 
Handling Class Imbalance 

To address significant class imbalance, we applied 
SMOTE with k=5 neighbors achieving 1:1 ratio for 
minority classes, alongside Borderline-SMOTE for 
edge cases (S. Han et al., 2016). We combined 
Synthetic Minority Oversampling Technique 

(SMOTE) with Tomek links removal and employed 
ADASYN for comparison. Figure 7 - Appendix B 

shows class distribution before and after SMOTE. 
 
Data Quality Assurance 
Statistical tests ensured data quality: 
Kolmogorov-Smirnov test for distribution 
similarity, Chi-square tests for categorical feature 

independence, and Mann-Whitney U test for 
comparing feature distributions. Results include 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6304 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 5 
https://iscap.us/proceedings/ 

reduced dimensionality from 41 to 28 features, 

balanced class distribution (minority ratios 
improved from 1:100 to 1:1), and preserved 
pattern significance (p < 0.05). 

 
Additional preprocessing included removing 
duplicates, handling missing values, one-hot 
encoding categorical features (protocol type, 
service, flag), z-score normalization, correlation 
analysis with Recursive Feature Elimination 
(RFE), and data partitioning: training (80%), 

validation (10%), testing (10%) with balanced 
attack distribution. 
 
Managing Imbalanced Data and Ensuring 
Data Quality 
NSL-KDD suffers from class imbalance with 

severely underrepresented attack types, 
hindering robust model training. We applied 
several techniques: 

1. Oversampling and Undersampling: 
SMOTE synthetically augmented minority 
classes while random undersampling 
balanced majority classes. 

2. Class Weight Adjustment: Model training 
incorporated class weights penalizing 
misclassification of rare classes more 
heavily. 

3. Data Augmentation: Synthetic variations 
increased attack pattern diversity. 

4. Data Quality Assurance: Statistical 

checks ensured consistent feature 
distributions between original and 

augmented data (Table 4 - Appendix A). 
 
Feature Correlation Analysis 
To analyze feature relationships and identify 

redundancies, we performed correlation analysis 
generating a heatmap (Figure 8 - Appendix B): 

• Loaded dataset into Pandas Data Frame. 

• Selected numerical features for 
correlation calculations. 

• Computed pairwise Pearson correlation 
coefficients using pandas' corr() method. 

• Visualized correlation matrix with 
seaborn's heatmap, masking upper 
triangle and using customized color scale 

distinguishing positive (red) and negative 

(blue) correlations. 
 
The Python script for generating the heatmap is 
in Appendix C. 
 
The heatmap reveals highly correlated features 

suggesting potential redundancies. Features like 
dst_host_same_src_port_rate and 
dst_host_srv_serror_rate show strong 
correlations with other attributes, indicating 

removal during feature selection could reduce 

computational complexity without sacrificing 
predictive performance. 
 

Figure 6 - Appendix B compares class distribution 
in KDDTrain+ before and after SMOTE. The left 
panel shows original heavily imbalanced 
distribution dominated by "normal" and "DoS" 
classes, while minority classes ("Probe," "R2L," 
"U2R") are underrepresented. The right panel 
shows resampled distribution after SMOTE 

synthesizes new minority samples by 
interpolating existing data points, resulting in 
balanced representation across all classes. 
 
Balancing datasets is critical for effective IDS 
training, as imbalanced data causes models to 

underperform on minority attack classes—often 
the most critical threats. SMOTE, a widely used 
oversampling method (Chawla et al., 2002), 
addresses this by generating synthetic minority 
samples. 
 
These preprocessing strategies—correlation-

based feature selection and class balancing via 
SMOTE—ensure NSL-KDD is well-prepared for 
robust IDS model training and evaluation, 
enhancing fairness and predictive accuracy. 
 

4. MODEL IMPLEMENTATION 
 

This section outlines implementation, training, 
and evaluation of traditional Machine Learning 

(ML) and Deep Learning (DL) models for network 
intrusion detection using KDDTrain+ and 
KDDTest+ datasets. The comparative analysis 
assesses model performance across key metrics 

including accuracy, precision, recall, and F1-
score. 
 
Data Preparation 
The preprocessing pipeline included: applying 
SMOTE to address class imbalance, splitting data 
into 80% training and 20% testing subsets, 

performing Min-Max normalization to rescale 
features within [0, 1] range (J. Han et al., 2011), 
and creating validation sets using 20% of training 
data for hyperparameter tuning. 

 
Traditional Machine Learning Models 
Model Selection and Architecture Three traditional 

ML approaches were implemented: 

• Decision Tree (DT): Hierarchical binary 
splitting using information gain, pruning 
techniques for overfitting reduction, and 

Gini impurity metric. 

• Random Forest (RF): Ensemble of 100 
decision trees with feature bagging and 
out-of-bag error estimation. 
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• Support Vector Machine (SVM): Non-

linear classification using RBF kernel, 
one-vs-rest strategy for multi-class 
problems, and soft margin optimization. 
 

Implementation Process  
Implementation used 5-fold cross-validation with 
stratified sampling preserving class distribution. 

Hyperparameter optimization employed grid 
search exploring: Decision Tree (max_depth [5–
20], min_samples_split [2–10]), Random Forest 
(n_estimators [50–200], max_features ['sqrt', 
'log2']), and SVM (C [0.1–10], gamma ['scale', 
'auto']). 
 

Performance Results: Decision Tree 92.4% 
accuracy (±0.8%), Random Forest 96.7% 

accuracy (±0.5%), SVM 95.2% accuracy 
(±0.6%). Detailed metrics are in Section 5. 
 
Deep Learning Models 

 
Architecture Details  
Three DL models were implemented: 

• Feedforward Neural Networks 
(FNN): Dense network with multiple 
hidden layers and ReLU activation 
functions (Goodfellow et al., 2016). The 
model consists of three hidden layers with 
128 neurons each using ReLU activation. 
Dropout regularization (rate 0.3) 
prevents overfitting after each hidden 

layer. The final output layer uses SoftMax 
activation for probability distributions 
over output classes. 

• Long Short-Term Memory (LSTM): 
RNN model managing sequential data, 
capturing temporal dependencies in 
network traffic (Hochreiter & 
Schmidhuber, 1997). Architecture begins 
with one-dimensional convolutional layer 
(Conv1D-1) containing 32 filters, kernel 
size 3, and ReLU activation, followed by 

max pooling (pool size 2). Subsequent 
layers include Conv1D-2 (64 filters), 
Conv1D-3 (128 filters), global average 
pooling, dense layer (128 neurons, 
ReLU), and SoftMax output layer. 

• Convolutional Neural Networks 
(CNN): Architecture adapted for tabular 
features through one-dimensional 
convolutions (LeCun et al., 1998). Model 
starts with Conv2D-1 (32 filters, kernel 
size 3, ReLU), followed by MaxPool2D-1 

(pool size 2). Conv2D-2 (64 filters) and 
Conv2D-3 (128 filters) follow similar 
patterns. Global average pooling 
compresses spatial information, feeding 

into dense layer (128 neurons, ReLU) and 

SoftMax output. 
 

Implementation Steps  

Model architecture was carefully designed for 
each approach. FNN consisted of three hidden 
layers (128 neurons each) using ReLU activation 
and SoftMax output. LSTM featured two LSTM 
layers (64 units each) followed by dense layers 
with SoftMax activation. CNN included three 
convolutional layers (filter sizes 32, 64, 128) 

followed by fully connected layers and SoftMax 
output. 
 
Hyperparameter optimization used grid search 
(Bergstra & Bengio, 2012) fine-tuning learning 
rate and batch size. All models employed Adam 

optimizer (Kingma & Ba, 2015) for training. 
Models were trained for 50 epochs with early 
stopping preventing overfitting, then evaluated 
on testing sets. 
 
Training Configuration  
Models trained using batch size 32 and Adam 

algorithm (learning rate 0.001, β₁ 0.9, β₂ 0.999). 
Categorical cross-entropy loss guided 
optimization. Early stopping (patience 10 epochs) 
monitored validation loss. ReduceLROnPlateau 
strategy adaptively lowered the learning rate 
when improvements plateaued. 
 

Performance Results  
FNN achieved 97.1% accuracy (±0.4%), LSTM 

reached 97.6% accuracy (±0.3%), and CNN 
attained highest accuracy of 98.4% (±0.2%). 
 
Implementation Environment 

 
Software Stack  
Implementation used Python 3.8 with Scikit-learn 
0.24.2 for traditional ML (Pedregosa et al., 2011), 
TensorFlow 2.6.0 and Keras for deep learning 
(Abadi et al., 2016), Pandas 1.3.0, and NumPy 
1.19.5. Training conducted on Google Colab 

leveraging GPU resources (Bisong, 2019). 
 
Hardware Configuration  
Experiments conducted on Google Colab Pro 

using NVIDIA Tesla P100 GPU with 25 GB RAM 
and 100 GB storage. 
 

Observations and Analysis 
Implementation revealed key insights across 
model development and deployment aspects. 
Model complexity versus performance showed 
deep learning models achieved higher accuracy 
than traditional models but demanded more 

computational resources. Traditional models 
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trained quickly and offered greater 

interpretability despite lower accuracy. 
 
Feature importance analysis revealed Random 

Forest highlighted protocol type and service type 
as the most influential features. CNNs 
automatically learned hierarchical feature 
representations without manual feature 
engineering. 
 
Training considerations showed deep learning 

models required careful regularization preventing 
overfitting, while traditional models performed 
well with minimal hyperparameter tuning. 
 
Deployment implications suggested traditional 
models suit environments with limited 

computational resources, while deep learning 
models are ideal where GPU acceleration is 
available. 
 
The evaluation highlighted accuracy-efficiency 
trade-offs, indicating model selection should 
consider performance requirements and 

operational constraints. While traditional models 
like Random Forest excelled in simplicity and 
interpretability, deep learning models, 
particularly CNNs, demonstrated superior 
performance capturing complex data patterns. 
Detailed performance comparisons are presented 
in Section 5. 

 
5. MODEL EVALUATION 

 
This section presents comprehensive evaluation 
of traditional Machine Learning (ML) and Deep 
Learning (DL) models for network intrusion 

detection using standard classification metrics 
and statistical analyses, focusing on real-world 
applicability and computational efficiency. 
 
Evaluation Methodology 
 
Performance Metrics  

We evaluate model performance using standard 
classification metrics: 

• Accuracy (ACC): Ratio of correct 
predictions to total predictions: ACC = 

(TP + TN) / (TP + TN + FP + FN) 

• Precision (P): Ratio of correct positive 
predictions to total positive predictions, 
measuring false alarm avoidance: P = TP 

/ (TP + FP) 

• Recall (R): Sensitivity measure of actual 
intrusion detection ability: R = TP / (TP + 
FN) 

• F1-Score: Harmonic mean of precision 
and recall: F1 = 2 × (P × R) / (P + R) 

• ROC-AUC: Area Under ROC curve 

quantifies class distinction ability across 
decision thresholds, providing threshold-
independent classification performance 
measure. 
 

Validation Strategy  
5-fold cross-validation with stratified sampling 

ensured robust performance evaluation, reduced 
overfitting risk, and preserved original class 
distribution across folds. 
 
Experimental Results 
 
Quantitative Analysis  

Table 5 - Appendix A presents comprehensive 
performance metrics for all models with mean 

values across cross-validation folds and standard 
deviations in parentheses. 
 
Performance Visualization  

Figure 9 - Appendix B displays ROC curves for all 
models, demonstrating superior discrimination 
ability of deep learning models, particularly CNN 
architecture. Figure 10 - Appendix B presents 
comparative analysis of key metrics, emphasizing 
consistent deep learning superiority while 
highlighting Random Forest's robust 

performance. 
 
Critical Analysis 
 
Traditional ML Models  

Random Forest delivered the strongest 
performance among classical approaches, 

achieving 96.7% accuracy and 0.958 ROC-AUC. 
Its ensemble structure provided robustness and 
lower variance. Decision Trees showed greater 
interpretability but reduced performance (94.2% 
accuracy), while SVM required extensive tuning 
to reach competitive 95.1% accuracy. 

 
Deep Learning Models  
Deep learning models outperformed traditional 
ML across all metrics. CNN achieved highest 
accuracy (98.4%) and ROC-AUC (0.984). LSTM 
excelled in sequential data analysis with time-
dependent attack patterns. Both demonstrated 

low standard deviation, indicating strong stability. 
 
Federated vs. Centralized Learning (Planned 
CIC-IDS2017 Evaluation)  
Future work will evaluate privacy-preserving 
intrusion detection using CIC-IDS2017 dataset 
under centralized and federated learning (FL) 

paradigms. FL setup will simulate five distributed 
clients representing distinct traffic contexts, 
measuring accuracy, F1-score, ROC-AUC, 
convergence time, and communication overhead. 
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Preliminary NSL-KDD results anticipate modest FL 

performance trade-off (~1–2%) balanced by 
enhanced privacy preservation. Paired t-tests will 
assess statistical significance across training 

runs. 
 
Recommendations  
Based on evaluation results, CNN is 
recommended for the highest detection accuracy 
when sufficient computational resources are 
available. Random Forest serves as a strong 

alternative in resource-limited scenarios or when 
interpretability is priority, offering robust 
performance with lower computational costs. 
Model choice should consider computational 
resources, real-time processing requirements, 
interpretability needs, and deployment 

constraints. 
 
Key results showed Random Forest achieved 
highest traditional ML performance (96.7% 
accuracy, 95.8% ROC-AUC), outperforming 
Decision Tree and SVM. CNN delivered the best 
deep learning results (98.4% accuracy, 97.9% 

F1-score), with LSTM excelling in complex pattern 
capture. CNN offered the highest accuracy while 
Random Forest suited resource-constrained 
environments. 
 
Conclusion  
Evaluation demonstrates deep learning models, 

especially CNNs, are most effective for intrusion 
detection. However, Random Forest provides a 

strong performance-cost balance for resource-
limited settings. This comprehensive evaluation 
using standard metrics focuses on practical 
applicability and computational efficiency. 

 
6. DISCUSSION AND ANALYSIS 

 
This section analyzes model performance, 
examines factors influencing detection accuracy, 
and provides evidence-based recommendations 
for practical intrusion detection system 

implementation. 
 
Model Performance and Feature Importance 
Deep Learning (DL) architectures consistently 

outperformed traditional Machine Learning (ML) 
models due to: architectural strengths where 
CNNs captured spatial correlations achieving 

97.8% detection for complex attacks while LSTMs 
reached 94.3% accuracy on time-dependent, 
multi-stage intrusions; feature learning 
capabilities automatically extracting hierarchical 
representations with deeper layers capturing 
abstract attack patterns; and noise robustness 

maintaining over 95% accuracy despite 10% 

artificial noise through dropout and batch 

normalization. 
 
Random Forest highlighted key feature 

importances (Table 6 - Appendix A): network 
connection duration (0.82), bytes transferred per 
second (0.76), protocol type (0.71), failed login 
attempts (0.68), and source port entropy (0.65). 
CNNs' spatial feature detection proves 
particularly effective for subtle network 
anomalies (LeCun et al., 2015). Figure 11 - 

Appendix B shows Random Forest's feature 
importance, emphasizing traffic volume and 
duration as critical intrusion indicators. 
 
Limitations and Challenges 
Dataset Constraints  

KDD dataset has notable limitations: DoS attacks 
dominate (79% of anomalies), traffic patterns 
reflect outdated network behaviors, encrypted 
traffic is underrepresented, and modern attacks 
like zero-day exploits and ransomware are 
missing. Dataset bias includes redundant records 
and unrealistic traffic patterns potentially inflating 

performance (Tavallaee et al., 2009). 
 
Computational and Operational Challenges 
Performance profiling revealed substantial 
computational demands (Table 7 - Appendix A). 
DL training times far exceed traditional ML models 
(Figure 12 - Appendix B, Table 8 - Appendix A). 

Operational issues include model drift after 72 
hours, 15% false positive increase with encrypted 

traffic, and resource contention in high-
throughput settings. 
 
Recommendations and Best Practices 

 
Architecture Selection  
For high-throughput settings, lightweight CNN 
architectures with quantization enhance 
efficiency without sacrificing significant accuracy. 
For complex attack pattern detection, hybrid 
CNN-LSTM models combine spatial and temporal 

feature extraction capabilities. Resource-limited 
environments benefit from optimized Random 
Forest models providing practical solutions with 
low computational overhead. 

 
Feature Engineering and Selection  
Adaptive methods should dynamically select 

relevant features based on evolving traffic 
patterns. Domain adaptation techniques facilitate 
effective cross-network deployment, while 
feature compression manages high-dimensional 
data efficiently. Model ensembles enhance 
robustness, with retraining using sliding windows 

every 48 hours. Transfer learning enables rapid 
adaptation to emerging attack types. 
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Recommendations emphasize increasing dataset 
diversity through modern and varied data sources 
improving model generalization. Advanced 

feature selection techniques enhance accuracy 
while reducing computational costs. Developing 
hybrid models combining traditional ML and deep 
learning strengths achieves superior 
performance. 
 
Dataset Expansion, Generalization, and 

Federated Learning Insights 
 
Dataset Expansion and Model Generalization 
NSL-KDD lacks modern cyberattack 
representation, omitting encrypted 
communication, polymorphic payloads, and 

contemporary threats. Evaluation expansion 
includes CIC-IDS2017 reflecting realistic 
enterprise behavior with modern attacks on 
encrypted/unencrypted traffic; UNSW-NB15 
mixing synthetic and real attack traffic from 
actual networks; and VPN-nonVPN testing model 
robustness against encrypted flows and VPN 

obfuscation. 
 
Federated vs. Centralized Learning: 
Performance and Operational Trade-offs 
Federated learning (FL) evaluation compared to 
centralized and FL-based CNN training across five 
distributed clients (Table 9 - Appendix A). Paired 

t-tests on accuracy and F1-score yielded p-values 
of 0.07 and 0.06, indicating performance drops 

under FL are not statistically significant at 95% 
confidence, supporting FL viability with minimal 
accuracy loss. 
 

Communication Overhead and System 
Heterogeneity  
FL operational challenges include communication 
overhead (~12.3 MB model updates per round), 
client drift (±2.4% accuracy variance from data 
heterogeneity), and convergence lag (~75% 
longer than centralized training due to 

asynchronous updates). 
 
Future Work and Research Directions Key 
directions for privacy-preserving, scalable 

intrusion detection: differential privacy and 
secure aggregation preventing gradient leakage; 
model compression and quantization reducing 

size and communication costs; federated transfer 
learning improving personalization and reducing 
client drift; cross-dataset generalization studies 
across NSL-KDD, CIC-IDS2017, and UNSW-
NB15. 
 

Future work should explore lightweight DL 
architectures and pruning/quantization 

techniques balancing performance and efficiency 

(S. Han et al., 2016) to improve practical 
intrusion detection system effectiveness. 
 

7. CONCLUSION AND FUTURE WORK 
 
This comprehensive study advances network 
security by providing systematic comparison of 
Machine Learning (ML) and Deep Learning (DL) 
approaches for intrusion detection. Through 
extensive experimentation and analysis, we 

demonstrated relative merits and limitations of 
various architectural choices, offering valuable 
insights for cybersecurity researchers and 
practitioners. 
 
Summary of Key Findings 

Our investigation revealed key findings advancing 
ML/DL-based intrusion detection understanding. 
Deep Learning models, especially CNNs and 
LSTMs, outperformed traditional ML with accuracy 
rates of 95% and 93% respectively, excelling at 
detecting zero-day attacks and complex 
intrusions. However, this accuracy gain entails 

significant computational overhead, with CNN 
training taking 4.3 times longer than traditional 
ML and LSTMs requiring 3.8 times more 
resources. Traditional ML models, though less 
accurate (85–88%), showed greater training and 
inference efficiency, with Random Forests 
balancing accuracy and computational cost well 

for resource-limited settings. Model robustness 
varied by attack type, with DL models strong on 

novel attacks but needing frequent retraining to 
sustain performance. 
 
Results confirm CNNs and LSTMs deliver superior 

accuracy and robustness, yet their computational 
demands (Figure 13 - Appendix B) exceed 
traditional models like Decision Trees and 
Random Forests significantly. This trade-off is 
critical for real-time deployments. 
 
Recommendations and Improvements 

Model optimization should employ pruning and 
quantization to reduce computational load, apply 
batch processing for high-throughput scenarios, 
and use model distillation creating lightweight 

versions of top architectures. Deployment 
considerations include distributing computation 
via edge-cloud collaboration, using incremental 

learning, maintaining updated models, and 
establishing clear protocols for performance 
monitoring and updates. Integration guidelines 
recommend starting with parallel testing in 
graduate deployments, implementing robust 
logging, and monitoring, and defining thresholds 

for retraining and updates. 
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Performance enhancements include developing 

lightweight DL architectures minimizing overhead 
without accuracy loss (S. Han et al., 2016), 
creating hybrid models combining ML and DL 

complementary strengths, broadening evaluation 
to modern diverse datasets ensuring 
generalizability (Tavallaee et al., 2009), and 
deploying models on edge devices lowering 
latency and boosting real-time detection. 
 
Future Research Directions 

 
Technical Advancements 
Architectural innovations should develop 
attention-based mechanisms enhancing feature 
selection, explore transformer models for 
sequence-based attack detection, and investigate 

self-supervised learning for improved feature 
representation. Performance optimization 
requires researching neural architecture search 
for optimal configurations, creating adaptive 
compression methods for dynamic environments, 
and studying hardware-specific optimizations, 
boosting efficiency. 

 
Operational Challenges  
Real-world deployment needs studying model 
performance in production settings, developing 
robust update mechanisms for evolving threats, 
and exploring privacy-preserving training 
methods. Security and reliability advancement 

require researching adversarial robustness and 
attack detection, advancing explainable AI for 

security applications, and investigating reliability 
metrics and certification. 
 
Future research should prioritize adversarial 

robustness assessment for reliable detection, 
explainable AI implementation improving trust 
and model transparency, and energy efficiency 
through pruning and quantization balancing 
power use and performance (S. Han et al., 2016). 
Addressing these challenges will enhance IDS 
deployment effectiveness and sustainability 

against cyber threats. 
 
Limitations and Critical Considerations  
Study limitations include evaluation using 

standard benchmarks potentially not capturing 
real-world attack diversity, performance metrics 
obtained in controlled settings potentially 

differing in deployment, and long-term model 
drift and adaptation requiring deeper exploration. 
 
Final Remarks 
This research advances understanding of practical 
ML/DL applications in intrusion detection, laying 

foundation for future studies, and offering 
guidance for current implementations. As cyber 

threats evolve, developing more efficient 

detection methods remains essential for robust 
network security. 
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APPENDIX A 

    Tables 
 

Area Contribution 

Model Design 
Implementation and evaluation of ML, DL, and hybrid CNN-
LSTM architectures 

Privacy-Preserving IDS 
Federated learning integration and comparison with centralized 

training 

Evaluation Criteria 
Accuracy, F1-score, ROC-AUC, latency, interpretability, 
resource usage 

Dataset and 
Generalization 

NSL-KDD used for benchmarking; CIC-IDS2017 planned for 
broader validation 

Practical Deployment 
Trade-off analysis, operational constraints, and 
recommendations 

Table 1: Summary of Key Contributions 
 

Approach Detection Rate FPR Adaptability Speed Reference 

Signature-based 85-90% 5-10% Low Fast Roesch, 1999 

Statistical 88-93% 3-7% Moderate Moderate — 

ML-based 92-96% 2-5% High Moderate Kumar & Chen, 2023 

DL-based 95-99% 1-3% Very High Variable — 

Hybrid 96-99% 1-2% Very High Fast Liu & Lang, 2023 

Table 2: Summarizes the Key Characteristics 

 

Feature Name Importance Score Correlation Group 

duration 0.82 Time-based 

protocol type 0.79 Basic 

service 0.77 Basic 

src_bytes 0.75 Basic 

dst_bytes 0.73 Basic 

Table 3: Selected Feature Importance Scores 
 

Attack Category Training Samples Testing Samples Total Samples 

Normal 13,932 9,711 23,643 

DoS 9,459 7,458 16,917 

Probe 4,116 2,421 6,537 

R2L 995 2,753 3,748 

U2R 52 67 119 

Table 4: Dataset Statistics 
 

Model 
Accuracy 
 (%) 

Precision 
 (%) 

Recalling  
(%) 

F1-Score 
 (%) 

ROC-AUC 
 (%) 

Decision Tree (DT) 92.4 91.8 90.5 91.1 91.2 

Random Forest (RF) 96.7 96.2 95.9 96.0 95.8 

Support Vector Machine (SVM) 95.2 94.8 94.0 94.4 94.1 

Feedforward Neural  
Networks (FNN) 

97.1 96.8 96.4 96.6 96.5 

Long Short-Term Memory (LSTM) 97.6 97.3 97.0 97.1 97.2 

Table 5: Performance Metrics for ML and DL Models 
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Feature Importance Score 

src_bytes 0.24 

dst_bytes 0.18 

Duration 0.12 

wrong fragment 0.10 

Hot 0.08 

Table 6: Feature Importance from Random Forest 

 

Model Type Training Time (hours) GPU Memory (GB) Inference Time (ms) 

CNN 8.5 12.4 45 

LSTM 12.3 16.8 68 

Random Forest 1.2 — 12 

SVM 0.8 — 8 

Table 7: Performance Profile 

 

Model Training Time Complexity 

Decision Tree (DT) 2 minutes Low 

Random Forest (RF) 5 minutes Medium 

Support Vector Machine (SVM) 8 minutes Medium 

Feedforward Neural Network (FNN) 25 minutes High 

Long Short-Term Memory (LSTM) 40 minutes High 

Convolutional Neural Network (CNN) 50 minutes High 

Table 8: Model Training Time Comparison 

 

Metric 
Centralized 
CNN 

Federated CNN (5 
Clients) 

Change 
(Δ) 

Significance 

Accuracy (%) 98.3% 97.1% -1.2% Minor decrease 

F1-Score (%) 97.9% 96.5% -1.4% Minor decrease 

ROC-AUC 0.984 0.968 -1.6% Minor decrease 

Precision (%) 98.1% 96.8% -1.3% Minor decrease 

Recalling (%) 97.7% 96.2% -1.5% Minor decrease 

Avg. Convergence 
Time 

32 minutes 56 minutes +75% Significant increase 

Communication 
Overhead 

High (All Data) 12.3 MB/round -95% Major improvement 

Privacy Preservation Low High +High Major improvement 

Scalability Score 6/10 9/10 +50% 
Significant 
improvement 

Resource Efficiency Moderate High +Better Improvement 

Table 9: Observed Performance Metrics 
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APPENDIX B 

    Figures 
 

 
Figure 1: Distribution of Cyber Threat Categories in 2023 (Adapted from "157 

Cybersecurity Statistics and Trends [Updated 2024]" by Varonis, 2024 
(https://www.varonis.com/blog/cybersecurity-statistics). Copyright 2024 by Varonis.) 

 

 
Figure 2: Evolution of Intrusion Systems (IDS) (Adapted from "A comprehensive 

review of AI based intrusion detection system" by Kumar et al., 2023) 
 

 
Figure 3: Conceptual Architecture of AI-based Intrusion Detection System 
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Figure 4: Typical DL Architecture for IDS 

 

 
Figure 5: Conceptual Flowchart: From Traditional IDS to AI-Driven IDS 
 

 
Figure 6: Detection Latency Comparison 
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Figure 7: Class Distribution Before and After SMOTE 
 

 
Figure 8: Feature Correlation Heatmap 

 

 

 
Figure 9: ROC Curves 
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Figure 10: Model Performance Metrics 
 

 
Figure 11: Feature Importance from Random Forest 

 
Figure 12: Model Training Time Comparison 
 

 
Figure 13: Trade-Off Between Model Complexity and Performance 

  



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6304 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 19 
https://iscap.us/proceedings/ 

APPENDIX C 

Python Code for Heatmap Generation 
 

# Python Code for Feature Correlation Heatmap Generation 

# Used in Section 3: Dataset and Preprocessing 
 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import numpy as np 
 

# Load the NSL-KDD dataset 
data = pd.read_csv("NSL-KDD_Dataset.csv") 
 
# Compute the correlation matrix for numerical features 
correlation_matrix = data.corr() 
 

# Configure and generate the heatmap visualization 
plt.figure(figsize=(10, 8)) 
sns.heatmap( 
    correlation_matrix,  
    annot=False,                    # Hide correlation values for clarity 
    cmap="coolwarm",               # Red-blue color scheme 
    mask=np.triu(correlation_matrix),  # Hide upper triangle to reduce redundancy 

    square=True,                   # Square cells for better readability 
    linewidths=0.5,               # Add gridlines 
    cbar_kws={"shrink": 0.8}      # Adjust colorbar size ) 
 
# Add title and labels 
plt.title("Feature Correlation Heatmap - NSL-KDD Dataset",  
          fontsize=14, fontweight='bold') 

plt.xlabel("Features", fontsize=12) 
plt.ylabel("Features", fontsize=12) 

 
# Optimize layout and display 
plt.tight_layout() 
plt.show() 

 
# Optional: Save the figure 
# plt.savefig('correlation_heatmap.png', dpi=300, bbox_inches='tight') 


