
2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

Enhancing Cyber Defense: A Federated Multi-Modal
Deep Learning Framework for Privacy-Preserving

Zero-Day Attack Detection

Samuel Sambasivam
samuel.sambasivam@woodbury.edu

Computer Science Data Analytics Department
Woodbury University

Burbank, CA, United States

Abstract

The rapid rise in cyber threats demands smarter security solutions. Traditional Intrusion Detection
Systems (IDS), based on static rules, often fail against sophisticated and polymorphic attacks, achieving
only 85–90% accuracy. This study explores AI-driven IDS integrating Machine Learning (ML) and Deep
Learning (DL), which outperform traditional methods. Using the Network Security Laboratory-Knowledge
Discovery in Databases (NSL-KDD) dataset (148,517 connections, 41 features), we compare three ML
models—Random Forest, Support Vector Machines, and Decision Trees—and three DL models:

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Feedforward Neural
Networks (FNN). Our optimized CNN achieves 98.4% accuracy and 96.7% F1-score, surpassing ML by
5.2% with a 0.3% false positive rate. Random Forest reaches 96.7%, while LSTM detects zero-day
attacks with 94.3% accuracy versus 78.5% for traditional IDS. We implement Federated Learning (FL)

across five nodes to address data privacy, maintaining accuracy within 1.2% of centralized training.
Real-world CNN deployment on 10Gbps traffic cut false positives by 76%, maintained sub-100ms

latency, and scaled linearly. These results demonstrate the promise of AI-based IDS to enhance
detection, reduce false alarms, and protect data privacy. The paper offers deployment strategies and
benchmarks for scalable, real-time IDS in enterprise environments.

Keywords: Network Intrusion Detection Systems (NIDS), Zero-day Attack Detection, Deep Learning
(DL), Cybersecurity, Federated Learning (FL), Real-time Threat Detection, Performance Optimization.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

Enhancing Cyber Defense: A Federated Multi-Modal Deep
Learning Framework for Privacy-Preserving Zero-Day Attack

Detection

Samuel Sambasivam

1. INTRODUCTION

The growing sophistication and frequency of
cyberattacks present serious organizational
challenges. Global cybercrime damages are
projected to exceed $10.5 trillion annually by

2025 (Morgan, 2023). Traditional Intrusion
Detection Systems (IDS) based on rule- or
signature-matching are increasingly ineffective

against polymorphic and zero-day attacks
(Bhuyan et al., 2014; Liu & Lang, 2023),
underscoring the need for adaptive, intelligent
detection methods.

Research Context and Motivation

Artificial Intelligence (AI) transforms
cybersecurity by enabling more effective threat
detection. Traditional machine learning (ML)
methods like Random Forest and Support Vector
Machines detect anomalies from historical data
(Kumar & Chen, 2023) but rely heavily on manual
feature engineering and struggle with modern

network traffic complexity. Deep Learning (DL)
offers scalable solutions through automated
feature extraction and hierarchical pattern
learning (LeCun et al., 2015), improving
detection rates while reducing false positives.

Zero-day attacks exploit unknown vulnerabilities,

challenging conventional ML systems trained on
historical labels. We integrate CNN and LSTM
models that learn generalized feature
representations for identifying unseen threats.
These DL techniques improve anomaly detection
by recognizing traffic deviations like abnormal

protocol use or entropy shifts. Hybrid CNN-LSTM
architecture combines spatial and temporal

analysis for detecting subtle zero-day threat
signs. Validation will extend to dynamic datasets
like CIC-IDS2017 for further generalization.

Research Objectives

This study addresses major IDS limitations
through three objectives:

1. Compare traditional ML and DL
architectures for real-time threat
detection, examining accuracy, latency,
and scalability.

2. Develop privacy-preserving IDS using
federated learning for decentralized

training without exposing raw data.
3. Optimize model efficiency for deployment

in resource-constrained environments
like edge devices.

These objectives advance practical AI-driven IDS
deployment.

Technical Innovation
We propose a hybrid CNN-LSTM model capturing
spatial and temporal network traffic aspects,
improving complex attack detection. Our
federated learning framework preserves privacy
while maintaining 98.4% detection accuracy with

local data. An adaptive feature selection
mechanism reduces computational overhead by
47%, enabling real-time deployment in
constrained environments.

Methodology and Dataset
Models are evaluated using NSL-KDD dataset, a

refined benchmark addressing KDD'99
redundancy and imbalance issues (Tavallaee et
al., 2009). It includes diverse traffic categories
and 41 features for robust evaluation.

Research Contributions
This study advances intrusion detection research

through key contributions. First, comparative
analysis of machine learning and deep learning
approaches, including hybrid CNN–LSTM
architectures. Second, privacy-preserving
federated learning framework evaluated against
centralized baselines. Third, multi-metric

evaluation encompasses accuracy, latency,
resource consumption, and interpretability.

Additionally, practical implementation guidelines
support real-world AI-driven IDS deployment.
These contributions address critical gaps in model
generalizability, privacy-preserving deployment,
and operational feasibility (Table 1, Appendix A).

Future work will extend validation using CIC-
IDS2017 dataset.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

2. LITERATURE REVIEW

The growing complexity of cyber threats has
accelerated Intrusion Detection Systems (IDS)

advancements. This section outlines IDS
evolution, contrasts detection techniques, and
highlights the need for advanced AI-driven
solutions.

Evolution of IDS: From Traditional to AI-
Driven Approaches

IDS have evolved through three major
generations (Figure 1 - Appendix B).

Traditional Approaches
Early IDS like Snort and Bro were signature-
based (Roesch, 1999). While accurate for known

threats, they had high false-positive rates,
struggled with zero-day attacks, and required
constant signature updates.

Statistical Methods
The next generation used statistical anomaly
detection to identify deviations from normal

behavior (Lunt, 1993). Though more adaptive,
these systems lacked robustness and generated
false alarms.

Modern AI-Driven Approaches
Current IDS leverage AI technologies, especially
ML and DL architectures (Kumar & Chen, 2023),

enabling automated feature extraction, real-time
adaptation, and detection accuracy above 95%.

Basic signature-based models relied on
predefined patterns but were vulnerable to zero-
day exploits and attack variations. This led to

anomaly-based IDS detecting deviations from
normal network behavior (Lunt, 1993), offering
flexibility but generating high false positives due
to dynamic legitimate traffic.

AI introduced a major IDS shift (Figure 2 -
Appendix B). ML models like SVM and Random

Forest improved pattern recognition and anomaly
detection accuracy (Kim et al., 2005). Later, DL
methods like CNNs and RNNs enhanced
capabilities by managing complex, high-

dimensional data (Yin et al., 2017).

Comparative Analysis of Existing IDS

Techniques
Various techniques address IDS requirements:
signature-based methods are fast and accurate
for known attacks but lack adaptability, while
anomaly-based IDS offer flexibility but suffer
from high false positives. AI-driven models

combine these strengths, with ML techniques like
Decision Trees and Gradient Boosting excelling in

feature extraction and classification (Amor et al.,

2004). DL models such as LSTM networks capture
temporal dependencies for more effective
complex threat detection (Shone et al., 2018),

though they face computational cost and
interpretability challenges. Table 2 - Appendix A
and Figure 3 - Appendix B summarizes key
features and performance from recent studies.

Machine Learning Approaches
Recent ML-based IDS implementations show

notable improvements: Random Forests reaching
94.2% accuracy, SVMs achieving 93.8%
detection rate (Johnson & Wang, 2023), and
Gradient Boosting attaining 95.1% precision (Rai
et al., 2024).

Deep Learning Architectures
DL models set new performance benchmarks
(Figure 4 - Appendix B): CNN-based models
achieving 97.8% accuracy, LSTM networks
96.5% detection rate, and hybrid architectures—
like ours—reaching 98.4% accuracy.

Limitations and Need for Advanced AI-
Driven Systems
Despite progress, IDS faces key challenges:
scalability issues with growing traffic complexity;
high false positives from anomaly-based systems
hindering efficiency; limited adaptability requiring
frequent updates; and privacy risks from

centralized processing. Advanced AI-driven
approaches address these through Federated

Learning for decentralized training protecting
data privacy (McMahan et al., 2017). Hybrid ML-
DL models enhance detection accuracy and
resilience. AI-driven IDS offer robust, adaptable,

scalable cybersecurity addressing evolving
threats (Figure 5 - Appendix B).

Privacy-Preserving
IDS Recent privacy-preserving advances address
data sensitivity through federated learning (Yang
et al., 2019), differential privacy integration, and

encrypted inference methods.

Real-time Detection Capabilities
Recent frameworks enable real-time detection

with sub-second latency, essential for production
systems (Figure 6 - Appendix B).

Scalability Challenges
Scaling efforts include distributed processing,
stream-based architecture, and optimized
models. Lightweight DL variants improve edge
deployment feasibility.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

Thematic Literature Review and Gaps

Prior research spans four key areas: scalability,
zero-day detection, privacy preservation, and
real-time performance.

• Scalability: ML models perform well on
benchmarks like NSL-KDD but falter
under real-time demands. DL models
scale better but are computationally

heavy.

• Zero-Day Detection: Autoencoders and
CNN-LSTM hybrids improve zero-day
detection (Liu & Lang, 2023), though

most use static datasets. Our hybrid deep
models plan validation extension to CIC-
IDS2017 for richer attack profiles.

• Privacy Preservation: FL studies lack
centralized baseline comparisons and

overlook client diversity and
communication overhead (Kim et al.,
2005).

• Identified Gaps: Research focuses on
isolated aspects or lacks multi-
dimensional evaluation. Few combine
hybrid deep learning with privacy-aware
training, and most rely solely on NSL-
KDD, missing encrypted or modern traffic
patterns. Our contributions include

implementing and comparing ML and DL
models including CNN-LSTM hybrids;
evaluating accuracy alongside
operational metrics (latency,
interpretability, resource use);

quantifying federated versus centralized
learning trade-offs; and generalizing

findings using CIC-IDS2017 for
contemporary traffic coverage.

3. DATASET AND PREPROCESSING

Description of the NSL-KDD Dataset and Its
Relevance
The NSL-KDD dataset is a widely used IDS
evaluation benchmark, addressing KDD'99 issues
like redundant records and imbalanced data. It
includes five traffic categories: Normal, DoS
(Denial of Service), R2L (Remote to Local

unauthorized access), U2R (User to Root privilege

escalation), and Probe attacks. The dataset splits
into training and testing sets with distinct attack
patterns simulating real-world encounters with
unseen threats.

Each record contains 41 features in four groups:

basic features from TCP/IP connection
parameters (9), content features based on
domain knowledge (13), time-based traffic
features over 2-second windows (9), and host-

based traffic features reflecting statistical

patterns (10) (Shone et al., 2018). These
comprehensive features make NSL-KDD ideal for
assessing machine and deep learning IDS models

(Tavallaee et al., 2009).

Feature Selection and Preprocessing
Methodology

Data Cleaning and Standardization
Our preprocessing pipeline includes advanced

optimization steps:

• Missing Value Analysis: Multiple
imputations by chained equations (MICE)
for numerical features and mode

imputation for categorical ones.

• Outlier Detection: Isolation Forest

algorithm with contamination factor 0.1
(Liu & Lang, 2023).

• Feature Scaling: Robust scaling to
manage non-normal distributions.

Robust scaling normalizes data, especially with

outliers. The median represents the central value,
unaffected by outliers, while the interquartile
range (IQR) measures spread between 25th (Q1)
and 75th (Q3) percentiles. Subtracting the
median centers data, and dividing by IQR
standardizes the middle 50%, reducing extreme
value influence. This approach effectively

manages skewed data or datasets with significant
outliers, unlike standard scaling based on mean

and standard deviation.

Feature Engineering and Selection
We implemented comprehensive feature selection

combining variance threshold (removing features
below 0.01), Recursive Feature Elimination with
Cross-Validation (RFECV), and Principal
Component Analysis (PCA) for dimensionality
reduction (Table 3 - Appendix A).

Handling Class Imbalance

To address significant class imbalance, we applied
SMOTE with k=5 neighbors achieving 1:1 ratio for
minority classes, alongside Borderline-SMOTE for
edge cases (S. Han et al., 2016). We combined
Synthetic Minority Oversampling Technique

(SMOTE) with Tomek links removal and employed
ADASYN for comparison. Figure 7 - Appendix B

shows class distribution before and after SMOTE.

Data Quality Assurance
Statistical tests ensured data quality:
Kolmogorov-Smirnov test for distribution
similarity, Chi-square tests for categorical feature

independence, and Mann-Whitney U test for
comparing feature distributions. Results include

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

reduced dimensionality from 41 to 28 features,

balanced class distribution (minority ratios
improved from 1:100 to 1:1), and preserved
pattern significance (p < 0.05).

Additional preprocessing included removing
duplicates, handling missing values, one-hot
encoding categorical features (protocol type,
service, flag), z-score normalization, correlation
analysis with Recursive Feature Elimination
(RFE), and data partitioning: training (80%),

validation (10%), testing (10%) with balanced
attack distribution.

Managing Imbalanced Data and Ensuring
Data Quality
NSL-KDD suffers from class imbalance with

severely underrepresented attack types,
hindering robust model training. We applied
several techniques:

1. Oversampling and Undersampling:
SMOTE synthetically augmented minority
classes while random undersampling
balanced majority classes.

2. Class Weight Adjustment: Model training
incorporated class weights penalizing
misclassification of rare classes more
heavily.

3. Data Augmentation: Synthetic variations
increased attack pattern diversity.

4. Data Quality Assurance: Statistical

checks ensured consistent feature
distributions between original and

augmented data (Table 4 - Appendix A).

Feature Correlation Analysis
To analyze feature relationships and identify

redundancies, we performed correlation analysis
generating a heatmap (Figure 8 - Appendix B):

• Loaded dataset into Pandas Data Frame.

• Selected numerical features for
correlation calculations.

• Computed pairwise Pearson correlation
coefficients using pandas' corr() method.

• Visualized correlation matrix with
seaborn's heatmap, masking upper
triangle and using customized color scale

distinguishing positive (red) and negative

(blue) correlations.

The Python script for generating the heatmap is
in Appendix C.

The heatmap reveals highly correlated features

suggesting potential redundancies. Features like
dst_host_same_src_port_rate and
dst_host_srv_serror_rate show strong
correlations with other attributes, indicating

removal during feature selection could reduce

computational complexity without sacrificing
predictive performance.

Figure 6 - Appendix B compares class distribution
in KDDTrain+ before and after SMOTE. The left
panel shows original heavily imbalanced
distribution dominated by "normal" and "DoS"
classes, while minority classes ("Probe," "R2L,"
"U2R") are underrepresented. The right panel
shows resampled distribution after SMOTE

synthesizes new minority samples by
interpolating existing data points, resulting in
balanced representation across all classes.

Balancing datasets is critical for effective IDS
training, as imbalanced data causes models to

underperform on minority attack classes—often
the most critical threats. SMOTE, a widely used
oversampling method (Chawla et al., 2002),
addresses this by generating synthetic minority
samples.

These preprocessing strategies—correlation-

based feature selection and class balancing via
SMOTE—ensure NSL-KDD is well-prepared for
robust IDS model training and evaluation,
enhancing fairness and predictive accuracy.

4. MODEL IMPLEMENTATION

This section outlines implementation, training,
and evaluation of traditional Machine Learning

(ML) and Deep Learning (DL) models for network
intrusion detection using KDDTrain+ and
KDDTest+ datasets. The comparative analysis
assesses model performance across key metrics

including accuracy, precision, recall, and F1-
score.

Data Preparation
The preprocessing pipeline included: applying
SMOTE to address class imbalance, splitting data
into 80% training and 20% testing subsets,

performing Min-Max normalization to rescale
features within [0, 1] range (J. Han et al., 2011),
and creating validation sets using 20% of training
data for hyperparameter tuning.

Traditional Machine Learning Models
Model Selection and Architecture Three traditional

ML approaches were implemented:

• Decision Tree (DT): Hierarchical binary
splitting using information gain, pruning
techniques for overfitting reduction, and

Gini impurity metric.

• Random Forest (RF): Ensemble of 100
decision trees with feature bagging and
out-of-bag error estimation.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

• Support Vector Machine (SVM): Non-

linear classification using RBF kernel,
one-vs-rest strategy for multi-class
problems, and soft margin optimization.

Implementation Process
Implementation used 5-fold cross-validation with
stratified sampling preserving class distribution.

Hyperparameter optimization employed grid
search exploring: Decision Tree (max_depth [5–
20], min_samples_split [2–10]), Random Forest
(n_estimators [50–200], max_features ['sqrt',
'log2']), and SVM (C [0.1–10], gamma ['scale',
'auto']).

Performance Results: Decision Tree 92.4%
accuracy (±0.8%), Random Forest 96.7%

accuracy (±0.5%), SVM 95.2% accuracy
(±0.6%). Detailed metrics are in Section 5.

Deep Learning Models

Architecture Details
Three DL models were implemented:

• Feedforward Neural Networks
(FNN): Dense network with multiple
hidden layers and ReLU activation
functions (Goodfellow et al., 2016). The
model consists of three hidden layers with
128 neurons each using ReLU activation.
Dropout regularization (rate 0.3)
prevents overfitting after each hidden

layer. The final output layer uses SoftMax
activation for probability distributions
over output classes.

• Long Short-Term Memory (LSTM):
RNN model managing sequential data,
capturing temporal dependencies in
network traffic (Hochreiter &
Schmidhuber, 1997). Architecture begins
with one-dimensional convolutional layer
(Conv1D-1) containing 32 filters, kernel
size 3, and ReLU activation, followed by

max pooling (pool size 2). Subsequent
layers include Conv1D-2 (64 filters),
Conv1D-3 (128 filters), global average
pooling, dense layer (128 neurons,
ReLU), and SoftMax output layer.

• Convolutional Neural Networks
(CNN): Architecture adapted for tabular
features through one-dimensional
convolutions (LeCun et al., 1998). Model
starts with Conv2D-1 (32 filters, kernel
size 3, ReLU), followed by MaxPool2D-1

(pool size 2). Conv2D-2 (64 filters) and
Conv2D-3 (128 filters) follow similar
patterns. Global average pooling
compresses spatial information, feeding

into dense layer (128 neurons, ReLU) and

SoftMax output.

Implementation Steps

Model architecture was carefully designed for
each approach. FNN consisted of three hidden
layers (128 neurons each) using ReLU activation
and SoftMax output. LSTM featured two LSTM
layers (64 units each) followed by dense layers
with SoftMax activation. CNN included three
convolutional layers (filter sizes 32, 64, 128)

followed by fully connected layers and SoftMax
output.

Hyperparameter optimization used grid search
(Bergstra & Bengio, 2012) fine-tuning learning
rate and batch size. All models employed Adam

optimizer (Kingma & Ba, 2015) for training.
Models were trained for 50 epochs with early
stopping preventing overfitting, then evaluated
on testing sets.

Training Configuration
Models trained using batch size 32 and Adam

algorithm (learning rate 0.001, β₁ 0.9, β₂ 0.999).
Categorical cross-entropy loss guided
optimization. Early stopping (patience 10 epochs)
monitored validation loss. ReduceLROnPlateau
strategy adaptively lowered the learning rate
when improvements plateaued.

Performance Results
FNN achieved 97.1% accuracy (±0.4%), LSTM

reached 97.6% accuracy (±0.3%), and CNN
attained highest accuracy of 98.4% (±0.2%).

Implementation Environment

Software Stack
Implementation used Python 3.8 with Scikit-learn
0.24.2 for traditional ML (Pedregosa et al., 2011),
TensorFlow 2.6.0 and Keras for deep learning
(Abadi et al., 2016), Pandas 1.3.0, and NumPy
1.19.5. Training conducted on Google Colab

leveraging GPU resources (Bisong, 2019).

Hardware Configuration
Experiments conducted on Google Colab Pro

using NVIDIA Tesla P100 GPU with 25 GB RAM
and 100 GB storage.

Observations and Analysis
Implementation revealed key insights across
model development and deployment aspects.
Model complexity versus performance showed
deep learning models achieved higher accuracy
than traditional models but demanded more

computational resources. Traditional models

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

trained quickly and offered greater

interpretability despite lower accuracy.

Feature importance analysis revealed Random

Forest highlighted protocol type and service type
as the most influential features. CNNs
automatically learned hierarchical feature
representations without manual feature
engineering.

Training considerations showed deep learning

models required careful regularization preventing
overfitting, while traditional models performed
well with minimal hyperparameter tuning.

Deployment implications suggested traditional
models suit environments with limited

computational resources, while deep learning
models are ideal where GPU acceleration is
available.

The evaluation highlighted accuracy-efficiency
trade-offs, indicating model selection should
consider performance requirements and

operational constraints. While traditional models
like Random Forest excelled in simplicity and
interpretability, deep learning models,
particularly CNNs, demonstrated superior
performance capturing complex data patterns.
Detailed performance comparisons are presented
in Section 5.

5. MODEL EVALUATION

This section presents comprehensive evaluation
of traditional Machine Learning (ML) and Deep
Learning (DL) models for network intrusion

detection using standard classification metrics
and statistical analyses, focusing on real-world
applicability and computational efficiency.

Evaluation Methodology

Performance Metrics

We evaluate model performance using standard
classification metrics:

• Accuracy (ACC): Ratio of correct
predictions to total predictions: ACC =

(TP + TN) / (TP + TN + FP + FN)

• Precision (P): Ratio of correct positive
predictions to total positive predictions,
measuring false alarm avoidance: P = TP

/ (TP + FP)

• Recall (R): Sensitivity measure of actual
intrusion detection ability: R = TP / (TP +
FN)

• F1-Score: Harmonic mean of precision
and recall: F1 = 2 × (P × R) / (P + R)

• ROC-AUC: Area Under ROC curve

quantifies class distinction ability across
decision thresholds, providing threshold-
independent classification performance
measure.

Validation Strategy
5-fold cross-validation with stratified sampling

ensured robust performance evaluation, reduced
overfitting risk, and preserved original class
distribution across folds.

Experimental Results

Quantitative Analysis

Table 5 - Appendix A presents comprehensive
performance metrics for all models with mean

values across cross-validation folds and standard
deviations in parentheses.

Performance Visualization

Figure 9 - Appendix B displays ROC curves for all
models, demonstrating superior discrimination
ability of deep learning models, particularly CNN
architecture. Figure 10 - Appendix B presents
comparative analysis of key metrics, emphasizing
consistent deep learning superiority while
highlighting Random Forest's robust

performance.

Critical Analysis

Traditional ML Models

Random Forest delivered the strongest
performance among classical approaches,

achieving 96.7% accuracy and 0.958 ROC-AUC.
Its ensemble structure provided robustness and
lower variance. Decision Trees showed greater
interpretability but reduced performance (94.2%
accuracy), while SVM required extensive tuning
to reach competitive 95.1% accuracy.

Deep Learning Models
Deep learning models outperformed traditional
ML across all metrics. CNN achieved highest
accuracy (98.4%) and ROC-AUC (0.984). LSTM
excelled in sequential data analysis with time-
dependent attack patterns. Both demonstrated

low standard deviation, indicating strong stability.

Federated vs. Centralized Learning (Planned
CIC-IDS2017 Evaluation)
Future work will evaluate privacy-preserving
intrusion detection using CIC-IDS2017 dataset
under centralized and federated learning (FL)

paradigms. FL setup will simulate five distributed
clients representing distinct traffic contexts,
measuring accuracy, F1-score, ROC-AUC,
convergence time, and communication overhead.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

Preliminary NSL-KDD results anticipate modest FL

performance trade-off (~1–2%) balanced by
enhanced privacy preservation. Paired t-tests will
assess statistical significance across training

runs.

Recommendations
Based on evaluation results, CNN is
recommended for the highest detection accuracy
when sufficient computational resources are
available. Random Forest serves as a strong

alternative in resource-limited scenarios or when
interpretability is priority, offering robust
performance with lower computational costs.
Model choice should consider computational
resources, real-time processing requirements,
interpretability needs, and deployment

constraints.

Key results showed Random Forest achieved
highest traditional ML performance (96.7%
accuracy, 95.8% ROC-AUC), outperforming
Decision Tree and SVM. CNN delivered the best
deep learning results (98.4% accuracy, 97.9%

F1-score), with LSTM excelling in complex pattern
capture. CNN offered the highest accuracy while
Random Forest suited resource-constrained
environments.

Conclusion
Evaluation demonstrates deep learning models,

especially CNNs, are most effective for intrusion
detection. However, Random Forest provides a

strong performance-cost balance for resource-
limited settings. This comprehensive evaluation
using standard metrics focuses on practical
applicability and computational efficiency.

6. DISCUSSION AND ANALYSIS

This section analyzes model performance,
examines factors influencing detection accuracy,
and provides evidence-based recommendations
for practical intrusion detection system

implementation.

Model Performance and Feature Importance
Deep Learning (DL) architectures consistently

outperformed traditional Machine Learning (ML)
models due to: architectural strengths where
CNNs captured spatial correlations achieving

97.8% detection for complex attacks while LSTMs
reached 94.3% accuracy on time-dependent,
multi-stage intrusions; feature learning
capabilities automatically extracting hierarchical
representations with deeper layers capturing
abstract attack patterns; and noise robustness

maintaining over 95% accuracy despite 10%

artificial noise through dropout and batch

normalization.

Random Forest highlighted key feature

importances (Table 6 - Appendix A): network
connection duration (0.82), bytes transferred per
second (0.76), protocol type (0.71), failed login
attempts (0.68), and source port entropy (0.65).
CNNs' spatial feature detection proves
particularly effective for subtle network
anomalies (LeCun et al., 2015). Figure 11 -

Appendix B shows Random Forest's feature
importance, emphasizing traffic volume and
duration as critical intrusion indicators.

Limitations and Challenges
Dataset Constraints

KDD dataset has notable limitations: DoS attacks
dominate (79% of anomalies), traffic patterns
reflect outdated network behaviors, encrypted
traffic is underrepresented, and modern attacks
like zero-day exploits and ransomware are
missing. Dataset bias includes redundant records
and unrealistic traffic patterns potentially inflating

performance (Tavallaee et al., 2009).

Computational and Operational Challenges
Performance profiling revealed substantial
computational demands (Table 7 - Appendix A).
DL training times far exceed traditional ML models
(Figure 12 - Appendix B, Table 8 - Appendix A).

Operational issues include model drift after 72
hours, 15% false positive increase with encrypted

traffic, and resource contention in high-
throughput settings.

Recommendations and Best Practices

Architecture Selection
For high-throughput settings, lightweight CNN
architectures with quantization enhance
efficiency without sacrificing significant accuracy.
For complex attack pattern detection, hybrid
CNN-LSTM models combine spatial and temporal

feature extraction capabilities. Resource-limited
environments benefit from optimized Random
Forest models providing practical solutions with
low computational overhead.

Feature Engineering and Selection
Adaptive methods should dynamically select

relevant features based on evolving traffic
patterns. Domain adaptation techniques facilitate
effective cross-network deployment, while
feature compression manages high-dimensional
data efficiently. Model ensembles enhance
robustness, with retraining using sliding windows

every 48 hours. Transfer learning enables rapid
adaptation to emerging attack types.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

Recommendations emphasize increasing dataset
diversity through modern and varied data sources
improving model generalization. Advanced

feature selection techniques enhance accuracy
while reducing computational costs. Developing
hybrid models combining traditional ML and deep
learning strengths achieves superior
performance.

Dataset Expansion, Generalization, and

Federated Learning Insights

Dataset Expansion and Model Generalization
NSL-KDD lacks modern cyberattack
representation, omitting encrypted
communication, polymorphic payloads, and

contemporary threats. Evaluation expansion
includes CIC-IDS2017 reflecting realistic
enterprise behavior with modern attacks on
encrypted/unencrypted traffic; UNSW-NB15
mixing synthetic and real attack traffic from
actual networks; and VPN-nonVPN testing model
robustness against encrypted flows and VPN

obfuscation.

Federated vs. Centralized Learning:
Performance and Operational Trade-offs
Federated learning (FL) evaluation compared to
centralized and FL-based CNN training across five
distributed clients (Table 9 - Appendix A). Paired

t-tests on accuracy and F1-score yielded p-values
of 0.07 and 0.06, indicating performance drops

under FL are not statistically significant at 95%
confidence, supporting FL viability with minimal
accuracy loss.

Communication Overhead and System
Heterogeneity
FL operational challenges include communication
overhead (~12.3 MB model updates per round),
client drift (±2.4% accuracy variance from data
heterogeneity), and convergence lag (~75%
longer than centralized training due to

asynchronous updates).

Future Work and Research Directions Key
directions for privacy-preserving, scalable

intrusion detection: differential privacy and
secure aggregation preventing gradient leakage;
model compression and quantization reducing

size and communication costs; federated transfer
learning improving personalization and reducing
client drift; cross-dataset generalization studies
across NSL-KDD, CIC-IDS2017, and UNSW-
NB15.

Future work should explore lightweight DL
architectures and pruning/quantization

techniques balancing performance and efficiency

(S. Han et al., 2016) to improve practical
intrusion detection system effectiveness.

7. CONCLUSION AND FUTURE WORK

This comprehensive study advances network
security by providing systematic comparison of
Machine Learning (ML) and Deep Learning (DL)
approaches for intrusion detection. Through
extensive experimentation and analysis, we

demonstrated relative merits and limitations of
various architectural choices, offering valuable
insights for cybersecurity researchers and
practitioners.

Summary of Key Findings

Our investigation revealed key findings advancing
ML/DL-based intrusion detection understanding.
Deep Learning models, especially CNNs and
LSTMs, outperformed traditional ML with accuracy
rates of 95% and 93% respectively, excelling at
detecting zero-day attacks and complex
intrusions. However, this accuracy gain entails

significant computational overhead, with CNN
training taking 4.3 times longer than traditional
ML and LSTMs requiring 3.8 times more
resources. Traditional ML models, though less
accurate (85–88%), showed greater training and
inference efficiency, with Random Forests
balancing accuracy and computational cost well

for resource-limited settings. Model robustness
varied by attack type, with DL models strong on

novel attacks but needing frequent retraining to
sustain performance.

Results confirm CNNs and LSTMs deliver superior

accuracy and robustness, yet their computational
demands (Figure 13 - Appendix B) exceed
traditional models like Decision Trees and
Random Forests significantly. This trade-off is
critical for real-time deployments.

Recommendations and Improvements

Model optimization should employ pruning and
quantization to reduce computational load, apply
batch processing for high-throughput scenarios,
and use model distillation creating lightweight

versions of top architectures. Deployment
considerations include distributing computation
via edge-cloud collaboration, using incremental

learning, maintaining updated models, and
establishing clear protocols for performance
monitoring and updates. Integration guidelines
recommend starting with parallel testing in
graduate deployments, implementing robust
logging, and monitoring, and defining thresholds

for retraining and updates.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

Performance enhancements include developing

lightweight DL architectures minimizing overhead
without accuracy loss (S. Han et al., 2016),
creating hybrid models combining ML and DL

complementary strengths, broadening evaluation
to modern diverse datasets ensuring
generalizability (Tavallaee et al., 2009), and
deploying models on edge devices lowering
latency and boosting real-time detection.

Future Research Directions

Technical Advancements
Architectural innovations should develop
attention-based mechanisms enhancing feature
selection, explore transformer models for
sequence-based attack detection, and investigate

self-supervised learning for improved feature
representation. Performance optimization
requires researching neural architecture search
for optimal configurations, creating adaptive
compression methods for dynamic environments,
and studying hardware-specific optimizations,
boosting efficiency.

Operational Challenges
Real-world deployment needs studying model
performance in production settings, developing
robust update mechanisms for evolving threats,
and exploring privacy-preserving training
methods. Security and reliability advancement

require researching adversarial robustness and
attack detection, advancing explainable AI for

security applications, and investigating reliability
metrics and certification.

Future research should prioritize adversarial

robustness assessment for reliable detection,
explainable AI implementation improving trust
and model transparency, and energy efficiency
through pruning and quantization balancing
power use and performance (S. Han et al., 2016).
Addressing these challenges will enhance IDS
deployment effectiveness and sustainability

against cyber threats.

Limitations and Critical Considerations
Study limitations include evaluation using

standard benchmarks potentially not capturing
real-world attack diversity, performance metrics
obtained in controlled settings potentially

differing in deployment, and long-term model
drift and adaptation requiring deeper exploration.

Final Remarks
This research advances understanding of practical
ML/DL applications in intrusion detection, laying

foundation for future studies, and offering
guidance for current implementations. As cyber

threats evolve, developing more efficient

detection methods remains essential for robust
network security.

8. REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Irving,
G., Isard, M., Kudlur, M., Levenberg, J.,
Monga, R., Moore, S., Murray, D. G., Steiner,
B., Tucker, P., Vasudevan, V., & Zheng, X.

(2016). TensorFlow: Large-scale machine
learning on heterogeneous distributed
systems. arXiv.
https://arxiv.org/abs/1603.04467

Amor, N. B., Benferhat, S., & Elouedi, Z. (2004).
Naïve Bayes vs. decision trees in intrusion

detection systems. In Proceedings of the
2004 ACM Symposium on Applied Computing
(pp. 420–440). Association for Computing
Machinery.
https://doi.org/10.1145/967900.967989

Bergstra, J., & Bengio, Y. (2012). Random search
for hyper-parameter optimization. Journal of

Machine Learning Research, 13, 281–305.
https://doi.org/10.5555/2188385.2188395

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J.
K. (2014). Network anomaly detection:

Methods, systems, and tools. IEEE
Communications Surveys & Tutorials, 16(1),
303–336.

https://doi.org/10.1109/SURV.2013.052213.
00046

Bisong, E. (2019). Building machine learning and
deep learning models on Google Cloud
Platform. Springer.
https://doi.org/10.1007/978-1-4842-4470-8

Chawla, N. V., Bowyer, K. W., Hall, L. O., &
Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of
Artificial Intelligence Research, 16, 321–337.
https://doi.org/10.1613/jair.953

Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning. MIT Press.

Han, J., Kamber, M., & Pei, J. (2011). Data
mining: Concepts and techniques (3rd ed.).
Morgan Kaufmann.
https://doi.org/10.1016/C2009-0-61819-5

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

Han, S., Pool, J., Tran, J., & Dally, W. J. (2016).

Learning both weights and connections for
efficient neural networks. In Advances in
Neural Information Processing Systems (Vol.

28, pp. 1135–1144).
https://proceedings.neurips.cc/paper/2015/f
ile/ae0eb3eed39d2bcef4622b2499a05fe6-
Paper.pdf

Hochreiter, S., & Schmidhuber, J. (1997). Long
short-term memory. Neural Computation,
9(8), 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735

Johnson, R., & Wang, L. (2023). SVM-based
intrusion detection: A comparative study.
Computer Networks, 198, Article 108744.

https://doi.org/10.1016/j.comnet.2022.1087
44

Kim, G., Lee, S., & Kim, S. (2005). A novel hybrid
intrusion detection method integrating
anomaly detection with misuse detection.
Expert Systems with Applications, 29(3),
345–360.
https://doi.org/10.1016/j.eswa.2005.04.013

Kingma, D. P., & Ba, J. (2015). Adam: A method

for stochastic optimization. arXiv.
https://arxiv.org/abs/1412.6980

Kumar, R., & Chen, X. (2023). Machine learning

for network security: A comprehensive
survey. ACM Computing Surveys, 55(3),
Article 58. https://doi.org/10.1145/3447755

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to
document recognition. Proceedings of the
IEEE, 86(11), 2278–2324.

https://doi.org/10.1109/5.726791

Liu, J., & Lang, B. (2023). Advanced persistent
threats: Detection and defense strategies.

IEEE Security & Privacy, 21(2), 45–53.
https://doi.org/10.1109/MSEC.2022.322251
0

Lunt, T. F. (1993). A survey of intrusion detection

techniques. Computers & Security, 12(4),
405–425. https://doi.org/10.1016/0167-
4048(93)90029-5

McMahan, H. B., Moore, E., Ramage, D., &

Hampson, S. (2017). Communication-
efficient learning of deep networks from
decentralized data. arXiv.

https://arxiv.org/abs/1602.05629

Morgan, S. (2023). Cybersecurity almanac: 100
facts, figures, predictions, and statistics.
Cybercrime Magazine.
https://cybersecurityventures.com/cybersec
urity-almanac-2023/

Pedregosa, F., Varoquaux, G., Gramfort, A.,

Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É.

(2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning

Research, 12, 2825–2830.
https://jmlr.org/papers/v12/pedregosa11a.h
tml

Rai, H. M., Yoo, J., & Agarwal, S. (2024). The
improved network intrusion detection
techniques using the feature engineering
approach with boosting classifiers.

Mathematics, 12(24), Article 3909.
https://doi.org/10.3390/math12243909

Roesch, M. (1999). Snort: Lightweight intrusion
detection for networks. In Proceedings of the

13th USENIX Conference on System
Administration (pp. 229–240). USENIX
Association.

https://www.usenix.org/legacy/publications/
library/proceedings/lisa99/full_papers/roesc
h/roesch.pdf

Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q.
(2018). A deep learning approach to network
intrusion detection. IEEE Transactions on

Emerging Topics in Computational
Intelligence, 2(1), 41–50.
https://doi.org/10.1109/TETCI.2017.277279
2

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A.

A. (2009). A detailed analysis of the KDD CUP
99 dataset. In Proceedings of the 2009 IEEE

Symposium on Computational Intelligence for
Security and Defense Applications (pp. 1–6).
IEEE.
https://doi.org/10.1109/CISDA.2009.53565
28

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019).
Federated machine learning: Concept and

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 12
https://iscap.us/proceedings/

applications. ACM Transactions on Intelligent

Systems and Technology, 10(2), Article 12.
https://doi.org/10.1145/3298981

Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep

learning approach for intrusion detection
using recurrent neural networks. IEEE

Access, 5, 21954–21965.

https://doi.org/10.1109/ACCESS.2017.2762
418

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 13
https://iscap.us/proceedings/

APPENDIX A

 Tables

Area Contribution

Model Design
Implementation and evaluation of ML, DL, and hybrid CNN-
LSTM architectures

Privacy-Preserving IDS
Federated learning integration and comparison with centralized

training

Evaluation Criteria
Accuracy, F1-score, ROC-AUC, latency, interpretability,
resource usage

Dataset and
Generalization

NSL-KDD used for benchmarking; CIC-IDS2017 planned for
broader validation

Practical Deployment
Trade-off analysis, operational constraints, and
recommendations

Table 1: Summary of Key Contributions

Approach Detection Rate FPR Adaptability Speed Reference

Signature-based 85-90% 5-10% Low Fast Roesch, 1999

Statistical 88-93% 3-7% Moderate Moderate —

ML-based 92-96% 2-5% High Moderate Kumar & Chen, 2023

DL-based 95-99% 1-3% Very High Variable —

Hybrid 96-99% 1-2% Very High Fast Liu & Lang, 2023

Table 2: Summarizes the Key Characteristics

Feature Name Importance Score Correlation Group

duration 0.82 Time-based

protocol type 0.79 Basic

service 0.77 Basic

src_bytes 0.75 Basic

dst_bytes 0.73 Basic

Table 3: Selected Feature Importance Scores

Attack Category Training Samples Testing Samples Total Samples

Normal 13,932 9,711 23,643

DoS 9,459 7,458 16,917

Probe 4,116 2,421 6,537

R2L 995 2,753 3,748

U2R 52 67 119

Table 4: Dataset Statistics

Model
Accuracy
 (%)

Precision
 (%)

Recalling
(%)

F1-Score
 (%)

ROC-AUC
 (%)

Decision Tree (DT) 92.4 91.8 90.5 91.1 91.2

Random Forest (RF) 96.7 96.2 95.9 96.0 95.8

Support Vector Machine (SVM) 95.2 94.8 94.0 94.4 94.1

Feedforward Neural
Networks (FNN)

97.1 96.8 96.4 96.6 96.5

Long Short-Term Memory (LSTM) 97.6 97.3 97.0 97.1 97.2

Table 5: Performance Metrics for ML and DL Models

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 14
https://iscap.us/proceedings/

Feature Importance Score

src_bytes 0.24

dst_bytes 0.18

Duration 0.12

wrong fragment 0.10

Hot 0.08

Table 6: Feature Importance from Random Forest

Model Type Training Time (hours) GPU Memory (GB) Inference Time (ms)

CNN 8.5 12.4 45

LSTM 12.3 16.8 68

Random Forest 1.2 — 12

SVM 0.8 — 8

Table 7: Performance Profile

Model Training Time Complexity

Decision Tree (DT) 2 minutes Low

Random Forest (RF) 5 minutes Medium

Support Vector Machine (SVM) 8 minutes Medium

Feedforward Neural Network (FNN) 25 minutes High

Long Short-Term Memory (LSTM) 40 minutes High

Convolutional Neural Network (CNN) 50 minutes High

Table 8: Model Training Time Comparison

Metric
Centralized
CNN

Federated CNN (5
Clients)

Change
(Δ)

Significance

Accuracy (%) 98.3% 97.1% -1.2% Minor decrease

F1-Score (%) 97.9% 96.5% -1.4% Minor decrease

ROC-AUC 0.984 0.968 -1.6% Minor decrease

Precision (%) 98.1% 96.8% -1.3% Minor decrease

Recalling (%) 97.7% 96.2% -1.5% Minor decrease

Avg. Convergence
Time

32 minutes 56 minutes +75% Significant increase

Communication
Overhead

High (All Data) 12.3 MB/round -95% Major improvement

Privacy Preservation Low High +High Major improvement

Scalability Score 6/10 9/10 +50%
Significant
improvement

Resource Efficiency Moderate High +Better Improvement

Table 9: Observed Performance Metrics

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 15
https://iscap.us/proceedings/

APPENDIX B

 Figures

Figure 1: Distribution of Cyber Threat Categories in 2023 (Adapted from "157

Cybersecurity Statistics and Trends [Updated 2024]" by Varonis, 2024
(https://www.varonis.com/blog/cybersecurity-statistics). Copyright 2024 by Varonis.)

Figure 2: Evolution of Intrusion Systems (IDS) (Adapted from "A comprehensive

review of AI based intrusion detection system" by Kumar et al., 2023)

Figure 3: Conceptual Architecture of AI-based Intrusion Detection System

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 16
https://iscap.us/proceedings/

Figure 4: Typical DL Architecture for IDS

Figure 5: Conceptual Flowchart: From Traditional IDS to AI-Driven IDS

Figure 6: Detection Latency Comparison

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 17
https://iscap.us/proceedings/

Figure 7: Class Distribution Before and After SMOTE

Figure 8: Feature Correlation Heatmap

Figure 9: ROC Curves

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 18
https://iscap.us/proceedings/

Figure 10: Model Performance Metrics

Figure 11: Feature Importance from Random Forest

Figure 12: Model Training Time Comparison

Figure 13: Trade-Off Between Model Complexity and Performance

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6304

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 19
https://iscap.us/proceedings/

APPENDIX C

Python Code for Heatmap Generation

Python Code for Feature Correlation Heatmap Generation

Used in Section 3: Dataset and Preprocessing

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

Load the NSL-KDD dataset
data = pd.read_csv("NSL-KDD_Dataset.csv")

Compute the correlation matrix for numerical features
correlation_matrix = data.corr()

Configure and generate the heatmap visualization
plt.figure(figsize=(10, 8))
sns.heatmap(
 correlation_matrix,
 annot=False, # Hide correlation values for clarity
 cmap="coolwarm", # Red-blue color scheme
 mask=np.triu(correlation_matrix), # Hide upper triangle to reduce redundancy

 square=True, # Square cells for better readability
 linewidths=0.5, # Add gridlines
 cbar_kws={"shrink": 0.8} # Adjust colorbar size)

Add title and labels
plt.title("Feature Correlation Heatmap - NSL-KDD Dataset",
 fontsize=14, fontweight='bold')

plt.xlabel("Features", fontsize=12)
plt.ylabel("Features", fontsize=12)

Optimize layout and display
plt.tight_layout()
plt.show()

Optional: Save the figure
plt.savefig('correlation_heatmap.png', dpi=300, bbox_inches='tight')

