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Abstract  

 
Artificial intelligence (AI) is improving the field of predictive healthcare by enabling data-driven decision-
making through advanced machine learning (ML) algorithms. Stroke prediction is challenging due to 
highly imbalanced clinical datasets, where positive cases are rare. This study investigates the impact of 

data-level resampling methods on the performance of AI-driven predictive models. Four widely used 
classifiers—Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and 

Gradient Boosting (GB)—were applied to a highly imbalanced stroke dataset. Models were evaluated 
across key AI performance metrics. Paired t-tests assessed the statistical significance of observed 
differences. This comparative analysis offers critical insights into how data balancing techniques impact 
the reliability of AI models. The findings support the development of more effective and ethically 
responsible AI systems for early stroke detection. 
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1. INTRODUCTION 

 
Artificial intelligence (AI) is increasingly important 
in healthcare, supporting diagnosis, prediction, 
and management of complex conditions. Stroke 
prediction is a particularly high-impact application 

given the sudden onset and severe consequences 
of stroke. Machine learning (ML) models show 
promise for identifying risk by analyzing large-
scale electronic health records, but their 

effectiveness is often limited by classification 
imbalance: stroke-positive cases represent only a 
small fraction of the data, making accurate 

detection difficult. In such scenarios, models tend 
to favor the majority class and overlook minority 
cases, raising the risk of false negatives—an 
unacceptable outcome in clinical settings where 
early detection is critical. 
 

To address this, researchers apply resampling 
techniques that adjust class distribution in 
training data. Oversampling methods such as the 
Synthetic Minority Over-sampling Technique 
(SMOTE) create synthetic minority samples, while 
undersampling approaches (e.g., Tomek Links, 

Edited Nearest Neighbors, and NearMiss) reduce 

majority samples to balance the data. Despite 
their widespread use, few studies provide 
systematic, side-by-side comparisons of these 
methods across multiple ML classifiers in stroke 
prediction. 
 
This study fills that gap by evaluating the impact 

of SMOTE and several undersampling techniques 
on four common classifiers: Logistic Regression 
(LR), Random Forest (RF), Extreme Gradient 
Boosting (XGB), and Gradient Boosting (GB). We 
assess performance using multiple evaluation 
metrics and statistical testing to identify trade-

offs and practical implications. 
Our research is guided by two questions: 

• RQ1: How do SMOTE and selected 
undersampling methods compare in 

improving model performance for stroke 
prediction with highly imbalanced 
datasets? 

• RQ2: What trade-offs arise between 
predictive performance when using 

SMOTE versus undersampling 
techniques? 

By addressing these questions, this study 
contributes to building more accurate and 
clinically relevant AI models for early stroke 
detection. 
 

2. LITERATURE REVIEW 

 
This section reviews key literature on stroke 
prediction by focusing on classification imbalance, 
oversampling methods such as SMOTE, 

undersampling techniques, and the use of 
machine learning models. It concludes by 
identifying current research gaps that this study 

aims to address. 
 
Class Imbalance in Stroke Prediction 
Class imbalance is a well-documented challenge 
in healthcare datasets, where stroke-positive 
cases are far fewer than non-stroke cases. This 

imbalance biases models toward majority 
classifications, leading to poor sensitivity in 
detecting actual stroke cases and an elevated risk 
of false negatives (Salmi et al., 2024; Chen et al., 
2024; Lin et al., 2024). In clinical contexts, 
missed diagnoses have serious consequences, 

underscoring the importance of addressing 

imbalance in predictive modeling (Aish et al., 
2024). 
 
Over-sampling Techniques: SMOTE 
Over-sampling increases the representation of 
minority cases in training data. The Synthetic 
Minority Over-sampling Technique (SMOTE) is 

one of the most widely adopted methods, 
generating synthetic samples by interpolating 
between existing minority cases (Chawla et al., 
2002). Studies show that SMOTE improves 
sensitivity and F1-scores in medical predictions 
(Salmi et al., 2024), though it can also create 

overlapping regions or introduce noise, increasing 
overfitting risk (Elreedy et al., 2024; Fernández 

et al., 2018a, 2018b). 
 
Undersampling Techniques 
Undersampling reduces imbalance by removing 
majority-class cases. While effective in improving 

minority detection, it risks discarding valuable 
information in smaller datasets.  

• Random Undersampling (RU): 
Efficient and often improves recall but 
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may remove informative samples (He & 

Garcia, 2009). 
• Tomek Links: Identifies neighboring 

pairs from different classes and removes 
majority instances to clean decision 

boundaries. It can enhance separability 
but may discard useful borderline cases 
(Tomek, 1976; Batista et al., 2004). 

• Edited Nearest Neighbors (ENN): 
Removes samples that disagree with 
most neighbors, reducing noise but 
sometimes overly eliminating data and 

increasing computational cost (Wilson, 
1972; Laurikkala, 2001). 

• NearMiss: Retains majority cases based 
on distance to minority samples, 
emphasizing boundary representation 

(Mani & Zhang, 2003). Variants differ in 
focus: NearMiss-1 enhances sensitivity 

but raises false positives; NearMiss-2 
reduces overlap but may miss borderline 
patterns (Yen & Lee, 2009); NearMiss-3 
sharpens boundaries but can preserve 
noisy examples. 

•  

Machine Learning and Sampling Methods 
Machine learning classifiers such as Logistic 
Regression (LR), Random Forest (RF), Gradient 
Boosting (GB), and Extreme Gradient Boosting 
(XGB) are widely used in healthcare prediction. 
Logistic Regression remains a strong baseline due 
to its interpretability, particularly when imbalance 

is corrected through resampling (Sáez et al., 

2015). Ensemble models like RF and GB capture 
nonlinear patterns and perform well with SMOTE 
or hybrid approaches (Chawla et al., 2002; 
Fernández et al., 2018). XGB, leveraging gradient 
boosting, demonstrates strong predictive power 
and is enhanced by resampling techniques (Chen 

& Guestrin, 2016; Haixiang et al., 2017). 
Combining these classifiers with oversampling or 
undersampling consistently improves minority-
class detection in medical datasets (Douzas & 
Bacao, 2018). 
 

3. METHODOLOGY 
 
This study follows the research methodology used 

by Kamiri and Mariga (2021), which includes Data 
Collection, Data Pre-processing, Model Training, 
Model Testing, and Model Evaluation. A process 
model outlining the methodology’s steps is shown 

in Appendix F. 
 
We aim to look at how different resampling 
techniques can help improve stroke prediction 
when the data is heavily imbalanced. We compare 
SMOTE, a popular oversampling method, with 
several undersampling approaches like Random 

Undersampling, Tomek Links, Edited Nearest 

Neighbors (ENN), and the three versions of 
NearMiss. To see how these methods impact 
results, we test them across four commonly used 
machine learning models: Logistic Regression, 

Random Forest, XGBoost, and Gradient Boosting, 
all using a real-world stroke dataset where 
positive cases are rare. 
 
Gaps in Existing Research 
While SMOTE and undersampling techniques have 
been studied independently, there is limited 

research that compares a broad range of these 
methods within the context of stroke prediction 
across multiple classifiers. Many existing studies 
also lack statistical validation of their findings, 
which limits the reproducibility and reliability of 

their conclusions. Furthermore, few works 
evaluate performance using a comprehensive set 

of metrics, such as precision, recall, F1-score, 
ROC-AUC, and PR-AUC, which are essential for 
assessing models trained on imbalanced data. 
 
This study addresses these limitations by 
performing a side-by-side comparison of several 

resampling techniques across four classifiers, 
applying consistent evaluation criteria and 
statistical significance testing. The findings offer 
practical insights into how different resampling 
methods affect stroke prediction performance and 
provide guidance for building more reliable 
machine learning models in healthcare. 

 

Feature Feature description 

id Unique identifier 

gender Male, Female, or Other 

age Age of the patient 

hypertension 0 if the patient doesn't 
have hypertension, 1 if the 
patient has hypertension 

heart_disease 0 if the patient doesn't 

have any heart diseases, 1 
if the patient has a heart 
disease 

ever_married No or Yes 

work_type Children, Govt_job, 

Never_worked, Private, or 
Self-employed 

Residence_type Rural or Urban 

avg_glucose_level Average glucose level in 
the blood 

bmi Body mass index 

smoking_status Formerly smoked, Never 
smoked, Smokes, or 
Unknown 

stroke 1 if the patient had a 

stroke, 0 if not 

Table 1: Description of Stroke Dataset 
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The following section provides a detailed 

explanation of the research methodology adopted 
in this study. 
 
Dataset 

The dataset used in this study contains 5,110 
instances, each representing a patient, and is 
publicly available on Kaggle (Fedesoriano, n.d.). 
The dataset includes a variety of attributes 
relevant to predicting the occurrence of a stroke, 
with detailed descriptions provided in Table 1 
below. 

Among the patients, 2,994 were female, 2,115 
were male, and 1 was categorized as other. The 
average age was 43 years, with a range from 18 
to 82 years. Additionally, 498 patients had 
hypertension, and 276 were diagnosed with heart 

disease. The variable smoking_status represents 
the patient’s self-reported smoking behavior. It is 

a categorical feature with four possible values: 

• formerly smoked – the individual has 
smoked in the past but is no longer a 
smoker. 

• never smoked – the individual has never 
smoked. 

• smokes – the individual is a current 
smoker. 

• Unknown – the smoking history of the 
individual is not recorded (i.e., missing or 

unavailable information). 
 
The variable work_type describes a patient’s type 

of employment or occupational status. It is a 
categorical variable with five distinct values: 

• Private – employed in the private sector. 

• Self-employed – working independently 
or running their own business. 

• Govt_job – employed in government 
service. 

• Never_worked – individuals who have 
never been employed. 

• Children – individuals classified as a 
dependent and had not entered into the 

workforce. 
 
The dataset exhibits a significant classification 
imbalance, with the majority of cases being non-
stroke. Specifically, 95.1% (4,861 cases) are 

non-stroke, while 4.9% (249) represent stroke 

cases, as shown in Figure 1. This imbalance 
mirrors real-world scenarios, where stroke events 
are less frequent but have significant clinical 
implications. 

 
Figure 1: Classification Distribution in 
Stroke Dataset 
 
Data Preprocessing 
To prepare the dataset for model development, 

several preprocessing steps were implemented. 
Missing BMI values, which accounted for 
approximately 4% of the data, were imputed 
using the mean to maintain consistency. 
Irrelevant features, such as patient ID, were 
excluded, while categorical features (e.g., 
gender, ever_married, work_type, 

Residence_type, and smoking_status) were 
label-encoded into binary values for compatibility 

with the model. 
 
Numerical features were standardized to address 
discrepancies in magnitude and units, ensuring 
fair evaluation and preventing data leakage. For 

example, average glucose levels are in the 
hundreds, while BMI values are typically in the 
tens. 
 
Selected Features 
Significant independent variables and 

independent variables deemed significant to 
stroke prediction but determined not highly 
correlated to stroke were included in our analysis. 
Based on the correlation between the target 
variable (stroke) and the independent variables, 

as shown in Figure 2 and Figure 4 in Appendix D, 
we excluded variables such as work_type, 

Residence_type, and gender from model 
development because their correlations with the 
target variable were negligible (|r| ≤ 0.03; 
Cohen, 1988) and were not determined to not be 
significant to the model. 
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Figure 2: Correlation between Target 

Variable (Stroke) and Independent 
Variables 
 
Although the simple correlations between BMI, 

smoking status, and stroke were negligible in our 
dataset, we retained these variables in model 
development for both theoretical and 
methodological reasons. First, BMI and smoking 
are widely recognized in the epidemiological 
literature as important risk factors for stroke 
(Global Burden of Metabolic Risk Factors for 

Chronic Diseases Collaboration, 2014; Pan et al., 
2019), and excluding them could undermine the 
clinical relevance of our findings. Second, 
correlation with the outcome alone does not 
capture the potential contribution of these 

variables in a multivariate framework, where 
nonlinear associations or interactions with other 

predictors may enhance predictive performance 
(Molnar, 2022). Finally, including BMI and 
smoking status supports comparability with prior 
stroke prediction studies, ensuring that our 
results can be interpreted within the broader body 
of research. 

 
Model Selection and Development 
To evaluate the impact of different resampling 
strategies on stroke prediction, we implemented 
a pipeline-based approach that combined 
resampling, standardization, and classification. 
Four machine learning classifiers were selected 

based on their widespread use and demonstrated 

effectiveness in binary classification tasks. These 
included Logistic Regression (LR), Random Forest 
(RF), Extreme Gradient Boosting (XGB), and 
Gradient Boosting Classifier (GB). Together, 
these models represent a balanced mix of linear 
and ensemble-based learning algorithms 

commonly used in healthcare data analysis. 
 
The dataset was split into 70 percent for training 
and 30 percent for testing. All resampling 

techniques and machine learning models were 

implemented using their default settings, with the 
random state parameter set to 42 to ensure 
reproducibility. To ensure reliable performance 
estimates, we used 5-fold stratified cross-

validation during model training. In this 
approach, the dataset was divided into five equal 
parts (folds) while preserving the proportion of 
stroke and non-stroke cases in each fold. For each 
iteration, four folds were used to train the model 
and the remaining fold was used for testing. This 
process was repeated five times, with each fold 

serving once as the test set. The results from all 
five iterations were then averaged to produce a 
more stable and generalizable estimate of model 
performance.  
 

Cross-validation is particularly important in 
imbalanced datasets such as stroke prediction, 

because it prevents performance results from 
being overly influenced by a single train–test 
split. Without this procedure, the distribution of 
minority cases (stroke events) in the test set 
could vary widely, leading to poor sensitivity and 
a higher risk of false negatives. By averaging 

across folds, cross-validation provides a more 
accurate picture of how often the model is likely 
to produce false negatives (missed stroke cases, 
which carry high clinical cost) and false positives 
(incorrectly flagged non-stroke cases, which 
increase system burden and unnecessary 
interventions). This ensures that the evaluation 

reflects not only statistical performance but also 

the potential clinical and operational costs 
associated with deploying the models in practice 
 
Each classifier was evaluated using a range of 
data balancing techniques. These included one 
oversampling method, Synthetic Minority Over-

sampling Technique (SMOTE), and several 
undersampling methods, such as Random 
Undersampling, Tomek Links, Edited Nearest 
Neighbors (ENN), and the three NearMiss variants 
(NearMiss-1, NearMiss-2, and NearMiss-3). Model 
performance was also evaluated using the 

original imbalanced dataset, referred to as the 
"None" configuration, to serve as a baseline. 
 

For every combination of classifier and 
resampling method, a machine learning pipeline 
was constructed. The pipeline began with a 
resampling step (where applicable), followed by 

feature standardization using the StandardScaler, 
and concluded with the selected classifier. To 
ensure a fair and robust assessment of model 
performance, five-fold stratified cross-validation 
was employed. This approach maintained the 
original classification distribution in each fold, 
which is particularly important when dealing with 
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imbalanced datasets. 

 
Model performance was evaluated using six 
metrics: accuracy, precision, recall, F1-score, 
ROC-AUC, and PR-AUC. These metrics provided a 

well-rounded evaluation framework, especially 
suitable for assessing models trained on 
imbalanced data. To avoid data leakage, only the 
test scores from each fold were collected during 
cross-validation. 
 
After cross-validation, each model pipeline was 

trained on the full training set and then evaluated 
on the held-out test set. A confusion matrix was 
generated for each configuration to capture the 
counts of true positives, false positives, false 
negatives, and true negatives. These results were 

recorded for detailed error analysis. 
 

Finally, predictions from each model-resampling 
configuration were saved for further statistical 
analysis and visualizations. Confusion matrices 
were also plotted to offer a visual understanding 
of how well each model performed under different 
resampling scenarios. 

 
This experimental setup provided a consistent 
and reproducible framework for evaluating how 
various resampling methods influenced the 
classification performance of different machine 
learning models. 
 

Evaluation Metrics 

To assess model performance under different 
resampling strategies, several well-established 
evaluation metrics were used. These metrics help 
capture both overall accuracy and the model’s 
ability to correctly identify minority classification 
instances in an imbalanced dataset (He & Garcia, 

2009). 
 
Accuracy 
Accuracy measures the proportion of correctly 
classified instances. Although commonly used, it 
can be misleading in imbalanced datasets since a 

model may achieve high accuracy by always 
predicting the majority classification (Jeni et al., 
2013). 

 
Precision (Positive Predictive Value) 
Precision calculates the proportion of true stroke 
cases among all cases predicted as stroke. High 

precision reflects fewer false positives, which is 
essential to avoid unnecessary medical 
interventions (Sokolova & Lapalme, 2009). 
 
Recall (Sensitivity or True Positive Rate) 
Also known as sensitivity, recall measures the 
ability to correctly identify all actual stroke cases. 

It is critical in healthcare to minimize false 

negatives, which may result in missed diagnoses 
(Davis & Goadrich, 2006). 
 
A low recall score indicates that many stroke 

patients are incorrectly classified as non-stroke, 
increasing the risk of undiagnosed cases. 
 
F1-Score 
The F1-score is the harmonic mean of precision 
and recall, offering a balanced view when both 
false positives and false negatives matter. It is 

particularly useful in imbalanced classification 
settings (Fernández et al., 2018a). 
 
A high F1-score means that the model effectively 
balances precision and recall, making it a more 

informative metric for evaluating stroke 
prediction performance. 

 
Confusion Matrix 
The confusion matrix summarizes predictions into 
four categories: true positives, true negatives, 
false positives, and false negatives. It provides a 
clear view of how the model performs on each 

classification (Tharwat, 2020; Swaminathan & 
Tantri, 2024), especially in minimizing false 
negatives. 
 
Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC) 
The Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) indicates how 

well the model distinguishes between stroke and 
non-stroke cases across various threshold 
settings. It evaluates the trade-off between true 
positive rate and false positive rate and is widely 
used in binary classification tasks (Fawcett, 2006; 
Choi et al., 2024). 

 
Area Under the Precision-Recall Curve (PR-
AUC) 
The Area Under the Precision-Recall Curve (PR-
AUC) focuses on the model’s ability to correctly 
identify stroke cases among all positive 

predictions. It is particularly useful when dealing 
with highly imbalanced datasets, where the 
number of actual positive cases is small (Saito & 

Rehmsmeier, 2015; Sofaer et al., 2019). 
 
Statistical Significance: t-test 
To determine whether the differences in model  

performance was statistically significant, a paired 
t-test was conducted to confirm or reject our 
hypotheses. The t-test evaluates whether the 
observed performance variations are attributable 
to the resampling techniques or occur by chance 
(Demšar, 2006). 
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After obtaining the prediction results from each 

model across different sampling methods, we 
manually performed a paired t-test in Excel, using 
the two-sample test assuming equal variances. 
 

The statistical significance level was set at a p-
value of less than 0.05, indicating that differences 
between models are considered statistically 
significant if the p-value falls below this 
threshold. 
 
The next section details the results and discussion 

of this study. 
 

4. RESULTS AND DISCUSSION 
 
This section presents the results of the model 

evaluations using several key performance 
metrics, including accuracy, precision, recall, F1-

score, ROC-AUC, and PR-AUC. The findings, 
summarized in Table 2 in Appendix A, highlight 
how each resampling method affected the 
performance of the machine learning models on 
the imbalanced stroke dataset.  
 

Accuracy 
Models trained on the original imbalanced dataset 
(None) with Logistic Regression (0.951), the 
dataset processed with TomekLinks using Logistic 
Regression (0.951), and the original imbalanced 
dataset with Gradient Boosting Classifier (0.951) 
all achieved the highest accuracy. However, this 

metric was misleading, since models achieved 

near-perfect accuracy by predicting the majority 
classification (non-stroke) while entirely failing to 
detect stroke cases (Recall = 0.000). This 
highlights the critical limitation of accuracy as a 
performance measure in highly imbalanced 
datasets. 

 
Precision 
Precision was highest at 0.413 with Gradient 
Boosting and no resampling. However, once 
resampling techniques were introduced, precision 
dropped significantly. For example, when using 

NearMiss2 with Random Forest, precision fell to 
just 0.049. This reflects a common trade-off in 
resampling: as recall improves, precision tends to 

decline (Saito & Rehmsmeier, 2015). No single 
method achieved strong results for both. 
 
Recall 

As shown in Table 2, without resampling, recall 
scores were nearly zero across all models, which 
means they failed to identify most stroke cases. 
The highest recall, 0.905, was achieved by 
NearMiss2 combined with Random Forest. While 
this result shows that almost all stroke cases were 
caught, it came at the cost of many false alarms.  

RandomUnder combined with Logistic Regression 

offered a more balanced approach, reaching a 
recall of 0.784 and a more moderate precision of 
0.131. 
 

F1-Score 
F1-scores were generally low across all 
combinations. The best result came from 
RandomUnder with Logistic Regression, reaching 
0.224. Although SMOTE increased recall for 
Gradient Boosting up to 0.447, its F1-score 
remained lower at 0.201. This suggests that 

RandomUnder offered a better balance between 
recall and precision in this context. 
 
ROC-AUC 
Several models without resampling showed high 

ROC-AUC values. For example, Gradient Boosting 
reached 0.839. However, this did not reflect 

meaningful performance, since the models failed 
to detect stroke cases. Among the resampled 
methods, ENN combined with Gradient Boosting 
achieved the highest ROC-AUC at 0.846. Still, its 
recall remained low, which reinforces the idea 
that ROC-AUC can be misleading when working 

with imbalanced datasets. 
 
PR-AUC 
Precision-recall area under the curve scores were 
low across the board. The highest score was 
0.213, recorded by TomekLinks with Gradient 
Boosting. These low values show how difficult it is 

to achieve both strong precision and recall when 

stroke cases are rare. 
 

Precision-Recall Trade-off 
Each resampling method showed a clear trade-off 
between precision and recall. NearMiss2 reached 
very high recall, such as 0.905 with Random 

Forest, but suffered a major loss in precision. 
Non-resampled models had high precision but 
almost no recall. 
 
RandomUnder combined with Logistic Regression 
stood out as a reasonable compromise. It offered 

a recall of 0.784 and a precision of 0.131. SMOTE 
with Gradient Boosting also performed well in 
recall at 0.447, though its precision was lower. 

 
Confusion Matrix of a Well-Balanced Model: 
RandomUnder with Logistic Regression 
Table 3 of Appendix B shows the confusion matrix 

for the Random Undersampling + Logistic 
Regression configuration, which demonstrated 
one of the best trade-offs between precision and 
recall. 
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Figure 3: Confusion Matrix of Logistic 
Regression with Random Undersampling 
Method 

 
Figure 3 above shows the model correctly 

identified 41 stroke cases (true positives) while 
minimizing false negatives (only 9 missed cases). 
Although 253 non-stroke cases were incorrectly 
classified as strokes (false positives), the model 
achieved a strong recall of 0.784, making it a 
practical choice for screening scenarios where 
detecting true stroke cases is critical. 

 
Notable Exceptions (p-value > 0.05): 
Logistic Regression (LR): 

Model + 
Method 

Model + 
Method 

p-value 

LR + None 
LR + TL 1.00 

LR + ENN 0.76 

LR + TL LR + ENN 0.76 

LR + NM2 LR + NM3 0.78 

Random Forest (RF): 

Model + 
Method 

Model + 
Method 

p-value 

RF + None 

RF + TL 0.84 

RF + ENN 0.77 

LR + None 0.84 

LR + TL 0.84 

LR + ENN 0.92 

RF + RU LR + RU 0.21 

RF + TL 

LR + None 0.69 

LR + TL 0.69 

RF + ENN 0.92 

RF + ENN 

LR + None 0.62 

LR + TL 0.62 

RF + ENN 0.84 

RF + NM3 LR + NM3 0.08 

 
Statistical Significance: t-test 
Tables 4(a) and 4(b)  of Appendix C present the 
p-values obtained from paired t-tests comparing 
the accuracy of various machine learning models 

under different resampling methods for stroke 

prediction. The majority of the p-values are 
approximately 0.00, suggesting that differences 
in model performance are statistically significant 
across most resampling techniques. However, 

several exceptions with higher p-values were 
observed, indicating no statistically significant 
difference in those specific comparisons. 
 
Extreme Gradient Boosting (XGB): 

Model + 

Method 

Model + 

Method 
p-value 

XGB + None 

XGB + TL 0.84 

XGB + ENN 0.12 

LR + None 0.55 

LR + TL 0.55 

LR + ENN 0.77 

XGB + RU 

LR + RU 0.05 

LR + NM2 0.15 

LR + NM3 0.09 

XGB + TL 

LR + None 0.69 

LR + TL 0.69 

LR + ENN 0.92 

XGB + ENN 0.08 

 
Gradient Boosting (GB): 

Model + 
Method 

Model + 
Method 

p-value 

GB + None 

GB + TL 1.00 

GB + ENN 0.39 

LR + None 0.76 

LR + TL 0.76 

LR + ENN 1.00 

GB + RU 

GB + NM3 0.92 

LR + NM2 0.81 

LR + NM3 0.60 

GB + TL 

LR + None 0.76 

LR + TL 0.76 

LR + ENN 1.00 

GB + ENN 0.39 

GB + ENN 

LR + None 0.24 

LR + TL 0.24 

LR + ENN 0.39 

GB + NM3 
LR + NM2 0.74 

LR + NM3 0.54 

 
These findings highlight that some resampling 

strategies yield similar classification performance, 
especially when applied to models that share 

similar decision boundary behavior or sensitivity 
to classification imbalance (e.g., Tomek Links and 
ENN). These statistically non-significant results 
offer insight into which combinations may provide 
equivalent predictive performance, allowing for 
flexibility in method selection. 

 
Answering Research Questions 
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After evaluating individual performance metrics, 

this study aimed to answer two guiding research 
questions related to the effectiveness of 
resampling strategies for stroke prediction. 
 

RQ1: How do SMOTE and selected 
undersampling techniques compare in 
improving the performance of machine 
learning models for stroke prediction using 
highly imbalanced datasets? 
The results across all metrics and models indicate 
that both SMOTE and undersampling techniques 

significantly outperformed models trained without 
resampling. SMOTE was especially effective in 
boosting recall for ensemble models like Gradient 
Boosting, while RandomUnder with Logistic 
Regression achieved the best balance between 

recall (0.784) and F1-score (0.224). NearMiss2 
achieved the highest recall overall (0.905 with 

Random Forest), but at the cost of extremely low 
precision. These findings confirm that resampling 
methods are essential for improving minority-
class detection and overall model effectiveness. 
 
RQ2: What are the trade-offs between 

predictive performance when using SMOTE 
versus undersampling techniques in highly 
imbalanced stroke prediction models? 
The analysis showed a consistent trade-off 
between recall and precision across all resampling 
methods. Techniques like SMOTE and NearMiss2 
greatly improved recall but significantly reduced 

precision, leading to more false positives. Among 

the resampling techniques, 
RandomUndersampling offered the best 
compromise, demonstrating that carefully chosen 
undersampling methods can improve recall 
without overwhelming the system with false 
positives. 

 
The next section provides concluding insights 
based on the findings and details of the limitations 
of this study. 
 

5. CONCLUSION AND LIMITATIONS 

This study conducted a comprehensive 
comparative analysis of SMOTE and various 

undersampling techniques for addressing 
classification imbalance in stroke prediction using 
four artificial intelligence (AI)-driven machine 
learning models: Logistic Regression (LR), 
Random Forest (RF), Extreme Gradient Boosting 

(XGB), and Gradient Boosting (GB). By evaluating 
model performance across key AI evaluation 
metrics—including accuracy, precision, recall, F1-
score, ROC-AUC, and PR-AUC—this study 
provides actionable insights into how data-level 

resampling methods influence the reliability and 

fairness of AI systems in healthcare. 

The results demonstrate that all resampling 
strategies significantly improved the ability of AI 
models to detect minority stroke cases compared 
to models trained on imbalanced data. Notably, 
SMOTE and NearMiss2 achieved high recall rates, 

enhancing the AI system’s sensitivity to stroke 
events, while Random Undersampling combined 
with Logistic Regression achieved the most 
balanced performance. These findings affirm the 
critical role of resampling in enhancing the 
trustworthiness and effectiveness of AI-based 
stroke prediction tools. The statistical significance 

of most performance differences, confirmed 

through paired t-tests, further validates the 
robustness of these observations. 

The trade-off between recall and precision 
observed in the study has important cost 
implications for stroke prediction. High recall 
models, such as NearMiss2 with Random Forest, 
successfully identified nearly all stroke cases but 
did so at the expense of extremely low precision, 

resulting in a large number of false positives. In 
clinical practice, false positives generate 
unnecessary diagnostic procedures, increase 
healthcare expenditures, and contribute to 
patient anxiety. They may also create “alert 
fatigue” for clinicians, reducing trust in AI 
systems and limiting adoption. Conversely, 

models with high precision but low recall risk 
producing false negatives, where actual stroke 
cases are missed. This outcome carries an even 
higher patient cost, as it delays treatment and 
increases the likelihood of long-term disability or 
mortality. 

 
From a methodological perspective, this trade-off 
demonstrates that optimizing for recall alone is 
insufficient. Instead, model evaluation must 
consider both types of errors and their 
asymmetric consequences. Future research 
should incorporate cost-sensitive learning 

frameworks that explicitly weight false negatives 
more heavily, while controlling the operational 
burden of false positives (Khan et al., 2017). Such 

approaches would allow stroke prediction models 
to better align with the realities of clinical 
decision-making, where both medical safety and 
resource efficiency are critical 

Despite its contributions, this study has several 
limitations. First, the stroke dataset provided by 

Fedesoriano on Kaggle is a publicly available 
collection of patient-level records designed for 
predictive modeling of stroke risk. While the 
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dataset offers a useful benchmark for developing 

and testing machine learning models, it has 
notable data integrity considerations. For 
example, there are missing values in the BMI 
attribute that require imputation before analysis. 

Furthermore, since the dataset is aggregated and 
anonymized, there is limited information on its 
clinical provenance, meaning that while it is 
suitable for methodological exploration and 
comparative studies, caution should be exercised 
in generalizing findings to real-world clinical 
populations.  

Next, the analysis is confined to a single publicly 
available stroke dataset, which may affect the 

generalizability of results to other medical 

conditions or populations. All models and 
resampling methods were applied using default 
hyperparameters, suggesting that further tuning 
could yield even stronger results. Third, while 
traditional classification metrics were used, the 
study did not explicitly incorporate fairness, 

interpretability, or cost-sensitive evaluation—
critical considerations for the responsible 
deployment of AI in clinical settings. Finally, the 
use of t-tests assuming equal variances may not 
fully account for dependencies introduced 
through resampling. 

The following section outlines the future research 
directions based on the findings of this study. 
 

6. FUTURE RESEARCH DIRECTIONS 
 
Future AI-driven research should expand this 
work by exploring hybrid resampling strategies, 

integrating fairness-aware and interpretable AI 
models, tuning hyperparameters, and validating 
findings across multiple datasets. These 
enhancements will support the development of 
more accurate, equitable, and clinically actionable 
AI systems for early stroke detection and other 
high-impact healthcare applications. 

Specifically, the following avenues should be 
considered and implemented below: 

• Exploring Hybrid and Ensemble 
Resampling Methods: Combining 
oversampling and undersampling 
strategies (e.g., SMOTE-ENN, SMOTE-
Tomek) or integrating resampling within 
ensemble frameworks (e.g., 

BalancedBagging) may further improve 
performance. 

• Model Tuning and Optimization: 
Future studies should investigate the 

impact of hyperparameter tuning on both 

classifiers and resampling methods to 
optimize performance. 

• Fairness and Interpretability: 
Incorporating fairness-aware algorithms 

and interpretable models is critical, 
especially when deploying in high-stakes 
domains like healthcare. 

• Cross-Dataset Evaluation: To ensure 
generalizability, testing on multiple 
stroke or related healthcare datasets 
from diverse populations would 

strengthen the findings. 

• Cost-Sensitive Learning: Integrating 
cost-sensitive learning approaches could 
help reduce false negatives while 
accounting for the asymmetric costs of 
misclassification in clinical decision-
making. 
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APPENDIX A 
 

Method Model *Accuracy *Precision *Recall *F1 
*ROC-
AUC 

*PR-
AUC 

 
 
No Resampling 

LR 0.951 0.000 0.000 0.000 0.838 0.187 

RF 0.950 0.040  0.005 0.009 0.813 0.171 

XGBoost 0.941 0.217 0.075  0.111 0.808  0.173 

GB 0.951 0.413 0.025 0.046 0.839  0.201 

 

SMOTE 

LR 0.779  0.122 0.568 0.200 0.777 0.138 

RF 0.899 0.147 0.221 0.176 0.791 0.146 

XGBoost 0.899 0.134 0.196 0.159 0.771 0.135 

GB 0.828  0.130 0.447 0.201 0.778 0.149 

 
RandomUnder 

LR 0.735 0.131  0.784 0.224 0.833  0.187 

RF 0.705  0.119 0.804 0.209 0.826 0.159 

XGBoost 0.715 0.121 0.774 0.209 0.804 0.147 

GB 0.704 0.120 0.794  0.208 0.820 0.183 

 
TomekLinks 

LR 0.951 0.000 0.000 0.000 0.838 0.186 

RF 0.950 0.067 0.005 0.009 0.808  0.176 

XGBoost 0.941  0.246 0.090 0.130 0.815 0.173 

GB 0.950 0.390 0.040 0.072 0.840 0.213 

 
 

ENN 

LR 0.946  0.192 0.030 0.051 0.840  0.192 

RF 0.938 0.158 0.050  0.074 0.830 0.182 

XGBoost 0.920 0.204 0.206 0.204 0.822 0.171 

GB 0.934 0.257 0.136 0.172 0.846 0.202 

 

 
NearMiss1 

LR 0.437 0.051 0.553 0.092 0.503 0.066 

RF 0.196 0.041 0.688 0.077 0.432 0.054 

XGBoost 0.206  0.042 0.699 0.079 0.440 0.050 

GB 0.183 0.043 0.739 0.081 0.384 0.039 

 
 
NearMiss2 

LR 0.663  0.103 0.768 0.182 0.775 0.139 

RF 0.143 0.049 0.905 0.093 0.664 0.098 

XGBoost 0.104 0.047 0.905 0.089 0.685 0.131 

GB 0.112  0.047 0.900 0.090 0.498 0.073 

 
NearMiss3 

LR 0.707 0.101 0.633 0.174 0.750  0.142 

RF 0.655  0.084  0.617  0.147 0.670 0.114 

XGBoost 0.654 0.084 0.613 0.148 0.676 0.120 

GB 0.673 0.088 0.608  0.153 0.710  0.128 

Table 2: Results of Machine Learning Models under Different Resampling Methods for Stroke 
Prediction 
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APPENDIX B 

Method Model 
True-
Negative 

False-Positive False-Negative 
True-
Positive 

 
 
None 

LR 972 0 50 0 

RF 970 2 50 0 

XGBoost 960 12 44 6 

GB 968 4 49 1 

 
SMOTE 

LR 767 205 14 36 

RF 906 66 41 9 

XGBoost 912 60 43 7 

GB 816 156 27 23 

 
 
RandomUnder 

LR 719 253 9 41 

RF 695 277 10 40 

XGBoost 685 287 14 36 

GB 657 315 11 39 

 
TomekLinks 

LR 971 1 49 1 

RF 968 4 50 0 

XGBoost 961 11 43 7 

GB 967 5 48 2 

 
ENN 

LR 964 8 45 5 

RF 955 17 38 12 

XGBoost 935 37 36 14 

GB 952 20 42 8 

 
NearMiss1 

LR 340 632 22 28 

RF 131 841 11 39 

XGBoost 124 848 5 45 

GB 130 842 10 40 

 
NearMiss2 

LR 652 320 11 39 

RF 91 881 3 47 

XGBoost 61 911 1 49 

GB 64 908 4 46 

 
NearMiss3 

LR 656 316 21 29 

RF 619 353 22 28 

XGBoost 648 324 25 25 

GB 669 303 21 29 

Table 3: Confusion Matrix Results of Machine Learning Models under Different Resampling 
Methods for Stroke Prediction 
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APPENDIX C 

Model + 
Method 

LR + 
SMOTE 

LR + 
RU 

LR + 
TL 

LR + 
ENN 

LR + 
NM1 

LR + 
NM2 

LR + 
NM3 

LR + None 0.00* 0.00* 1.00 0.76 0.00* 0.00* 0.00* 
LR + SMOTE  0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 
LR + RU   0.00* 0.00* 0.00* 0.00* 0.00* 
LR + TL    0.76 0.00* 0.00* 0.00* 

LR + ENN     0.00* 0.00* 0.00* 
LR + NM1      0.00* 0.00* 
LR + NM2       0.78 

Model + 
Method 

RF + 
SMOTE 

RF + 
RU 

RF + 
TL 

RF + 
ENN 

RF + 
NM1 

RF + 
NM2 

RF + 
NM3 

RF + None 0.00* 0.00* 0.84 0.77 0.00* 0.00* 0.00* 
RF+ SMOTE  0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
RF + RU   0.00* 0.00* 0.00* 0.00* 0.00* 

RF + TL    0.92 0.00* 0.00* 0.00* 
RF + ENN     0.00* 0.00* 0.00* 
RF + NM1      0.048* 0.00* 

RF + NM2       0.00* 

Model + 
Method 

XGB + 
SMOTE 

XGB + 
RU 

XGB + 
TL 

XGB + 
ENN 

XGB + 
NM1 

XGB + 
NM2 

XGB + 
NM3 

XGB + None 0.00* 0.00* 0.84 0.12 0.00* 0.00* 0.00* 

XGB + SMOTE  0.00* 0.00* 0.02* 0.00* 0.00* 0.00* 
XGB + RU   0.00* 0.00* 0.00* 0.00* 0.02* 
XGB + TL    0.08 0.00* 0.00* 0.00* 
XGB + ENN     0.00* 0.00* 0.00* 
XGB + NM1      0.00* 0.00* 
XGB + NM2       0.00* 

Model + 
Method 

GB + 
SMOTE 

GB + 
RU 

GB + 
TL 

GB + 
ENN 

GB + 
NM1 

GB + 
NM2 

GB + 
NM3 

GB + None 0.00* 0.00* 1.00 0.39 0.00* 0.00* 0.00* 

GB + SMOTE  0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
GB + RU   0.00* 0.00* 0.00* 0.00* 0.92 
GB + TL    0.39 0.00* 0.00* 0.00* 

GB + ENN     0.00* 0.00* 0.00* 
GB + NM1      0.00* 0.00* 
GB + NM2       0.00* 

Table 4(a): P-Value from t-test of Comparing Accuracy Between Machine Learning Models 
under Different Resampling Methods for Stroke Prediction 

 
t-test: Two-sample Assuming Equal Variances 
p-value* < 0.05: Significant difference between pair of Model + Method 
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Model + 

Method 

LR + 

None 

LR + 

SMOTE 

LR + 

RU 

LR + 

TL 

LR + 

ENN 

LR + 

NM1 

LR + 

NM2 

LR + 

NM3 

RF + None 0.84 0.00* 0.00* 0.84 0.92 0.00* 0.00* 0.00* 

RF+ SMOTE 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
RF + RU 0.00* 0.00* 0.21 0.00* 0.00* 0.00* 0.03* 0.02* 
RF + TL 0.69 0.00* 0.00* 0.69 0.92 0.00* 0.00* 0.00* 
RF + ENN 0.62 0.00* 0.00* 0.62 0.84 0.00* 0.00* 0.00* 
RF + NM1 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
RF + NM2 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

RF + NM3 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.04* 0.08 

XGB + None 0.55 0.00* 0.00* 0.55 0.77 0.00* 0.00* 0.00* 
XGB + SMOTE 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
XGB + RU 0.00* 0.00* 0.05 0.00* 0.00* 0.00* 0.15 0.09 
XGB + TL 0.69 0.00* 0.00* 0.69 0.92 0.00* 0.00* 0.00* 
XGB + ENN 0.03* 0.00* 0.00* 0.03* 0.07 0.00* 0.00* 0.00* 

XGB + NM1 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
XGB + NM2 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

XGB + NM3 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.40 0.57 

GB + None 0.76 0.00* 0.00* 0.76 1.00 0.00* 0.00* 0.00* 
GB + SMOTE 0.00* 0.045* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
GB + RU 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.81 0.60 

GB + TL 0.76 0.00* 0.00* 0.76 1.00 0.00* 0.00* 0.00* 
GB + ENN 0.24 0.00* 0.00* 0.24 0.39 0.00* 0.00* 0.00* 
GB + NM1 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
GB + NM2 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 
GB + NM3 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.74 0.54 

Table 4(b): P-Value from t-test of Comparing Accuracy Between Machine Learning Models 
under Different Resampling Methods for Stroke Prediction 
 
t-test: Two-sample Assuming Equal Variances 
p-value* < 0.05: Significant difference between pair of Model + Method 
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APPENDIX D 

 
Figure 4: Correlation Matrix 
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APPENDIX E 

Model + Method 
LR + 
SMOTE 

LR + 
RU 

LR + TL LR + 
ENN 

LR + 
NM1 

LR + 
NM2 

LR + 
NM3 

LR + None 11.40 13.61 0.00 0.30 35.88 17.05 17.35 
LR + SMOTE  2.24 -11.40 -11.13 21.54 5.63 5.91 
LR + RU   -13.61 -13.34 18.89 3.37 3.65 
LR + TL    0.30 35.88 17.05 17.35 

LR + ENN     35.54 16.78 17.08 
LR + NM1      -15.06 -14.75 
LR + NM2       0.28 

Model + Method 
RF + 
SMOTE 

RF + 
RU 

RF + TL RF + 
ENN 

RF + 
NM1 

RF + 
NM2 

RF + 
NM3 

RF + None 4.56 14.69 0.20 0.30 57.85 64.02 19.06 
RF+ SMOTE  10.35 -4.37 -4.27 48.32 52.94 14.67 
RF + RU   -14.51 -14.42 30.27 33.06 4.18 

RF + TL    0.10 57.43 63.53 18.89 
RF + ENN     57.23 63.29 18.80 
RF + NM1      1.98 -24.49 

RF + NM2       -26.93 

Model + Method 
XGB + 
SMOTE 

XGB + 
RU 

XGB + 
TL 

XGB + 
ENN 

XGB + 
NM1 

XGB + 
NM2 

XGB + 
NM3 

XGB + None 3.89 15.03 -0.20 1.55 57.20 69.61 17.42 

XGB + SMOTE  11.33 -4.08 -2.37 49.04 58.54 13.69 
XGB + RU   -15.21 -13.62 29.35 34.66 2.28 
XGB + TL    1.74 57.06 70.18 17.59 
XGB + ENN     53.95 65.10 15.99 
XGB + NM1      3.81 -26.16 
XGB + NM2       -31.07 

Model + Method 
GBC + 
SMOTE 

GBC + 
RU 

GBC + 
TL 

GBC + 
ENN 

GBC + 
NM1 

GBC + 
NM2 

GBC + 
NM3 

GB + None 9.18 16.54 0.00 0.86 57.64 70.48 16.44 

GB + SMOTE  7.41 -9.18 -8.38 39.13 46.23 7.31 
GB + RU   -16.54 -15.76 27.57 32.73 -0.09 
GB + TL    0.86 57.64 70.48 16.44 

GB + ENN     55.84 67.93 15.66 
GB + NM1      3.87 -27.70 
GB + NM2       -32.88 

Table 5(a): t-stat value from t-test of Comparing Accuracy Between Machine Learning Models 
under Different Resampling Methods for Stroke Prediction 
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Model + 

Method 

LR + 

None 

LR + 

SMOTE 

LR + 

 RU 

LR + 

TL 

LR + 

ENN 

LR + 

NM1 

LR + 

NM2 

LR + 

NM3 

RF + None -0.20 11.22 13.43 -0.20 0.10 35.65 16.87 17.17 

RF+ SMOTE -4.76 6.84 9.09 -4.76 -4.47 30.04 12.52 12.82 
RF + RU -14.86 -3.49 -1.25 -14.86 -14.60 17.45 2.12 2.40 
RF + TL -0.40 11.04 13.26 -0.40 -0.10 35.42 16.70 16.99 
RF + ENN -0.50 10.95 13.17 -0.50 -0.20 35.31 16.61 16.91 
RF + NM1 -58.27 -35.72 -32.14 -58.27 -57.64 -10.19 -27.24 -26.85 
RF + NM2 -64.52 -38.93 -35.07 -64.52 -63.78 -12.20 -29.84 -29.42 

RF + NM3 -19.24 -7.71 -5.43 -19.24 -18.98 12.82 -2.05 -1.76 

XGB + None -0.60 10.86 13.08 -0.60 -0.30 35.19 16.52 16.82 
XGB + SMOTE -4.47 7.13 9.37 -4.47 -4.18 30.40 12.81 13.11 
XGB + RU -15.56 -4.18 -1.93 -15.56 -15.30 16.67 1.44 1.72 
XGB + TL -0.40 11.04 13.26 -0.40 -0.10 35.42 16.70 16.99 
XGB + ENN -2.14 9.42 11.66 -2.14 -1.84 33.35 15.10 15.40 

XGB + NM1 -58.44 -35.81 -32.23 -58.44 -57.81 -10.25 -27.31 -26.92 
XGB + NM2 -71.37 -42.14 -37.96 -71.37 -70.48 -14.12 -32.36 -31.93 

XGB + NM3 -17.94 -6.48 -4.22 -17.94 -17.68 14.13 -0.84 -0.56 

GB + None -0.30 11.13 13.34 -0.30 0.00 35.54 16.78 17.08 
GB + SMOTE -9.45 2.00 4.25 -9.45 -9.18 23.97 7.65 7.94 
GB + RU -16.80 -5.39 -3.13 -16.80 -16.54 15.33 0.24 0.52 

GB + TL -0.30 11.13 13.34 -0.30 0.00 35.54 16.78 17.08 
GB + ENN -1.17 10.34 12.57 -1.17 -0.86 34.53 16.01 16.31 
GB + NM1 -58.27 -35.72 -32.14 -58.27 -57.64 -10.19 -27.24 -26.85 
GB + NM2 -71.37 -42.14 -37.96 -71.37 -70.48 -14.12 -32.36 -31.93 
GB + NM3 -16.70 -5.29 -3.04 -16.70 -16.44 15.43 0.33 0.61 

Table 5(b): T-stat value from t-test of Comparing Accuracy Between Machine Learning Models 
under Different Resampling Methods for Stroke Prediction 
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APPENDIX F: Process Model for Stroke Prediction Analysis 

 
 

The workflow includes data collection, preprocessing, resampling, model training with 5-fold stratified 
cross-validation, and multi-metric evaluation. Results are analyzed to highlight the trade-offs between 
precision and recall, including the practical costs of false positives and false negatives. 


