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Abstract  

 

The purpose of this paper is to explore the correspondence between student programmer Natural 
Language and Program Complexity in an educational project setting. Samples of text written by each of 
the members of a Java programming class were compared with software complexity metrics. The written 
text was evaluated with the Flesch Reading-Ease, the Flesch-Kinkaid Grade Level and Gunning Fog 
indexes, and the Java programs were scanned for McCabe metrics for both level of expression and 
complexity. The McCabe metrics of v(G) Cyclomatic Complexity and ev(G) Essential Complexity were 
used to categorize submitted and working programs into the Unmaintainable and Maintainable groups. 

The metrics for each student’s text and programs were then compared. The idea that started the 
research was born during the presentation of A Study of Software Metrics, Student Learning, and System 
Development Metrics, at the 2024 ISCAP Conference. At a deeper level, the question of whether 
expressions of the written word as well as programs share fundamental cognitive process and outcome 
and, therefore, might be used as a predictive tool for programmer performance. 
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An Analysis of Natural Language and Java Program Complexity 
 

Jon D. Clark and Seth J. Kinnett 
 
 

1.INTRODUCTION 

 
Improving student outcomes in computer 
programming courses is a priority for Information 
Systems instructors. Although remedial 
approaches can be implemented upon 
identification of particular student struggles, such 
approaches rely on some critical mass of 

assignments to be completed, so instructors can 
determine topics of concern for particular 
students. This challenge is compounded by the 

reality that introductory programming courses 
may not cover a substantive number of topics 
until several weeks into a given term, not to 
mention resource and bandwidth limitations could 

impact instructors’ abilities to engage in remedial 
techniques. One ideal intervention centers upon 
the potential to identify at the very beginning of 
the course those students that might be expected 
to struggle. Implementing a programming 
assessment would be ineffective since all 

students are presumed to be beginners, resulting 
in the need for some form of non-programming 
assessment.  
 
This paper provides insights into the possible 
relationship between one’s complexity and level 

of written natural language expression and the 

corresponding complexity and level of expression 
in a programming language. This work extends 
what was done by Kinnett and Clark (2024) and 
presented at the ISCAP Conference that year. 
That research was directed at the relationship 
between software metrics (Halstead, 1977 and 
McCabe, 1976, 2024) and student learning. 

Findings included nuances about grading rubrics 
as well as general mutual support between 
Halstead and McCabe metrics. This was of interest 
since the two sets of metrics are based on quite 
different bases: information theory and program 
control paths. Due to a comment provided by an 

attendee at the presentation and a short 
conversation we decided to explore whether there 

is a relationship between natural language 
expression and that of computer programming. If 
such a relationship exists, then there is a possible 
shared cognitive process that is used and possible 
related outcomes that are quite important and 

possibly useful. 
 
There are 29 Java programs used in this study, all 
of which satisfy a single in-class assignment in 
CIS 240, Application Design and Development. 

This is the first programming course that 

Computer Information Systems majors take. The 
16-week course introduces students to object-
oriented programming fundamentals using Java, 
spanning the concepts outlined in Table 1. In 
addition, an assignment in CIS360, Systems 
Analysis and Design, involved English text, and 
was used to derive several linguistic metrics. 

These metrics were used as a predictor of 
program complexity in the McCabe groups of 
Unmaintainable and Maintainable obtained in the 

CIS240 programming course. It is important to 
note that CIS360 concentrates on the Universal 
Modeling Language (UML) and not on computer 
programming. 

 

Module 
Number 

Topics 

1 
Course Overview & History of 

Programming Languages 

2 
Java Fundamentals (data typing, 
variables, constants) 

3 
Selection Statements (if/else/else 

if/switch) 

4 Loops (while, do-while, for) 

5 Methods & Method Overloading 

6 Arrays (one and two-dimensional) 

7 
Classes & Objects (data 
encapsulation, constructors) 

8 String Manipulation & File I/O 

          Table 1: Course Topic Summary 
     
Natural Language Metrics 
Language complexity can be captured by a 
number of characteristics relative to structure. 
With approximately 6,000 natural languages in 
existence, there are many variations in syntax 

and complexity. According to Rescher (1998) and 
Sinnemaki (2011) the general categories of 
complexity can be decomposed into the following: 
 

• Syntagmatic complexity: number of 

parts, such as word length in terms of 

phonemes, syllables etc. 
• Paradigmatic complexity: variety of parts, 

such as phoneme inventory size, number 
of distinctions in a grammatical category 
or aspect. 

• Organizational complexity: ways of 
arranging components, phonotactic 

restrictions, and variety of word orders. 
• Hierarchic complexity: such as recursion, 

and lexical-semantic hierarchies. 
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To capture useful and easily obtainable Natural 

Language (NL) metrics for this research, a variety 
of formulas were considered. Fortunately, 
beginning in the 1930’s following the Great 
Depression, a number of readability formulas 

were developed. These focus on readability 
relative to the level of education. Rudolf Flesch 
(1955) produced the Flesch Reading Ease formula 
as a tool to enhance marketing of print matter. By 
1975, the Flesch-Kincaid (Kincaid, 1988) 
partnership with the US Navy was formed. This 
metric became known as the Flesch-Kincaid 

Grade Level index based on the US educational 
system. In addition, Robert Gunning produced a 
formula which became known as the Gunning Fog 
index around 1952, with some changes in the 
formula that took place over the next several 

decades. The purpose of the index was to 
measure the degree of understandability of text 

in the newspaper and textbook publishing 
domain.  
 
The metrics chosen for this study are commonly 
accepted, used, and serve as the independent 
variable: 1) Flesch Reading Ease; 2) Flesch-

Kincaid Grade Level; and 3) Gunning Fog Index. 
These metrics address the readability of text 
based on measurable characteristics of a sample 
text for the purpose of assessing the ease with 
which a reader can consume and understand the 
passage. The Flesch Reading Ease metric is based 
on a similar formula with different weights and an 

index that begins at 0.0 through 100.0 and is a 

reciprocal of the Gunning Fog Index. A score of 
100.0 is associated with 5th grade and 0.0 with 
college educated professionals. The formula is as 
follows: 
 
Flesch Reading Ease = 206.835 – 1.015(total 

words/total sentences) – 84.6 (total 
syllables/total words) 
 
This index applied to a sample of Reader’s Digest 
has an index of 65 (between 8th and 9th grade), 
Harvard Law Review in the low 30s. Florida 

insurance policies have an index of 45 or greater 
(some college). 
 

The Flesch-Kincaid Grade Level metric is based on 
the following formula: 
 
Flesch-Kincaid Grade Level = 0.39 (Total 

Words/Total Sentences) + 11.8 (Total 
Syllables/Total Words) – 15.59 
                                      
In the case of the Gunning Fog Index, the formula 
is as follows: 
 

Fog Index = 0.4 (words/sentences) + 100 

(complex words/words) 
 
Where complex words consist of three or more 
syllables do not include proper nouns, familiar 

jargon, or compound words. Neither are common 
suffixes such as -es, -ed, and -ing counted as 
syllables.  
 
It’s well recognized that this index has its 
limitations, was intended for English, and may not 
be correct for other languages. The range of 

values produced range typically from 4 (fourth 
grade, through 17 (college graduate). 
 
According to Gunning (p. 4-5,1969): 
 

“In 1944 I setup Robert Gunning 
Associates to help staffs of publications 

and corporations improve their writing. 
The Gunning Fog Index resulted from our 
efforts to produce a measure that would 
be sufficiently reliable and still easy to 
use. Apparently, this effort has been 
helpful to a great many people. The Army, 

Navy and Air Force chose this formula for 
their writing manuals, and we have given 
them permission to use it.” 

 
Not incidentally, the Gunning Fog Index is 
generally available and can be used on text 
produced in MS Word.  

 

McCabe Control Flow Metrics 
McCabe’s complexity measures were based on 
graphs of control flow, where nodes represent 
program statements and edges (arcs) represent 
the flow. Statements that determine decisions 
produce branches in the graphs and the count of 

various paths are an important determinant of 
complexity. These metrics are far more domain 
specific to procedural programming than 
Halstead’s approach but are not predictive of 
effort across the stages of systems development. 
 

The control graph produces the following metrics: 
  

E = number edges of the graph 

  
N = number of nodes of the graph 
 
P = number of connected components 

(program exit points) 
  
The derived metrics are as follows: 

 
v(G) (Cyclomatic Complexity) = E-N+2: 
number of edges less the number of 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6333 

 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 4 
https://iscap.us/proceedings/ 

nodes plus the number of connected 

components  
 
ev(G) (Essential Complexity) = 1<= 
ev(G) <= v(G): based on reduced control 

flow graph 
 
Interpretation of v(G) thresholds by McCabe: 

• 1-10: simple procedure, little risk 
• 11-20: more complex, moderate risk 
• 21-50: complex, high risk 
• >50: untestable code, very high risk 

 
The Essential Complexity, ev(G) is produced by 
removing all the structured programming 
primitives. These include 1) sequence; 2) 
selection statements, including if and case 

statements; 3) iteration constructs, including 
while, do, and for.  

 
2. RESEARCH DESIGN & QUESTIONS 

 
The dataset to be used in this research consists 
of a sample of 29 successful attempts at 
producing a solution to Java programming 

assignment for the Rock, Paper, and Scissors 
game. This assignment is one of many, 
approximately halfway through a 16-week 
semester and is denoted as ICE04 (In Class 
Exercise 04) and features concepts related to 
loops. These exercises are carefully controlled in 
a classroom setting for a period of 75 minutes of 

individual programming effort. See Figure 1: 

ICE04 Assignment and Table 2: ICE04 
Grading Rubric.  

Write a Java program that plays the game 
Rock, Paper, Scissors.  
The rules are as follows:  
•Rock (0) beats scissors (2) 
•Scissors (2) beats paper (1) 

•Paper (1) beats rock (0) 
 
At the start of the program, the program must 
ask the user for their name. The program 
should then ask how many rounds the player 
wants to play. The program will then prompt 

the user to choose rock, paper, or scissors and 
randomly choose a value for the computer 

player. It will determine the winner of that 
hand, display the results, and keep track of the 
number of hands won by the player, the 
number won by the computer, and the number 
of tie games. 

 
Use JOptionPane for all inputs and outputs. 

           Figure 1: ICE04 Assignment 

Proper coding habits including indentation & 

comments (1) 

Proper compilation (no errors) (2) 

Either for or while loop implemented properly 
to loop for the number of rounds specified by 
the user (2) 

Correct use of if/else-if or switch to process 
user’s choice each time (1) 

Correct use of nested if/else-if to evaluate 
computer’s choice (1) 

Correctly implements counter variables to 
track computer wins, player wins, ties (1) 

Correct computation of winner using if/else-
if/else to evaluate the counters (1) 

Correct generation of output using string 
concatenation (1) 

          Table 2: ICE04 Grading Rubric 

Each program submitted and evaluated as 

successful according to the rubric was analyzed 
by BattleMap IQ, a tool that produces McCabe 
metrics from source code, in this case from Java. 
The APPENDIX has a table of values obtained in 
this manner. In addition, each student 
represented in this table was also evaluated in 
terms of a writing exercise from a class 

assignment in which English text was required 
and each such sample of writing was analyzed 
using the document evaluation tool contained in 
MS Word. The dataset consists of McCabe’s 
Cyclometric measure v(G) and Essential 
Complexity ev(G), as well as Flesch Reading Ease, 
Flesch-Kincaid Grade Level, and Gunning Fog 

index. 

It should be noted that the table contained in the 

APPENDIX has been partitioned into the McCabe 
categories of Maintainable and Unmaintainable. 
These are highly significant and based on a 
threshold where of 4 for Essential Complexity 
where if ev(G) > 4 the code is Unmaintainable for 
ev(G) =< 4 is Maintainable. This threshold has 
been determined by McCabe based on 

experience. Additionally, a threshold of 10 has 
been used by McCabe with regard to Cyclomatic 
Complexity where v(G) =< 10 is Reliable and 
v(G) > 10 is Unreliable. Surprisingly, all the 
student programs fell into the category of 
Unreliable in either Maintainable or 

Unmaintainable! See Figure 2 for the scatterplot 
of unmaintainable and maintainable complete 
working programs. 

The of distinction between Reliability and 
Maintainability may appear to be confusing.  
According to McCabe, the two subcategories of 
Reliability and Unreliability is based on v(G), a 
measure of decision structure complexity.  If v(G) 
is greater than 10 then the module would be 

difficult to test.  In a similar fashion, the 
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subcategories of Maintainable and 

Unmaintainable are based on ev(G), a measure of 
unstructuredness.  If ev(G) is greater than 4 then 
the module makes use of unstructured 
programming constructs resulting in maintenance 

issues. A paper by Riabov (2007) provides an 
applied demonstration of these constructs. 

 

Figure 2: v(G) & ev(G) Scatterplot of 

Student Submissions 

The purpose of this research is to explore the 
correspondence between Natural Language and 
Program Complexity in an educational project 
setting. To carry out this evaluation, the dataset 
having fully functional programs that met the 

goals of the rubric, have been partitioned into 
Unmaintainable (UM) and Maintainable (M) 
categories. The following Research Questions 
(RQ) will be addressed:      

RQ1: Is there a relationship between Flesch 
Reading Ease mean scores and UM and M 
categories determined by McCabe’s ev(G)? 

(H01) There is no difference in mean 
Flesch Reading Ease scores between the 
UM and M categories determined by 

McCabe’s ev(G) 

(H11) There is a difference in mean 
Flesch Reading Ease between the UM 

and M categories.    

RQ2: Is there a relationship between Flesh-
Kincaid Grave Level mean scores across the UM 

and M categories determined by McCabe’s 
ev(G)? 

(H02) There is no difference in mean 

Flesch-Kincaid Grade Level scores across 
the UM and M categories determined by 
McCabe’s ev(G) 

(H12) There is a difference in mean 
Flesch-Kincaid Grade Level scores 
between the UM and M categories 

determined by McCabe’s ev(G) 

RQ3: Is there a relationship between mean 
Gunning Fog Index scores across the UM and M 

categories determined by McCabe’s ev(G)?   

(H03) There is no difference in mean 

Gunning Fog Index scores between the 
UM and M categories determined by 
McCabe’s ev(G) 

(H13) There is a difference between 
mean Gunning Fog Index scores 
between the UM and M categories 
determined by McCabe’s ev(G) 

A bootstrapped independent samples t-test will 
be used to determine whether there is a 
relationship between English Natural Language 
Complexity and the Program Complexity 

produced. If there is a relationship, one might use 
this to better manage the programming process 
and produce better, perhaps more reliable and 
maintainable results.  

3. RESULTS 

 
An independent samples t-test evaluating mean 
differences across samples is an appropriate 
approach in this circumstance. As the gold 

standard for sample size in parametric statistical 
tests is a minimum of 30 observations per group 
in order to satisfy the Central Limit Theorem, we 
opted to employ bootstrapping upon our samples 
(Nmaintainable = 11, Nunmaintainable = 18).  
Bootstrapping is a well-established and reliable 
technique to increase the reliability of findings 

when small sample sizes are present. Accordingly, 
we performed the difference of means 
independent samples t-test using 1000 simulated 
bootstrapped samples using SPSS to determine 
the degree of independence between the 

maintainable and unmaintainable categories of 

the samples. We utilized SPSS defaults for the 
technique, designating a simple (vs. stratified) 
sampling scheme and 90% confidence intervals. 
Interpreting the results required us to evaluate 
the results of Levene’s test for equality of 
variance. In all three calculations, Levene’s test 
indicated variance between groups was equal. 

Table 3 shows that both the Flesch-Kincaid Grade 
Level and the Gunning Fog Index are significant 
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at the 0.09 level. In accordance with best 

practices surrounding the use of bootstrapping, 
we evaluate our decisions regarding rejection or 
failure to reject null hypotheses based on the 
bootstrapped confidence intervals. Intervals 

spanning zero indicate that one possible result is 
no mean difference, which would cause us to fail 
to reject null hypotheses. This method is 
preferred over simple interpretation of p-values. 
In our sample, we generally see alignment except 
with the Flesh index, which has confidence 
intervals that support rejecting the null 

hypothesis and p-values that suggest retaining it. 
Table 3 shows the summary findings from our 
bootstrapped independent samples t-test. 
 

Metric MD Bias σM p CI90 

Flesh 
Index 

9.97 -.27 5.95 .12 [.04, 
19.5] 

Grade 
Level 

-1.7 .03 .97 .098 [-3.2, -
.10] 

FOG 
Index 

-1.8 .03 .98 .086 [-3.4, -
.20] 

Table 3: Bootstrap Independent Samples 
Test 

 
RQ1 asks Is there a relationship between the 
Flesch Reading Ease and McCabe metrics 
determining the UM and M categories? Even 
though the p value with respect to the M and UM 
categories is just 0.122, the 90% confidence 

intervals do not span zero (CI90 = [.0391, 

19.524]), leading us to reject H01. The Flesch 
Reading Ease index is based on the number of 
words per sentence and the number of syllables 
per word. Programming constructs and control 
flow appear to be predictable based on natural 

language constructs. 
 
RQ2 asks Is there a relationship between Flesch-
Kincaid Grade Level and McCabe metrics 
determining the UM and M categories? In this 
case, the p value is 0.098 and CI90 = [-3.159, -
.0984]. The Flesch-Kincaid Grade Level, though 

based on the same variables, uses quite different 
weights and is the reciprocal of the Flesch 
Reading Ease Index. One might conclude that the 
grade level has a better fit as far as prediction of 

M and UM categories. 
 
RQ3 asks Is there a relationship between the 

Gunning Fog index and McCabe metrics 
determining the UM and M categories? This case 
has a p value of 0.09 and CI90 = [-3.41, -.195]. 
The p value of the Gunning Fog Index is the best 
predictor of M and UM categories. Again, this 
index is based on weighted words per sentence 

and complex words of three or more syllables 

compared to the total number of words used. 
 
As we can see, we found significant differences 
across all three natural language metrics when 

comparing the two groups of maintainable vs. 
unmaintainable code based on McCabe’s ev(G). 

 
4. DISCUSSION AND LIMITATIONS 

 
These findings lead to a number of interpretations 
and pedagogical implications. First, the idea that 

one aspect of code quality can essentially be 
predicted by an English language writing sample 
is – to our knowledge – a novel finding. We 
suggest that instructors could administer a 
writing prompt at the start of the term for 

students enrolled in a programming course to get 
a sense of which students might need more 

assistance in writing quality code.  
 
Student access to AI Has increased reliance on 
the use of available partial solutions as a 
development starting point. Vibe coding 
(Karpathy, 2025), a new type of process in which 

NL requests are made to a Large Language Model 
(LLM), has begun to receive attention. This 
process allows iterative refinement of a problem 
statement in which code is progressively refined 
as well. As an example, when a block of code is 
returned from a request, either functional 
extensions may be added or corrections to 

compile or runtime errors. Vibe coding has 

become an accepted practice by novice 
programmers in both academic and applied 
settings for simple application development. 
Andrew Ng (2025) is offering course material and 
training in this new process. Certainly, there are 
critics, but as AI develops, the effectiveness of 

the approach may well change. Given the 
relationship found in this paper, there is a 
possibility of further research between the NL 
component of the requests provided to the LLM 
and the degree of precision of the coded outcome. 
The research convergence of NL and coding 

deserves greater attention as shown in this 
research.  
 

Focusing on the FOG index, given its higher 
apparent predictive power, we suspect the 
findings explain the idea that succinct English 
sentence construction correlates with fewer 

control flow paths (measured by ev(G) ), 
suggesting higher cognitive organization, 
whereas higher FOG scores correspond with 
higher ev(G) values, suggesting a more 
meandering style of coding and writing English 
that both demonstrate less forethought. 
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We suggest that students are essentially less 

focused in their production of both English 
sentences and Java code. Such students need to 
plan their approach more in both arenas and likely 
are jumping right into both exercises with a think 

as you go approach, which leads to a decrease in 
both code structuredness and the more 
complicated sentence constructions.  
 
Pedagogically, all students received the same 
instruction, yet some students wrote 
maintainable code “naturally” while others didn’t.  

 
5. CONCLUSIONS 

 
Now that we have statistically established that 
there is a relationship between NL 

understandability and the McCabe categories of 
UM and M code, several other studies may 

determine the possibility and usefulness from a 
predictive point of view. A few student-centered 
possibilities are: 
 

• Should students with low NL 
understandability be treated differently, 

and if so, how and when? 
• Can NL training be used to advantage 

before or along with coding? 
• Should students with low NL 

understandability be encouraged to 
choose another field? 

 

Since it appears that students with more succinct 

writing styles also tend to write more 
understandable code, the above possibilities are 
of interest.  
 
In addition, further research may be needed to 
determine the impact of pedagogical impact of 

coding practice. The UM category contains a great 
deal of unstructured code. A few pedagogical 
studies may include: 
 

• Does a time constraint affect structure? 
• Does coding environment play a role? 

• What role does application complexity 
play in the structure of the solution? 

• Will vibe coding mitigate the impact of NL 

understandability?  
 
The connection between NL and code 
understandability encourages us to further study 

the development processes used and the 
pedagogical impact of teaching methods. 
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APPENDIX 

Java Program Submissions with Metrics 

 

ID Group v(G) ev(G) FlshRead FlshKinGrade SFOG 
1 Maintainable 18 1 40.9 13.6 16.76 
2 Maintainable 17 1 15.1 16.9 19.23 
3 Maintainable 16 1 47.9 12.7 16.69 
4 Maintainable 13 1 55.5 9.5 13.32 
5 Maintainable 13 1 56.8 9.5 13.3 
6 Maintainable 28 1 61 9.2 12.24 
7 Maintainable 21 1 57.3 10.9 13.8 
8 Maintainable 18 1 66 9.3 11.75 
9 Maintainable 29 1 52.9 10.4 13.98 

10 Maintainable 15 1 41.7 12.7 16.68 
11 Maintainable 16 1 18.3 15.9 19.79 
12 Unmaintainable 21 18 53.6 11.6 15.45 
13 Unmaintainable 17 14 41.4 12.9 16.45 
14 Unmaintainable 22 7 32.4 14.8 17.52 
15 Unmaintainable 18 14 32.3 14.2 17.64 
16 Unmaintainable 20 13 35.8 12.7 16.49 
17 Unmaintainable 24 6 17.5 16.4 19.39 
18 Unmaintainable 14 13 63.3 9.5 13.03 
19 Unmaintainable 17 13 42.8 13.7 16.62 
20 Unmaintainable 17 13 59.5 10.9 13.42 
21 Unmaintainable 26 18 25.2 15.3 20 
22 Unmaintainable 18 11 39.7 14.3 17.44 
23 Unmaintainable 28 20 23.7 15.2 19.39 
24 Unmaintainable 22 18 53.1 9.5 12.74 
25 Unmaintainable 26 18 23.1 15.3 19.22 
26 Unmaintainable 27 21 18.7 16 19.35 
27 Unmaintainable 31 21 35.6 15 17.7 
28 Unmaintainable 17 9 24.4 14.9 18.4 
29 Unmaintainable 23 7 38.6 12.9 16.5 

 


