
2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

An Analysis of Natural Language

and Java Program Complexity

Jon D. Clark

jon.clark@colostate.edu

Seth J. Kinnett

seth.kinnett@colostate.edu

Computer Information Systems, College of Business
Colorado State University

Fort Collins, CO 80523, USA

Abstract

The purpose of this paper is to explore the correspondence between student programmer Natural
Language and Program Complexity in an educational project setting. Samples of text written by each of
the members of a Java programming class were compared with software complexity metrics. The written
text was evaluated with the Flesch Reading-Ease, the Flesch-Kinkaid Grade Level and Gunning Fog
indexes, and the Java programs were scanned for McCabe metrics for both level of expression and
complexity. The McCabe metrics of v(G) Cyclomatic Complexity and ev(G) Essential Complexity were
used to categorize submitted and working programs into the Unmaintainable and Maintainable groups.

The metrics for each student’s text and programs were then compared. The idea that started the
research was born during the presentation of A Study of Software Metrics, Student Learning, and System
Development Metrics, at the 2024 ISCAP Conference. At a deeper level, the question of whether
expressions of the written word as well as programs share fundamental cognitive process and outcome
and, therefore, might be used as a predictive tool for programmer performance.

Keywords: Natural Language Metrics, Software Metrics, Halstead, McCabe, Vibe Coding

mailto:jon.clark@colostate.edu
mailto:seth.kinnett@colostate.edu

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

An Analysis of Natural Language and Java Program Complexity

Jon D. Clark and Seth J. Kinnett

1.INTRODUCTION

Improving student outcomes in computer
programming courses is a priority for Information
Systems instructors. Although remedial
approaches can be implemented upon
identification of particular student struggles, such
approaches rely on some critical mass of

assignments to be completed, so instructors can
determine topics of concern for particular
students. This challenge is compounded by the

reality that introductory programming courses
may not cover a substantive number of topics
until several weeks into a given term, not to
mention resource and bandwidth limitations could

impact instructors’ abilities to engage in remedial
techniques. One ideal intervention centers upon
the potential to identify at the very beginning of
the course those students that might be expected
to struggle. Implementing a programming
assessment would be ineffective since all

students are presumed to be beginners, resulting
in the need for some form of non-programming
assessment.

This paper provides insights into the possible
relationship between one’s complexity and level

of written natural language expression and the

corresponding complexity and level of expression
in a programming language. This work extends
what was done by Kinnett and Clark (2024) and
presented at the ISCAP Conference that year.
That research was directed at the relationship
between software metrics (Halstead, 1977 and
McCabe, 1976, 2024) and student learning.

Findings included nuances about grading rubrics
as well as general mutual support between
Halstead and McCabe metrics. This was of interest
since the two sets of metrics are based on quite
different bases: information theory and program
control paths. Due to a comment provided by an

attendee at the presentation and a short
conversation we decided to explore whether there

is a relationship between natural language
expression and that of computer programming. If
such a relationship exists, then there is a possible
shared cognitive process that is used and possible
related outcomes that are quite important and

possibly useful.

There are 29 Java programs used in this study, all
of which satisfy a single in-class assignment in
CIS 240, Application Design and Development.

This is the first programming course that

Computer Information Systems majors take. The
16-week course introduces students to object-
oriented programming fundamentals using Java,
spanning the concepts outlined in Table 1. In
addition, an assignment in CIS360, Systems
Analysis and Design, involved English text, and
was used to derive several linguistic metrics.

These metrics were used as a predictor of
program complexity in the McCabe groups of
Unmaintainable and Maintainable obtained in the

CIS240 programming course. It is important to
note that CIS360 concentrates on the Universal
Modeling Language (UML) and not on computer
programming.

Module
Number

Topics

1
Course Overview & History of

Programming Languages

2
Java Fundamentals (data typing,
variables, constants)

3
Selection Statements (if/else/else

if/switch)

4 Loops (while, do-while, for)

5 Methods & Method Overloading

6 Arrays (one and two-dimensional)

7
Classes & Objects (data
encapsulation, constructors)

8 String Manipulation & File I/O

 Table 1: Course Topic Summary

Natural Language Metrics
Language complexity can be captured by a
number of characteristics relative to structure.
With approximately 6,000 natural languages in
existence, there are many variations in syntax

and complexity. According to Rescher (1998) and
Sinnemaki (2011) the general categories of
complexity can be decomposed into the following:

• Syntagmatic complexity: number of

parts, such as word length in terms of

phonemes, syllables etc.
• Paradigmatic complexity: variety of parts,

such as phoneme inventory size, number
of distinctions in a grammatical category
or aspect.

• Organizational complexity: ways of
arranging components, phonotactic

restrictions, and variety of word orders.
• Hierarchic complexity: such as recursion,

and lexical-semantic hierarchies.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

To capture useful and easily obtainable Natural

Language (NL) metrics for this research, a variety
of formulas were considered. Fortunately,
beginning in the 1930’s following the Great
Depression, a number of readability formulas

were developed. These focus on readability
relative to the level of education. Rudolf Flesch
(1955) produced the Flesch Reading Ease formula
as a tool to enhance marketing of print matter. By
1975, the Flesch-Kincaid (Kincaid, 1988)
partnership with the US Navy was formed. This
metric became known as the Flesch-Kincaid

Grade Level index based on the US educational
system. In addition, Robert Gunning produced a
formula which became known as the Gunning Fog
index around 1952, with some changes in the
formula that took place over the next several

decades. The purpose of the index was to
measure the degree of understandability of text

in the newspaper and textbook publishing
domain.

The metrics chosen for this study are commonly
accepted, used, and serve as the independent
variable: 1) Flesch Reading Ease; 2) Flesch-

Kincaid Grade Level; and 3) Gunning Fog Index.
These metrics address the readability of text
based on measurable characteristics of a sample
text for the purpose of assessing the ease with
which a reader can consume and understand the
passage. The Flesch Reading Ease metric is based
on a similar formula with different weights and an

index that begins at 0.0 through 100.0 and is a

reciprocal of the Gunning Fog Index. A score of
100.0 is associated with 5th grade and 0.0 with
college educated professionals. The formula is as
follows:

Flesch Reading Ease = 206.835 – 1.015(total

words/total sentences) – 84.6 (total
syllables/total words)

This index applied to a sample of Reader’s Digest
has an index of 65 (between 8th and 9th grade),
Harvard Law Review in the low 30s. Florida

insurance policies have an index of 45 or greater
(some college).

The Flesch-Kincaid Grade Level metric is based on
the following formula:

Flesch-Kincaid Grade Level = 0.39 (Total

Words/Total Sentences) + 11.8 (Total
Syllables/Total Words) – 15.59

In the case of the Gunning Fog Index, the formula
is as follows:

Fog Index = 0.4 (words/sentences) + 100

(complex words/words)

Where complex words consist of three or more
syllables do not include proper nouns, familiar

jargon, or compound words. Neither are common
suffixes such as -es, -ed, and -ing counted as
syllables.

It’s well recognized that this index has its
limitations, was intended for English, and may not
be correct for other languages. The range of

values produced range typically from 4 (fourth
grade, through 17 (college graduate).

According to Gunning (p. 4-5,1969):

“In 1944 I setup Robert Gunning
Associates to help staffs of publications

and corporations improve their writing.
The Gunning Fog Index resulted from our
efforts to produce a measure that would
be sufficiently reliable and still easy to
use. Apparently, this effort has been
helpful to a great many people. The Army,

Navy and Air Force chose this formula for
their writing manuals, and we have given
them permission to use it.”

Not incidentally, the Gunning Fog Index is
generally available and can be used on text
produced in MS Word.

McCabe Control Flow Metrics
McCabe’s complexity measures were based on
graphs of control flow, where nodes represent
program statements and edges (arcs) represent
the flow. Statements that determine decisions
produce branches in the graphs and the count of

various paths are an important determinant of
complexity. These metrics are far more domain
specific to procedural programming than
Halstead’s approach but are not predictive of
effort across the stages of systems development.

The control graph produces the following metrics:

E = number edges of the graph

N = number of nodes of the graph

P = number of connected components

(program exit points)

The derived metrics are as follows:

v(G) (Cyclomatic Complexity) = E-N+2:
number of edges less the number of

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

nodes plus the number of connected

components

ev(G) (Essential Complexity) = 1<=
ev(G) <= v(G): based on reduced control

flow graph

Interpretation of v(G) thresholds by McCabe:

• 1-10: simple procedure, little risk
• 11-20: more complex, moderate risk
• 21-50: complex, high risk
• >50: untestable code, very high risk

The Essential Complexity, ev(G) is produced by
removing all the structured programming
primitives. These include 1) sequence; 2)
selection statements, including if and case

statements; 3) iteration constructs, including
while, do, and for.

2. RESEARCH DESIGN & QUESTIONS

The dataset to be used in this research consists
of a sample of 29 successful attempts at
producing a solution to Java programming

assignment for the Rock, Paper, and Scissors
game. This assignment is one of many,
approximately halfway through a 16-week
semester and is denoted as ICE04 (In Class
Exercise 04) and features concepts related to
loops. These exercises are carefully controlled in
a classroom setting for a period of 75 minutes of

individual programming effort. See Figure 1:

ICE04 Assignment and Table 2: ICE04
Grading Rubric.

Write a Java program that plays the game
Rock, Paper, Scissors.
The rules are as follows:
•Rock (0) beats scissors (2)
•Scissors (2) beats paper (1)

•Paper (1) beats rock (0)

At the start of the program, the program must
ask the user for their name. The program
should then ask how many rounds the player
wants to play. The program will then prompt

the user to choose rock, paper, or scissors and
randomly choose a value for the computer

player. It will determine the winner of that
hand, display the results, and keep track of the
number of hands won by the player, the
number won by the computer, and the number
of tie games.

Use JOptionPane for all inputs and outputs.

 Figure 1: ICE04 Assignment

Proper coding habits including indentation &

comments (1)

Proper compilation (no errors) (2)

Either for or while loop implemented properly
to loop for the number of rounds specified by
the user (2)

Correct use of if/else-if or switch to process
user’s choice each time (1)

Correct use of nested if/else-if to evaluate
computer’s choice (1)

Correctly implements counter variables to
track computer wins, player wins, ties (1)

Correct computation of winner using if/else-
if/else to evaluate the counters (1)

Correct generation of output using string
concatenation (1)

 Table 2: ICE04 Grading Rubric

Each program submitted and evaluated as

successful according to the rubric was analyzed
by BattleMap IQ, a tool that produces McCabe
metrics from source code, in this case from Java.
The APPENDIX has a table of values obtained in
this manner. In addition, each student
represented in this table was also evaluated in
terms of a writing exercise from a class

assignment in which English text was required
and each such sample of writing was analyzed
using the document evaluation tool contained in
MS Word. The dataset consists of McCabe’s
Cyclometric measure v(G) and Essential
Complexity ev(G), as well as Flesch Reading Ease,
Flesch-Kincaid Grade Level, and Gunning Fog

index.

It should be noted that the table contained in the

APPENDIX has been partitioned into the McCabe
categories of Maintainable and Unmaintainable.
These are highly significant and based on a
threshold where of 4 for Essential Complexity
where if ev(G) > 4 the code is Unmaintainable for
ev(G) =< 4 is Maintainable. This threshold has
been determined by McCabe based on

experience. Additionally, a threshold of 10 has
been used by McCabe with regard to Cyclomatic
Complexity where v(G) =< 10 is Reliable and
v(G) > 10 is Unreliable. Surprisingly, all the
student programs fell into the category of
Unreliable in either Maintainable or

Unmaintainable! See Figure 2 for the scatterplot
of unmaintainable and maintainable complete
working programs.

The of distinction between Reliability and
Maintainability may appear to be confusing.
According to McCabe, the two subcategories of
Reliability and Unreliability is based on v(G), a
measure of decision structure complexity. If v(G)
is greater than 10 then the module would be

difficult to test. In a similar fashion, the

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

subcategories of Maintainable and

Unmaintainable are based on ev(G), a measure of
unstructuredness. If ev(G) is greater than 4 then
the module makes use of unstructured
programming constructs resulting in maintenance

issues. A paper by Riabov (2007) provides an
applied demonstration of these constructs.

Figure 2: v(G) & ev(G) Scatterplot of

Student Submissions

The purpose of this research is to explore the
correspondence between Natural Language and
Program Complexity in an educational project
setting. To carry out this evaluation, the dataset
having fully functional programs that met the

goals of the rubric, have been partitioned into
Unmaintainable (UM) and Maintainable (M)
categories. The following Research Questions
(RQ) will be addressed:

RQ1: Is there a relationship between Flesch
Reading Ease mean scores and UM and M
categories determined by McCabe’s ev(G)?

(H01) There is no difference in mean
Flesch Reading Ease scores between the
UM and M categories determined by

McCabe’s ev(G)

(H11) There is a difference in mean
Flesch Reading Ease between the UM

and M categories.

RQ2: Is there a relationship between Flesh-
Kincaid Grave Level mean scores across the UM

and M categories determined by McCabe’s
ev(G)?

(H02) There is no difference in mean

Flesch-Kincaid Grade Level scores across
the UM and M categories determined by
McCabe’s ev(G)

(H12) There is a difference in mean
Flesch-Kincaid Grade Level scores
between the UM and M categories

determined by McCabe’s ev(G)

RQ3: Is there a relationship between mean
Gunning Fog Index scores across the UM and M

categories determined by McCabe’s ev(G)?

(H03) There is no difference in mean

Gunning Fog Index scores between the
UM and M categories determined by
McCabe’s ev(G)

(H13) There is a difference between
mean Gunning Fog Index scores
between the UM and M categories
determined by McCabe’s ev(G)

A bootstrapped independent samples t-test will
be used to determine whether there is a
relationship between English Natural Language
Complexity and the Program Complexity

produced. If there is a relationship, one might use
this to better manage the programming process
and produce better, perhaps more reliable and
maintainable results.

3. RESULTS

An independent samples t-test evaluating mean
differences across samples is an appropriate
approach in this circumstance. As the gold

standard for sample size in parametric statistical
tests is a minimum of 30 observations per group
in order to satisfy the Central Limit Theorem, we
opted to employ bootstrapping upon our samples
(Nmaintainable = 11, Nunmaintainable = 18).
Bootstrapping is a well-established and reliable
technique to increase the reliability of findings

when small sample sizes are present. Accordingly,
we performed the difference of means
independent samples t-test using 1000 simulated
bootstrapped samples using SPSS to determine
the degree of independence between the

maintainable and unmaintainable categories of

the samples. We utilized SPSS defaults for the
technique, designating a simple (vs. stratified)
sampling scheme and 90% confidence intervals.
Interpreting the results required us to evaluate
the results of Levene’s test for equality of
variance. In all three calculations, Levene’s test
indicated variance between groups was equal.

Table 3 shows that both the Flesch-Kincaid Grade
Level and the Gunning Fog Index are significant

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

at the 0.09 level. In accordance with best

practices surrounding the use of bootstrapping,
we evaluate our decisions regarding rejection or
failure to reject null hypotheses based on the
bootstrapped confidence intervals. Intervals

spanning zero indicate that one possible result is
no mean difference, which would cause us to fail
to reject null hypotheses. This method is
preferred over simple interpretation of p-values.
In our sample, we generally see alignment except
with the Flesh index, which has confidence
intervals that support rejecting the null

hypothesis and p-values that suggest retaining it.
Table 3 shows the summary findings from our
bootstrapped independent samples t-test.

Metric MD Bias σM p CI90

Flesh
Index

9.97 -.27 5.95 .12 [.04,
19.5]

Grade
Level

-1.7 .03 .97 .098 [-3.2, -
.10]

FOG
Index

-1.8 .03 .98 .086 [-3.4, -
.20]

Table 3: Bootstrap Independent Samples
Test

RQ1 asks Is there a relationship between the
Flesch Reading Ease and McCabe metrics
determining the UM and M categories? Even
though the p value with respect to the M and UM
categories is just 0.122, the 90% confidence

intervals do not span zero (CI90 = [.0391,

19.524]), leading us to reject H01. The Flesch
Reading Ease index is based on the number of
words per sentence and the number of syllables
per word. Programming constructs and control
flow appear to be predictable based on natural

language constructs.

RQ2 asks Is there a relationship between Flesch-
Kincaid Grade Level and McCabe metrics
determining the UM and M categories? In this
case, the p value is 0.098 and CI90 = [-3.159, -
.0984]. The Flesch-Kincaid Grade Level, though

based on the same variables, uses quite different
weights and is the reciprocal of the Flesch
Reading Ease Index. One might conclude that the
grade level has a better fit as far as prediction of

M and UM categories.

RQ3 asks Is there a relationship between the

Gunning Fog index and McCabe metrics
determining the UM and M categories? This case
has a p value of 0.09 and CI90 = [-3.41, -.195].
The p value of the Gunning Fog Index is the best
predictor of M and UM categories. Again, this
index is based on weighted words per sentence

and complex words of three or more syllables

compared to the total number of words used.

As we can see, we found significant differences
across all three natural language metrics when

comparing the two groups of maintainable vs.
unmaintainable code based on McCabe’s ev(G).

4. DISCUSSION AND LIMITATIONS

These findings lead to a number of interpretations
and pedagogical implications. First, the idea that

one aspect of code quality can essentially be
predicted by an English language writing sample
is – to our knowledge – a novel finding. We
suggest that instructors could administer a
writing prompt at the start of the term for

students enrolled in a programming course to get
a sense of which students might need more

assistance in writing quality code.

Student access to AI Has increased reliance on
the use of available partial solutions as a
development starting point. Vibe coding
(Karpathy, 2025), a new type of process in which

NL requests are made to a Large Language Model
(LLM), has begun to receive attention. This
process allows iterative refinement of a problem
statement in which code is progressively refined
as well. As an example, when a block of code is
returned from a request, either functional
extensions may be added or corrections to

compile or runtime errors. Vibe coding has

become an accepted practice by novice
programmers in both academic and applied
settings for simple application development.
Andrew Ng (2025) is offering course material and
training in this new process. Certainly, there are
critics, but as AI develops, the effectiveness of

the approach may well change. Given the
relationship found in this paper, there is a
possibility of further research between the NL
component of the requests provided to the LLM
and the degree of precision of the coded outcome.
The research convergence of NL and coding

deserves greater attention as shown in this
research.

Focusing on the FOG index, given its higher
apparent predictive power, we suspect the
findings explain the idea that succinct English
sentence construction correlates with fewer

control flow paths (measured by ev(G)),
suggesting higher cognitive organization,
whereas higher FOG scores correspond with
higher ev(G) values, suggesting a more
meandering style of coding and writing English
that both demonstrate less forethought.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

We suggest that students are essentially less

focused in their production of both English
sentences and Java code. Such students need to
plan their approach more in both arenas and likely
are jumping right into both exercises with a think

as you go approach, which leads to a decrease in
both code structuredness and the more
complicated sentence constructions.

Pedagogically, all students received the same
instruction, yet some students wrote
maintainable code “naturally” while others didn’t.

5. CONCLUSIONS

Now that we have statistically established that
there is a relationship between NL

understandability and the McCabe categories of
UM and M code, several other studies may

determine the possibility and usefulness from a
predictive point of view. A few student-centered
possibilities are:

• Should students with low NL
understandability be treated differently,

and if so, how and when?
• Can NL training be used to advantage

before or along with coding?
• Should students with low NL

understandability be encouraged to
choose another field?

Since it appears that students with more succinct

writing styles also tend to write more
understandable code, the above possibilities are
of interest.

In addition, further research may be needed to
determine the impact of pedagogical impact of

coding practice. The UM category contains a great
deal of unstructured code. A few pedagogical
studies may include:

• Does a time constraint affect structure?
• Does coding environment play a role?

• What role does application complexity
play in the structure of the solution?

• Will vibe coding mitigate the impact of NL

understandability?

The connection between NL and code
understandability encourages us to further study

the development processes used and the
pedagogical impact of teaching methods.

 REFERENCES

Flesch, R. F. (1955). Why Johnny can’t read, and

what you can do about it.

https://www.amazon.com/Why-Johnny-

Cant-Read-about/dp/0060913401

Gunning, Robert (January 1, 1969), The Fog

Index After Twenty Years, Journal of Business

Communication, Volume 6 (2),
https://doi.org/10.1177/0021943669006002
02

Halstead, Maurice H. (1977), Elements of

Software Science, Elsevier.
https://dl.acm.org/doi/10.5555/540137

Karpathy, Andrej (2025, February 2). Tweet

archived from the original on April 17, 2025.
Retrieved May 9, 2025 via Twitter.

Kincaid JP, Braby R, Mears J (1988). "Electronic

authoring and delivery of technical

information". Journal of Instructional
Development. 11 (2): 8– 13.
doi:10.1007/bf02904998. S2CID 62551107.

Kinnett, Seth J. & Clark Jon D. (2024, November

6-9), A Study of Software Metrics, Student
Learning, and System Development Metrics,

Proceedings of ISCAP Conference, Baltimore,
Maryland.

Mccabe.com (2024, May 15). McCabe Software:

The software Path Analysis Company.
Retrieved from https://mccabe.com.

McCabe, Thomas J. (1976, December), A

complexity measure, IEEE Transactions on
Software Engineering, SE-2(4):308-320,
https://doi.org/10.1109/TSE.1976.233837.

Ng, Andrew (2025, May 28). Blockchain.News,

https://blockchain.news/flashnews/replitlaun
ches-vibe-coding-101-for-ai-driven-
application-development

Rescher, Nicholas (1988). Complexity: A
Philosophical Overview. New Brunswick:
Transaction Publishers. ISBN 978-
1560003779.

Riabov, Vladimir V. (2007). Graph Theory
Applications in Developing Software Test
Strategies for Networking Systems, River
Academic Journal, 3(1), Spring.

Sinnemaki, Kaius (2011). Language universals

and linguistic complexity: Three case studies

in core argument marking
(http://urn.fi/URN:ISBN:978-952-10-7259-

https://www.amazon.com/Why-Johnny-Cant-Read-about/dp/0060913401
https://www.amazon.com/Why-Johnny-Cant-Read-about/dp/0060913401
https://doi.org/10.1177/002194366900600202
https://doi.org/10.1177/002194366900600202
https://dl.acm.org/doi/10.5555/540137
https://mccabe.com/
https://doi.org/10.1109/TSE.1976.233837
http://urn.fi/URN:ISBN:978-952-10-7259-8

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

8) (Thesis). University of Helsinki. Retrieved

2016-04-28.

http://urn.fi/URN:ISBN:978-952-10-7259-8

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6333

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

APPENDIX

Java Program Submissions with Metrics

ID Group v(G) ev(G) FlshRead FlshKinGrade SFOG
1 Maintainable 18 1 40.9 13.6 16.76
2 Maintainable 17 1 15.1 16.9 19.23
3 Maintainable 16 1 47.9 12.7 16.69
4 Maintainable 13 1 55.5 9.5 13.32
5 Maintainable 13 1 56.8 9.5 13.3
6 Maintainable 28 1 61 9.2 12.24
7 Maintainable 21 1 57.3 10.9 13.8
8 Maintainable 18 1 66 9.3 11.75
9 Maintainable 29 1 52.9 10.4 13.98

10 Maintainable 15 1 41.7 12.7 16.68
11 Maintainable 16 1 18.3 15.9 19.79
12 Unmaintainable 21 18 53.6 11.6 15.45
13 Unmaintainable 17 14 41.4 12.9 16.45
14 Unmaintainable 22 7 32.4 14.8 17.52
15 Unmaintainable 18 14 32.3 14.2 17.64
16 Unmaintainable 20 13 35.8 12.7 16.49
17 Unmaintainable 24 6 17.5 16.4 19.39
18 Unmaintainable 14 13 63.3 9.5 13.03
19 Unmaintainable 17 13 42.8 13.7 16.62
20 Unmaintainable 17 13 59.5 10.9 13.42
21 Unmaintainable 26 18 25.2 15.3 20
22 Unmaintainable 18 11 39.7 14.3 17.44
23 Unmaintainable 28 20 23.7 15.2 19.39
24 Unmaintainable 22 18 53.1 9.5 12.74
25 Unmaintainable 26 18 23.1 15.3 19.22
26 Unmaintainable 27 21 18.7 16 19.35
27 Unmaintainable 31 21 35.6 15 17.7
28 Unmaintainable 17 9 24.4 14.9 18.4
29 Unmaintainable 23 7 38.6 12.9 16.5

