
2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

From Excel to Python to AI:

A Connectivist Approach to
Teaching Coding Concepts

in an Introductory Information Systems Course

Mark Frydenberg

mfrydenberg@bentley.edu
Computer Information Systems Department

Bentley University, Waltham, MA

Abstract

This study examines the use of connectivist learning principles to teach first-year students about coding
with Python in a Fundamentals of information Systems course. The instructional design integrates tools
such as Microsoft Excel, Google Colab, and AI chatbots to support conceptual understanding and develop
problem solving skills. Students engaged in collaborative coding activities, progressing from designing

and sharing solutions with spreadsheets to designing solutions by writing Python code. They then
demonstrate their prompt engineering skills. The study also addresses four research questions: (1) To
what extent does prior experience with Excel support students’ understanding of Python programming
concepts? (2) How do digital tools and peer networks support student engagement and learning in

coding? (3) How do students perceive the value of learning Python for academic and career
development? and (4) To what extent are students motivated to continue learning coding
independently? Survey results indicate that students find benefit in using networked collaboration and

learning tools, recognize the value in learning Python, and favor further informal study. These findings
also support the use of connectivist learning techniques as a valuable framework for presenting coding
instruction to first-year information systems students.

Keywords: Python, Coding, Excel, Generative AI, Connectivist Learning.

mailto:mfrydenberg@bentley.edu

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

From Excel to Python to AI:

A Connectivist Approach to Teaching Coding Concepts
in an Introductory Information Systems Course

Mark Frydenberg

1. INTRODUCTION

The ability to code, or at least understand code,
has become an essential skill for many 21st
century professionals (Kivunja, 2014).
Approaches to teaching coding concepts to
students in introductory information systems

survey courses have varied from teaching the

vocabulary of coding (sequence, selection,
repetition, input, output, variables, functions,
classes, objects, methods) by example (Parsons,
2023) to using visual block-based coding tools to
implement basic algorithms and procedures
(Andone & Frydenberg, 2021; Bozan & Taslidere,

2024). Emphasis is often on concepts rather than
creating actual programs.

This paper presents an innovative approach to
introducing first-year students in a Fundamentals
of Information Systems course to coding through
a three-session module. Building on their prior

knowledge and proficiency with Microsoft Excel,
students learn the basics of Python programming
and then use generative AI to create Python code

for more complex tasks such as data
visualization.

Guided by principles of connectivist learning,
which emphasizes knowledge construction
through connections between people, tools, and
ideas, this study investigates the following
research questions:

• RQ1. To what extent does prior experience

with Excel support students’ understanding of
coding concepts?

• RQ2 How do digital tools and peer networks

support student learning and engagement in
an introductory information systems course?

•

RQ3. How do students perceive the value of
learning Python for their academic and
professional goals?

• RQ4. To what extent are students motivated

to continue learning coding after the course?

2. THEORETICAL FOUNDATIONS AND

RELATED WORK

Connectivist learning theory, as introduced by
Siemens and Downes (Downes, 2010; Siemens,
2005, 2014; Siemens & Downes, 2011)
emphasizes these core principles:

• Learning happens by making

connections, constructing and interacting
with both human and technological
networks.

• Learning is not only about understanding
concepts, but also making connections
with individuals, ideas, and technology.

• Learning from peers and being exposed
to a variety of perspectives and solutions
is central.

• Making decisions is an ongoing process in
a rapidly changing world driven by
information.

• Learning also relies on the use of

technology to store, process, and
generate information. Technology is
essential to the connectivist classroom,

enabling students to access, share, and
create knowledge.

Literature suggests a growing interest in applying
connectivist learning approaches in business
education, with a few studies specifically focusing
on learning to code. Connectivist learning
empowers students to learn collaboratively,
generate knowledge, interact with different tools
and connect with different information sources

(Gottipati et al., 2023; Utecht & Keller, 2019).

A second-year programming course at the
University of Pretoria integrated connectivist
strategies with scaffolding interventions from
instructors and found that students valued this

approach, engaging with online resources and

peers, and as a result, felt more confident in
taking on complex coding projects (Matthee & van
Deventer, 2022).

In a recent Finnish study investigating the impact
of a connectivist learning approach on teaching

sustainable business in an online context, results
showed that peer interactions and digital tools
were seen as active nodes of learning, allowing

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

students to make use technology to help

strengthen knowledge and learn from different
perspectives. (Dziubaniuk et al., 2023) This
suggests that a connectivist approach also can be

applied to learning to code, especially when
learners choose tools and networks that suit their
needs and learning styles. While the coding
environment (Google Colab) was standardized,
students used the AI tools of their own choice
refining prompts and debugging code across
platforms. This process reflects key connectivist

principles: navigating multiple knowledge nodes,
applying real-time feedback, and developing
personal strategies for problem solving.

Recent research supports a meaningful
connection between spreadsheet fluency and

learning to code. Lovászová and Hvorecký (2004)
describe how spreadsheets can be used to explore
foundational algorithmic structures such as
sequence, selection, and repetition without
writing formal code in a programming language.
As they note, “Programming problems can be also
solved using spreadsheet calculations. The stage

is built around one of the spreadsheet solutions.
It is selected and arranged in a way that exhibits
and amplifies the considered properties of the
algorithm. By experimenting with the
spreadsheet solution, the students reveal the
properties and extrapolate them to the field of
programming” (Lovászová & Hvorecký, 2004, p.

46).

Csernoch and Biró (2019) found that first-year
students who approached solving spreadsheet
tasks algorithmically demonstrated stronger
problem solving and computational thinking skills

than those who relied on more basic functions.
Finally Sarkar et al. (2020) reported a positive
correlation between spreadsheet formula use and
experience with traditional programming
languages such as Python or Java. From a
connectivist perspective, these findings suggest
that activating prior spreadsheet knowledge can

help students build new conceptual connections
when they learn to code.

3. IMPLEMENTATION:

FROM EXCEL TO PYTHON TO AI

One of the biggest challenges in learning to code

is understanding new syntax and abstract
concepts. “The learning of programming is
difficult because it involves the simultaneous
acquisition of three domains of knowledge: the
syntax and semantics of a programming
language, the notional machine (an abstract

model of the execution process), and problem-
solving strategies” (Robins et al., 2003, p. 138).

This study describes a three-session module for

teaching coding concepts using familiar examples
based on students’ prior knowledge of Microsoft
Excel in CS 100 (“Solving Business Problems with

information Technology”), a systems
fundamentals course required of all first-year
students at business-focused university in New
England. Course topics include intermediate
proficiency in Excel along with basic computing
concepts (operating systems, organizing files and
data, cybersecurity, the Internet and World Wide

Web, security and privacy), and emerging
technologies such as virtual reality and
generative AI.

The course also includes a coding component
which historically had three classes on web

development. Students learned to create simple
web pages by hand-coding basic HTML tags for
headers, paragraphs, images, and links, along
with simple formatting for fonts and colors. The
original intent was that by writing HTML and
viewing it in a browser, students would learn
about coding. The Python curriculum described

here replaces the HTML unit for those sections
that adopted it as an alternative.

Comparing Excel and coding concepts is an
effective way to scaffold student learning
(Groner, 2023). “At its heart, connectivism is the
thesis that knowledge is distributed across a

network of connections, and therefore that
learning consists of the ability to construct and

traverse those networks” (Downes, 2010). Figure
1 describes a learning network showing the
progression implemented in this study
encouraging students to learn coding by making

and applying connections between spreadsheets,
and coding, and using AI to apply knowledge of
those concepts.

Figure 1. Network showing the knowledge
progression and connections from Excel to

Python to AI.

Students used the Google Colab environment for
developing and submitting their Python
programs; after creating their notebooks, they

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

shared a link to it with their instructor who

checked it for grading and completion. Figure 2
shows an example of a student’s Google Colab
notebook. Students add a hierarchy of headings

to make their notebooks easy to navigate and are
required to show the program output to facilitate
grading. Text blocks describe code, and code
blocks contain executable Python statements.

Using an online environment eliminates the need
to install an IDE and upload solutions to a course

learning management system. After creating
their notebooks, students share the links with
their instructor by completing an online form.

Figure 2. A Google Colab Notebook.

Google Colab can provide AI-generated code.

Students were instructed to modify notebooks’
settings to disable this feature for the first two
lessons when they are learning coding

fundamentals, and then to enable it for the third
lesson when they will run and evaluate the results
of AI-generated code to create charts and graphs.
(See Figure 3)

Figure 3. Disabling or Enabling AI Assistance
in Google Colab.

Each day’s lesson began with “coding together”
problems where students solved a problem in
small groups using Microsoft Excel. The instructor
then showed them how to translate that solution
into a Python program. See Figure 4 for a sample

spreadsheet and coding solution for a problem of
calculating the number of pizzas required and

cost of a pizza party.

Figure 4. From Excel to Python (Spreadsheet and Python solutions).

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

Note that the spreadsheet solution uses a named
range for cell B3 as an example of how named
ranges can be more descriptive than cell names,

encouraging the use of descriptive variable
names.

Each Coding Together problem had a similar
Coding Challenge for students to work on, usually
with a partner, for homework. Students
presented their coding challenge solutions at the

start of the next class.

This structure reflects connectivist learning by
applying its core ideas: students learn through
peer collaboration, make use of familiar tools and
learn to use new ones, and they engage with

technology as an active partner in their learning.
This approach moves beyond memorizing
concepts and typing code without understanding
to develop students as networked learners,
capable of adapting and learning through their
connections with tools, peers, and knowledge
systems.

Each day’s lesson introduces a coding concept by
relating it to a familiar Excel concept. The focus is
on what coding can do, as much as it is on writing
the code itself. On the third day, by using AI to
generate code, students learn that AI can be an

effective problem-solving tool, where the solution
that AI provides is not the end, but a means to
accomplishing a greater task (in this case,

visualizing and interpreting data).

Students still need to run the AI-generated code
and make sure that it produces the desired results
(or modify their prompts or possibly the code) if
the results are not as expected. Students also
learn that when the AI-generated code does not

work (and it often may not), they should try a
different AI tool to see if it generates different
solutions. The exercise becomes a lesson in
prompt engineering, as students must apply the
vocabulary of charts and graphs (chart types,
legends, titles, axis labels, major and minor axis,

etc.) to specify the desired appearance of their
charts and then verify that the results are correct.
Anecdotally, ChatGPT’s code seemed more
reliable than that generated within Colab for
data/charts. Figure 5 shows part of a student’s
Colab notebook with AI-generated code and the
resulting bar chart visualizing temperature data.

Table 1 summarizes the concepts of each lesson.
Appendix B shows a summary of the Coding
Together and Coding Challenge problems for each
lesson.

Lesson Python Concepts Excel Concepts Connections

1 variables, calculations,

data types, input and
print

Cells, formulas, data

types, calculations,
entering and displaying
values

Calculations are the basic feature of

spreadsheets and at the foundation
of any algorithm. Topics include data
types (int and float), simple math
operations (round, ceiling, max, min,
average) and their corresponding
functions in Excel.

2 if statements, conditions
for Loops

=IF(), =AND(), =OR()
functions
Copying values or
formulas down a range

of cells

Students are familiar with various
forms of the if function in Excel, so
writing if statements in Python is a
natural extension. The process of

copying values down a range of cells
in a spreadsheet is similar to
iterating over a list of items or values
using a for loop.

3 using AI to generate
Python code

Charts, graphs Students are familiar with making
pie, bar, line, and other charts in
Excel. Coding these in Python by
hand is difficult, but an AI tool can
often generate the code if given a
descriptive prompt.

Table 1. Excel to Python to AI Lesson Topics and Rationale

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

Figure 5. AI-Generated Code for Charting Weather data, shown in a Colab notebook.

4. METHODOLOGY

The author piloted the three-session during the
Spring 2024 semester with one section of 18
honors students. The following Fall, after making
it available to other CS 100 instructors, one

instructor adopted the lesson in place of
HTML/Web Development in Fall 2024 for the two
sections of approximately 35 students that he
taught, and three instructors (five sections of
approximately 35 students each) adopted the
module for Spring 2025. All instructors who
taught the Python module participated in two

training sessions led by the author, who reviewed
both the pedagogy and coding principles for these
lessons. Students completed a short survey
reflecting on their experience learning about
coding after completing the last module.

Survey Data
During these three semesters, 217 students (124
males, 92 females, 1 preferred not to say)

completed the survey, usually during class time.
Given maximum class sizes, at most 299 students
would have been enrolled in sections teaching this
curriculum, for a response rate of approximately

73%. The majority (60%) had not coded before;
30% had some Java or Python in high school, and

the rest had varying degrees of coding experience
(self-taught, knew HTML coded in Scratch, did
“hour of code”). Most students (86%) were 18 or
19 years old, with 30 students 20 or older. When
asked about their intended majors, there were
only two that mentioned Computer Information

Systems, while the majority were split between
Accounting, Finance, and Corporate Finance and
Accounting.

The survey includes several questions based on a
5-point Likert scale (1 = strongly disagree, 5 =
strongly agree), as shown in Appendix A. For

clarify of results, the author organized the
questions into broad categories:

• Learning and Understanding
• Student Engagement
• Value of Learning Python
• Future Interest

Because the Python curriculum was entirely
similar across sections, and because all

instructors were trained to follow the pedagogy
for this module, the results that follow aggregate
all results from all sections over three semesters.

The charts in Figure 6 summarize the averages of
all responses for each question in each category.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

Figure 6. Survey Results

In the Learning and Understanding category,
students overwhelmingly rated Google Colab as
an easy-to-use tool for coding in Python (4.14).
They found Python to be useful for manipulating

ad visualizing data (4.00) and felt it helped them
understand programming concepts (3.88), even

though students were challenged to understand
Python programming concepts (3.63).

Unexpectedly, students rated “knowing Excel
helped me to learn Python (3.24)” lowest in this

category, suggesting mixed impact of prior Excel
experience on learning about coding in Python.
Upon sharing this finding with a CIS tutor who
helped CS 100 students learning Python, the tutor
reflected: “When I would help students in CS 100
with Python, I noticed there was a logic
disconnect. Some students struggled with the

multi-step process of solving a Python problem,
whereas Excel tended to work in smaller,
separate chunks.” While formulas would often

translate similarly, when writing Python
programs, students also needed to think about
accepting user input, converting values to

numeric data types, printing results, adding
comments to code, and navigating Python syntax
issues (indentation, colons, etc.) not encountered
when creating spreadsheets.

Students found Python accessible and helpful to
learn coding concepts, especially when using

Google Colab. One student commented, “Even

though it was very tricky at times; there was
always a sense of reward when you finally got the
problem right. It sparked an interest in CS I didn’t
really have before.”

Under Student Engagement, using AI tools to

generate Python code was new to most students
(4.35), suggesting that learning and applying this
was engaging. Students moderately agreed that
they found the units to be engaging (3.79), fun
(3.46), and challenging (3.32). Said one student,

“it [writing code] definitely is something that you
need to practice at and understand what you're
doing, writing code is not always easy and you
have to think about every action involved.”
Another student commented that they could
connect learning Python with previous coding
experiences: “I had some prior experience with

Java so it was nice to learn a new language and
apply some of the prior knowledge I had.”

Considering the value of learning Python,
students overwhelmingly felt it was a valuable
skill to have in today’s job market (4.16), and

that other sections should teach it (3.98).
Students saw it as valuable to their career (3.68),
suggesting that students recognize the
professional and academic relevance of coding.

Finally, students had a moderate interest in
learning more about Python independently

(3.24), and lower-rated the possibility of taking a

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

college course in Python (2.81). While they see

the value in learning Python, fewer are motivated
to take a course in it. This is consistent with the
selection of majors that students are interested in

pursuing, most of which do not require a coding
course. One student commented, “I really
enjoyed Python, and I think basic coding is an
essential skill for extracurricular projects; I have
already needed to code for a case competition.

Overall, the data suggests that students found

the coding environment and Colab to be helpful;
they were engaged with the topic (especially
using AI); and they clearly valued the relevance
of knowing Python; but they prefer informal over
formal instruction for future learning.

Sentiment Analysis
To better understand students’ responses to the
coding module, this study implemented a
sentiment analysis using Python’s TextBlob
library (Loria, 2018). TextBlob evaluates
sentiment along two dimensions: polarity (-1.0
for strongly negative to +1.0 for strongly

positive), and subjectivity (0 for objective to 1.0
for highly personal) (Liu & Pang, 2025).

The analysis shown here focuses on polarity, and
classifies comments as:

• Positive (polarity > 0.2)
• Neutral (-0.2 <= polarity <= 0.2)

• Negative (polarity < -0.2)

These bounds are based on a commonly used
heuristic (Loria, 2018). Although they provide a
practical way to filter positive or negative
sentiment, they are admittedly not perfect,

especially for short comments, and the author
acknowledges this as a limitation of this study.

Out of 78 responses, 47 (60%) were positive, 24

(31%) were neutral, and only 7 (9%) were
negative. Neutral sentiments were mostly due to
blank (“n/a” or “none”) responses. Figure 7

displays a word cloud colored by sentiment
polarity. Green words indicate positive sentiment,
and red words indicate negative sentiment (See
Figure 7).

Figure 7. Sentiment Word Cloud (Generated
with wordclouds.com).

Positive themes included student enjoyment

when learning Python, recognition if its value for
future careers or in other courses and
appreciating the use of Google Colab and
engaging projects. Selected examples are shown
in Table 2 to provide additional context.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

Comment Polarity Sentiment

“Very interesting and enjoyable.” 0.58 Positive

“I was never efficient with technological skills so my opinion is biased and
against coding however this course was not terrible for someone like
myself.”

0.50 Positive

“I enjoyed learning about Python and felt that it was an easy concept to

understand.”

0.47 Positive

“It was a fun and engaging experience. I'm not much for coding, but it was
nice to learn some basics nonetheless.”

0.30 Positive

“I found the Excel integration a little challenging even though I already kind
of know python. I also didn't completely understand its value.”

0.25 Neutral

“It was fun but i don’t see a ton of practical applications for it in my major.” 0.18 Neutral

“At first I didn't understand it completely but by the time we had to do the
project I felt ready and it was very simple to do because I knew what I was
doing.”

0.14 Neutral

“I did not enjoy using AI to code because it gave me error messages and I

didn't know how to fix it. Everything else was fun.”

0.05 Neutral

“The third python assignment was difficult. Adding the data into the platform
didn't work.”

-0.25 Negative

“Bad/boring.” -1.00 Negative

Table 2. Comments and Polarity Scores.

While the results from the survey’s Likert scale

responses show that students valued the
experience overall, this sentiment analysis
confirms engagement and enjoyment, even
among students who found coding difficult, and
suggests their emotions (frustration, reward,
curiosity) while completing the module.

6. CONCLUSIONS

This study explored how students engaged with a
connectivist approach, that integrated networked
tools, peer collaboration and real-world
applications to learning about coding,

Limitations and Future Research
This study combines data from eight sections
taught by five different instructors during a three-
semester span. For all except the original
instructor, none had taught this material before.
Teaching Excel concepts knowing what the

upcoming Python content would be, or having
more familiarity with it, might also influence
student perception of the value of knowing Excel
prior to learning basic Python skills.

Future research could include a larger sample
size, introducing this curriculum in a similar

course at another university, or examining results
based on instructor or students’ anticipated
majors or minors to discover learning trends or
biases.

Research Questions

Returning to the research questions:

RQ1. To what extent does prior experience with
Excel support students’ understanding of coding
concepts?

While the curriculum aimed to build on students’
prior experience with Excel, the impact of that
prior knowledge on learning Python was less

significant than expected. The survey results

suggest this connection was moderate. Students
gave lower ratings to the statement “Applying my
Excel knowledge to Python made it easier…”
(mean = 3.24), indicating mixed perceptions
about the strength of that knowledge transfer.

From a connectivist learning perspective, not all
students were able to make those connections
effectively without additional guidance. While the
instructor designed the module to create the
bridge between Excel and Python, it may require
additional scaffolding to make those connections
clearer to more students.

RQ2. How do digital tools and peer networks
support student learning and engagement in an
introductory information systems course, through

a connectivist lens?

Web-based tools such as Google Colab assist with

student learning, but surprisingly, prior Excel
knowledge was less of a benefit in learning Python
than expected. Students made connections
between spreadsheet and Python concepts, but
found the coding exercises to be more
challenging, and using AI to generate complex

Python code to be most interesting.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

RQ3. How do students perceive the value of
learning Python for their academic and
professional goals?

Students' high ratings of Python’s usefulness and
relevance suggest that they clearly see the
benefit of learning about coding for both
academic projects and future employment.

RQ4. To what extent are students motivated to

continue learning coding after the course?

Students recognized the value of learning Python,
particularly in their continued studies and in their
careers. Their interest in pursuing future course
work, however, was less than expected. This

aligns with connectivist principles, however,
which stresses learning as a self-directed process.
One student noted “I really enjoyed Python, and
I think basic coding is an essential skill for
extracurricular projects; I have already needed to
code for a case competition.”

These results collectively support the use of
connectivist learning as a lens through which to
evaluate this instructional approach. Students
engaged meaningfully with tools such as Google
Colab, Excel, and AI chatbots, while also learning
through interactions and collaborative problem
solving with their peers. Sharing solutions in class

reinforced social learning, and using technology
tools enabled students to draw connections

between familiar and new concepts. Overall, the
findings suggest that coding education grounded
in connectivist principles can result in greater
engagement and deepen understanding in

learning environments that thrive on technology,
collaboration, and real-world applications.

7. REFERENCES

Andone, D., & Frydenberg, M. (2021). Co-

creating with TalkTech: Developing Attributes

through International Digital Collaborative
Projects. 2021 IEEE Global Engineering
Education Conference (EDUCON), 1073–1077.
https://doi.org/10.1109/EDUCON46332.2021

.9454119

Bozan, I., & Taslidere, E. (2024). The Effect of
Digital Game Design-Supported Coding

Education on Gifted Students’ Scratch
Achievement and Self-Efficacy. International
Journal of Contemporary Educational
Research, 11(1), 20–28.
https://doi.org/10.52380/ijcer.2024.11.1.531

Csernoch, M., & Biró, P. (2019). Are digital

natives spreadsheet natives?

(arXiv:1909.00865). arXiv.

https://doi.org/10.48550/arXiv.1909.00865

Downes, S. (2010). New Technology Supporting
Informal Learning. Journal of Emerging

Technologies in Web Intelligence, 2(1).
https://doi.org/10.4304/jetwi.2.1.27-33

Dziubaniuk, O., Ivanova-Gongne, M., & Nyholm,
M. (2023). Learning and teaching sustainable
business in the digital era: A connectivism
theory approach. International Journal of
Educational Technology in Higher Education,

20(1), 20. https://doi.org/10.1186/s41239-
023-00390-w

Groner, D. (2023). Python for Data Analytics: A
Business Oriented Approach. Prospect Press.

https://www.prospectpressvt.com/textbooks/
groner-python

Kivunja, C. (2014). Do You Want Your Students
to Be Job-Ready with 21st Century Skills?
Change Pedagogies: A Pedagogical Paradigm
Shift from Vygotskyian Social Constructivism
to Critical Thinking, Problem Solving and
Siemens’ Digital Connectivism. International
Journal of Higher Education, 3(3), 81–91.

http://dx.doi.org/10.5430/ijhe.v3n3p81

Liu, C., & Pang, S. (2025). Empty Vessels Make
the Most Noise: Analyst Self-Promotion
Behavior and Market Outcomes (SSRN
Scholarly Paper 5292117). Social Science
Research Network.

https://doi.org/10.2139/ssrn.5292117

Loria, S. (2018). TextBlob: Simplified Text
Processing—TextBlob 0.19.0 documentation.
https://textblob.readthedocs.io/en/dev/

Lovászová, G., & Hvorecký, J. (2004). On
Programming and Spreadsheet Calculations.
Spreadsheets in Education, 1(1).

https://sie.scholasticahq.com/article/4510-
on-programming-and-spreadsheet-
calculations,
https://sie.scholasticahq.com/article/4510-
on-programming-and-spreadsheet-
calculations

Matthee, M., & van Deventer, P. (2022).

Preparing IS Programming Students for Work
by Enhancing a Connectivist Teaching
Approach by Scaffolding Practices.
Proceedings of the 2022 AIS SIGED
International Conference on Information
Systems Education and Research.
https://aisel.aisnet.org/siged2022/11

Parsons, J. (2023). Coding with Python. In New
Perspectives Concepts 2021 and Microsoft
Office 2021 (21st ed.). Cengage.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

Robins, A., Rountree, J., & Rountree, N. (2003).

Learning and Teaching Programming: A
Review and Discussion. Computer Science
Education, 13(2), 137–172.

https://doi.org/10.1076/csed.13.2.137.14200

Sarkar, A., Borghouts, J. W., Iyer, A., Khullar, S.,
Canton, C., Hermans, F., Gordon, A. D., &
Williams, J. (2020). Spreadsheet Use and
Programming Experience: An Exploratory
Survey. Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing

Systems, 1–9.
https://doi.org/10.1145/3334480.3382807

Siemens, G. (2005). Connectivism: A Learning

Theory for the Digital Age. International
Journal of Instructional Technology and
Distance Learning, 2(1), 3–10.

Siemens, G. (2014). Connectivism: A Learning
Theory for the Digital Age.
http://er.dut.ac.za/handle/123456789/69

Siemens, G., & Downes, S. (2011). Connectivism
and Connective Knowledge 2011.
https://cck11.mooc.ca/

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 12
https://iscap.us/proceedings/

APPENDIX A

Survey Questions

Demographics

• Your age
• Gender
• Have you decided what you might major in? If so, what?
• Which section of CS 100 are you in?
• Prior to learning Python in CS 100, what was your coding experience?

Learning and Understanding*

• The Python programming concepts introduced were easy to understand
• Applying my Excel knowledge to Python concepts made it easier when learning to code in

Python
• Learning to code in Python helped me understand fundamental programming principles

• Python is a useful language for data manipulation and visualization
• Using Google Colab environment made it easy to code in Python

Student Engagement*

• I found the activities we completed using Python to be engaging
• I found the activities we completed using Python to be fun
• I found the activities we completed using Python to be challenging

• Using AI tools to generate Python code was new to me
• Working on Python problems improved my problem-solving skills

Value of Learning Python*

• Knowing some coding will be a valuable skill in my career
• Having some coding skills are valuable in today’s job market
• I can see practical applications for Python beyond this course

• I would recommend that other sections of CS 100 incorporate learning Python as we did

Future Interest*
• After completing the Python programming activities in CS 100, I am interested in learning

more about Python on my own
• After completing the Python programming activities in CS 100, I am interested in taking a

Python course in college

Open-Ended Feedback

• Other comments about your experience learning Python in CS 100?

*Likert Scale (1 = Strongly Disagree, 5 = Strongly Agree)

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 13
https://iscap.us/proceedings/

APPENDIX B.

Lessons and Activities

Lesson 1: Calculations and Data Types

Coding Together

• Write a program to calculate and print the sum and product of two numbers that the user
enters.

• You're planning a pizza party for a group of friends and want to ensure everyone gets their fair
share of pizza. Create a program that calculates the number of pizzas needed based on the
number of people and their typical pizza consumption. Assume 8 slices per pizza. Then enter

the cost of a pizza to calculate the total cost of the pizza order. import math and use
math.ceil() to round up!

• You're going on a road trip and want to figure out the cost of travel based on user inputs.
Write a program to ask the user for the total distance of the trip in miles, the average miles
per gallon (MPG) of the vehicle you're driving, the expected price of gasoline per gallon, and

the expected average speed of the trip in miles per hour (MPH). Your program should calculate

the total amount of fuel needed for the trip, the total cost of fuel, and the estimated travel
time. Finally, it should output the total cost of the road trip.

Challenges

• Write a program that takes three numbers as input from the user, calculates their average,
and prints the result.

• Write a program to ask the user to enter their name and their height in inches. Print their

name followed by their height in feet and inches. Hint: use the // operator for integer division
and the % operator for remainder.

• You want to paint four walls in a rectangular room (don't worry about doors and windows!)
Assume a gallon of paint covers 350 square feet, and a painter can paint 150 square feet in an
hour. Ask the user to enter the length, height, and width of the room in feet. Also enter the
painter's hourly rate, and the cost per gallon of paint. Calculate the number of gallons you'll

need, the total square feet needed for coverage, the cost of paint, the cost of labor, and the

total cost to paint the room.
Run your program for a 9 x 12 room with 8-foot ceilings, and a painter who makes $50/hour.

Paint costs $25/gallon.

Lesson 2. If Statements and For Loops

Coding Together

• Enter an employee's name and the number of hours worked. Assume an hourly rate of $15,
with time and a half for all hours over 40.

• A store sells a case of 6 books at a time. Each book costs $10. Write a program to calculate
the cost of 6, 12, ..., 48 books.

• A user enters their t-shirt size (S/M/L) and the program converts that size to words (small,
medium, large).

• Write a program to simulate flipping 100 coins, count the number of heads and tails. Use

these statements to generate random numbers.
import random
number = random.randint(0,1) # 0 for heads, 1 for tails

Challenges

• A user enters an integer, the program determines whether the number is odd or even. Hint:
If number % 2 is 0, the number is even. Otherwise it's odd.

• Print a table of Fahrenheit to Celsius temperature conversions for C values between 0 and 100
in multiples of 10 (0, 10, 20, ... 100). Use the formula F = (C * 9/5) + 32 to convert from C
to F.

https://https/www.w3schools.com/python/trypython.asp?filename=demo_oper_floordiv
https://https/www.w3schools.com/python/trypython.asp?filename=demo_oper_mod

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 14
https://iscap.us/proceedings/

• Write a program of your own choosing that shows your understanding of several concepts

from today's lesson. Be sure to include a comment at the top of your program that describes
what your program is trying to compute.

Lesson 3. Charts, Graphs, and Coding with AI

Coding Together
Add the file temps.csv to your Colab Notebook in the Files area.

Temps.csv

City,January,February,March,April,May,June,July,August,September,October,November,December
New York City,32,41,51,61,71,81,88,86,78,67,55,42
Los Angeles,57,59,62,65,69,73,77,79,77,73,67,59
Chicago,26,34,45,56,67,77,81,80,72,61,48,35
Houston,55,61,69,77,85,92,97,96,89,80,70,60
Miami,72,75,78,81,84,87,89,89,87,84,80,75

In Colab, create a code block, click "generate" to use AI, and enter this prompt:

Using temps.csv, write code to generate a bar chart showing temps from Miami for each
month. use the month names as x axis labels, place a legend in lower right

You should see a chart that looks like this when you run the Python code:

Now, create a new text block and this time use the prompt:

Using temps.csv generate a bar chart showing average temperature for each city make each
bar a different color

https://brightspace.bentley.edu/content/enforced/20762-cs100_6-h_202401/temps.csv?ou=20762

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6433

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 15
https://iscap.us/proceedings/

Run the code. If you get an error, it may be because Colab is assuming what the data looks like.
In fact there is no “AvgTemperature” column in the data. Try to refine the prompt to give Colab more

information about the data:

Challenges
Download the data file: sales.csv

Product,January,February,March,April,May,June,July,August,September,October,November,December
Laptops,245,112,331,315,451,573,561,812,553,884,590,965
Tablets,904,317,790,747,402,720,867,733,965,267,418,955
Phones,854,221,769,386,396,298,546,198,377,497,313,836

Your challenge is to ask Colab (or ChatGPT, Gemini, CoPilot, or another tool) to create four charts that
you design, that show many different features of charts that you learned about in Excel. Try making

pie charts, bar charts, horizontal bar charts, or line charts. Use what you know about Charts in Excel
to make your prompts as detailed as possible.

If the code that Colab generates doesn't work (as sometimes happened for me), you'll see some
Python code with error messages. When that happens, try another tool. Upload the data file, and re-
enter your prompt. If that tool doesn’t run the code, copy and paste it back into a code block in

Google Colab and run it there. See if the results are any better. You may need to edit the line of code
df = pd.read_csv('temps.csv') to use the name of your data file if that line shows a different file name
other than the one you are using.

Ask Colab, CoPilot, Gemini, or ChatGPT to generate code to display this data as a line chart, pie chart
or bar chart. If the chart does not appear when you run the code in Colab, you may need to add a line
such as chart.show() at the bottom of the code to instruct Python to display the chart.

How specific do your prompts have to be to get the charts you desire? Some AI tools work better than
others with this data when generating code, so if you get error messages with one tool, try using a
different one. What problems do you encounter?

https://brightspace.bentley.edu/content/enforced/20762-cs100_6-h_202401/sales.csv?ou=20762

