
2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 1
https://iscap.us/proceedings/

General Programming Languages

for Information Systems (IS) Students

Euijin Kim

e.kim@moreheadstate.edu

Morehead State University

Morehead, KY 40351

Abstract

This study presents a systematic approach for selecting the most suitable programming languages for

information systems (IS) major students. A review of past practice reveals that programming languages
for IS students have often been chosen arbitrarily or based on popularity, typically adopted from other
disciplines such as computer science without regard to their specific needs. This study introduces a
comprehensive framework that enables educators and practitioners to make informed decisions when
selecting programming languages for IS education.

Keywords: Programming languages, information systems, compilers, interpreters, hybrid programming

languages, adaptive compilers.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 2
https://iscap.us/proceedings/

General Programming Languages for

Information Systems (IS) Students

Euijin Kim

1. INTRODUCTION

Programming languages are a vital component of
information systems (IS) education because they
enable students to better understand computers,
leading to more efficient use. Moreover,

possessing programming skills can enhance job
opportunities in areas such as web development,
mobile programming, database management,
and business analytics.

In information systems education, however,
programming has sometimes been overlooked.

For instance, the 2010 Curriculum Guidelines for
Undergraduate Degree Programs in Information
Systems (Topi et al., 2010) relegated
programming to a secondary capability, making it
an elective course, Application Development. This
approach was contested by proponents of

programming as a core course for IS students
(Janicki & Cummings, 2022). Fortunately, the
2020 curriculum guidelines (Leidig & Salmela,
2020) recognized the importance of programming
and reinstated it as a core course, Application
Development/Programming. This shift is justified

because programming knowledge and skills will

benefit IS students in various ways, including
helping them understand computers better,
thereby enabling them to use computers more
efficiently.

A subsequent important question is: what
programming languages should be taught to IS

students? While a few studies have investigated
programming language choice in the IS field
(e.g., Parker et al., 2006), most research has
focused on which programming languages are
used in IS education (e.g., Smith & Jones, 2021).
It is time to consider programming language

choice for IS students in a more systematic
manner.

2. LITERATURE REVIEW

Computer science has a long history of
considering the selection of programming

languages, predating other fields (e.g., Tarp,
1982). The selection process is, however, more
focused on efficiency in programming languages.

In IS education, research on selecting

programming languages is either scarce or
passive. One notable exception is Parker et al.'s
(2006) study, which identified 23 selection
criteria based on a literature review and later
condensed them into 11 higher-order selection
criteria. While their work provides valuable

insights, some of these criteria may be either
irrelevant or one-dimensional for today's
environment. For instance, software cost is now a
relatively minor concern since most programming

language tools are available free of charge (e.g.,
Java). The items listed under these criteria are
presented in a one-dimensional manner,

assuming they serve as direct predictors of the
selection process. Unfortunately, this
oversimplification seems problematic, as it
appears to overlook the complexity involved in
the selection process.

Research specifically focused on information
systems is also passive. For instance, Smith and
Jones' (2021) survey summarized the
programming languages used among US colleges
for IS or business analytics courses. They found
that Python, Java, and Visual Basic were the most

popular choices. Notably, these programming

languages seem to have been chosen passively
without careful consideration by many US
colleges. The study also underscores the need for
further exploration into programming languages
suitable for IS students.

Considering these problems, this proposal

presents a new framework for selecting
appropriate programming languages for IS major
students. It begins by summarizing the
fundamentals of information systems and
employs a systematic framework to help identify
the most suitable programming languages for IS

students.

3. INFORMATION SYSTEMS

Information Systems (IS) leverages information
technologies to support business processes and
decision-making, encompassing various business

functions such as production and operations
management, marketing, finance, human
resource management, and accounting (Laudon &
Laudon, 2020). These functions may involve sub-
processes, such as production and operations

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 3
https://iscap.us/proceedings/

management containing supply chain

management, or be integrated into higher-level
processes, including strategic management that
encompasses finance, human resource

management, and other relevant functions. This
complexity makes business processes more
intricate. Information systems play a crucial role
in integrating these business functions to
facilitate more efficient processing, thereby
generating business value.

These unique features of information systems are
distinct from those found in other related
disciplines, such as computer science, computer
engineering, and information technology. For
instance, computer science or software
engineering emphasizes software optimization,

which demands strong mathematical and logical
foundations. Computer engineering focuses on
hardware optimization, often involving software
development, whereas information technology is
more focused on software/hardware installation
and maintenance.

In contrast, the domain of information systems
revolves around business value, necessitating
distinct processes that integrate technological
and organizational aspects. In other words, the
uniqueness of IS lies in its focus on business,
whereas other disciplines prioritize technology.
These differences are summarized in Figure 1,

which highlights the distinct nature of information
systems' focus on business value. To generate

business value, information systems undergo
frequent changes, influencing the choice of
programming languages for IS development and
maintenance.

Figure 1: Information Systems and Other
Related Disciplines

With the unique features of IS distinguished from

those of other disciplines, we will now review
relevant factors in selecting programming
languages suitable for IS major students.

4. FACTORS FOR SELECTING
PROGRAMMING LANGUAGES

To select a general programming language for IS
major students, two primary sets of factors can
be considered: intrinsic characteristics and

external forces.

The intrinsic characteristics encompass technical
features, practical usability, and pedagogical
value. To put it simply, a programming language
must possess these three key intrinsic qualities to

be beneficial for IS major students. These
characteristics are supported by the Technology
Acceptance Model (TAM), proposed by Davis
(1989), which suggests that users will accept a
technology if it is both useful and easy to use. In
our model, the decision-maker is not the user
(learner) but rather the educator, who evaluates

the technology's usefulness and ease of use in
terms of its technical features, practical usability,
and pedagogical value. In other words, educators
can select programming languages that are
suitable for learners' needs and easy enough for
them to learn.

The external factors – designed purpose and
industry demand – can also be supported by the

usefulness construct of TAM. They are separated
from the intrinsic characteristics because they are
external forces rather than intrinsic
characteristics. For instance, when selecting a

programming language for web development,
one might consider options such as standard tools
(HTML, CSS, JavaScript), React Native, or
Dart/Flutter. Once these options are identified,
the core intrinsic factors can be evaluated to
eventually select the final technology.

Industry demand is also processed in a similar
manner. By evaluating industry trends and
demands, educators can refine their selection of
programming languages to ensure that students

are equipped with relevant skills for the job
market. In this process, the core factors
(technical features, practical usability, and

pedagogical value) continue to play the primary
role.

The external factors are also supported by the
Task-Technology Fit model (Goodhue &
Thompson, 1995). According to the model, when

technology fits a task, performance improves.
Designed purpose and industry demand are

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 4
https://iscap.us/proceedings/

related to tasks which are likely to improve

performance. In other words, if a programming
language fits a particular purpose or industry
demand, learners are likely to improve their

performance. Figure 2 demonstrates the factors
affecting the selection.

Figure 2: Selection of General Programming

Languages for IS Students

Using this model, several programming
languages for IS major students will be reviewed
in the next section.

5. REVIEW OF PROGRAMMING LANGUAGES
FOR IS EDUCATION

In this section, we will apply the framework to
review several programming languages that are
relevant to IS major students.

Technical Features of Programming

languages
Programming languages can be categorized
based on their technical features. Specifically,
they can be classified into four categories:
compilers, interpreters, hybrids (which combine

elements of both compilers and interpreters), and
adaptive compilers that employ just-in-time and
ahead-of-time compilation.

C is a classic example of a compiler-based
programming language (Kernighan & Ritchie,
1988). It requires source code files to be compiled

into binary code files before distribution (refer to
Figure A1, Appendix A). Compiler-based
programs are generally faster and more efficient
than other types of programs, making them

suitable for developing system software, such as
operating systems. However, these languages are

less suitable for business applications that require
frequent changes, as modifying the source code
or developing new ones can be time-consuming
and resource-wasting due to the cost of
recompilation.

Interpreter-based programming languages offer

a different approach. HTML, CSS, and JavaScript

are examples of interpreter-based programming

languages, widely used for web application
development (W3C, n.d.). These languages
enable developers to create source code files that

can run across various environments as long as
an interpreter (i.e., web browser) is available.
The process involves interpreting the source code
into machine code at runtime (refer to Figure A2,
Appendix A). Applications based on interpreter-
based programming languages offer convenience
and flexibility but are generally considered slower

than those developed using compiler-based
programming languages due to the translation
process that occurs when the applications are
running.

Hybrid programming languages combine the

benefits of both approaches (refer to Figure A3,
Appendix A). For instance, Java (Oracle, n.d.)
enables developers to create source code files
once, compile them into intermediate bytecode
files, and then distribute these bytecode files for
users to process using an interpreter, such as the
Java Virtual Machine (JVM) or Java Runtime

Environment (JRE). This hybrid approach offers a
balance between the convenience of interpreters
and the efficiency of compilers, making it well-
suited for business applications. The popularity of
Java has led to its adoption in various industries,
including database management systems (ABC
News, 2009) and Android application

development (Google, n.d.). However, hybrid
programming languages do require the

installation of an interpreter on user computers,
which can be a burden to users.

To address the issue of requiring interpreters at

the user side, adaptive compilation has emerged
as a new type of programming environment. With
adaptive compilation, developers create and test
source code files in a just-in-time environment
using just-in-time compilation. When it's time for
distribution, the source code file is compiled
ahead-of-time for different operating systems,

and the appropriate binary code files are
distributed (refer to Figure A3, Appendix A). This
adaptive compilation approach combines the
benefits of interpreter-based programming

languages (convenience and flexibility) with the
efficiency of compilers. Moreover, users do not
need any additional components (e.g.,

interpreters) to run the programs.

All types of programming languages have
relevant applications, but adaptive compilation is
one of the most advanced and comprehensive
technologies in programming to date. This

development will have a significant impact on the
selection of programming languages for IS

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 5
https://iscap.us/proceedings/

students, enabling them to directly benefit from

the latest technologies. In essence, learners will
derive advantages from modern technology that
promotes flexibility, efficiency, and user

convenience.

Practical Usability
Practical usability in programming languages
refers to the convenience of developing,
distributing, and running source code files. As
reviewed earlier, interpreter-based programming

offers this convenience by allowing developers to
create source code files once and distribute them
across different environments (e.g., Windows,
macOS, Linux, etc.). Hybrid programming
compiles source code files into intermediary files,
such as bytecode, which are then distributed and

interpreted by users on various computing
environments. In contrast, adaptive compilation
quickly compiles source code files for just-in-time
testing, and then compiles these files again ahead
of time for distribution across different
environments. This approach is particularly
convenient because it eliminates the need for

users to install additional components or
interpreters.

Practical usability also involves multi-platform
support, enabling developers to create
applications that can be used on multiple
platforms without significant modifications or

additional software requirements. For instance,
Dart/Flutter allows developers to create mobile

apps, desktop applications, and web applications
with minimal adjustments needed (Flutter, n.d.).

While other programming languages can

accomplish similar tasks, they often come with
limitations. For example, C++ can be used for
multi-platform development, but this requires
additional components or adjustments. Similarly,
JavaScript can be used for cross-platform
application development using external
frameworks like React Native; C# with .NET

(Microsoft, n.d.) enables application development
for various platforms, including Android, the web,
and Windows, although these approaches are not
integrated into the core language.

What sets Dart/Flutter apart from other
programming languages is its comprehensive

development environment, which integrates all
tools around the Dart programming language.
This unique combination makes it a more
practical choice for developers seeking to create
cross-platform applications that can be easily
deployed across different environments,

leveraging Flutter's professional-grade GUI
development framework (Flutter, n.d.).

Pedagogical Value

Programming languages have undergone
significant evolution, transitioning from non-
structured to structured and ultimately, to object-

oriented. Today, most modern programming
languages are object-oriented (e.g., Java, C#,
C++, Python, Dart/Flutter, etc.). Some
programming languages offer basic features of
object-oriented programming, while others
provide more comprehensive support.

For instance, JavaScript enables the convenient
creation of objects; however, this process differs
from that found in more formal object-oriented
programming languages, such as Java. This
divergence is due to JavaScript's focus on efficient
coding (e.g., functional programming). While

JavaScript's object-oriented features can be
beneficial for students to learn, it may not provide
a comprehensive understanding of object-
oriented programming principles.

In contrast, standard object-oriented languages
like C++, Java, and C# offer more formal and

systematic approaches to object-oriented
programming. These languages integrate
concepts such as encapsulation, inheritance, and
polymorphism, which can be complex for learners
to grasp. However, these complexities can also
provide a deeper understanding of object-
oriented programming principles.

Dart/Flutter provides the basics of standard

object-oriented programming, simplifying these
concepts into more practical and simpler
approaches that are suitable for introductory
general programming language courses. For

beginners, Dart/Flutter offers a solid foundation
and helps build a strong understanding of object-
oriented programming principles.

For advanced learners, Java, C++, or C# can be
used to explore the more in-depth coverage of
object-oriented programming concepts, possibly

after they have grasped the basics of object-
oriented programming.

Designed Purposes of Programming

Languages
A programming language is usually designed for
a task. For instance, C, C++, Rust, and Go, are

designed to develop systems software programs,
making them particularly useful for computer
science or computer engineering students.

Python and R, are popular choices for quantitative
data analysis (R, n.d.; Python, n.d.). These

interpreter-based languages offer the
convenience of immediate interaction, making

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 6
https://iscap.us/proceedings/

them ideal tools for data analysis. Their

applications include data science, data analytics,
and business analytics.

Structured Query Language (SQL) is the
international and US standard for relational
database management systems (Kelechava,
2018). Unlike other programming languages, SQL
is goal-oriented or non-procedural, focusing on
achieving a specific outcome rather than following
a procedural sequence.

For developing web pages, HTML, CSS, and
JavaScript are the standard tools (W3C, n.d.).
These languages are widely used and provide a
straightforward way to create interactive web
pages. While other programming languages can

be employed to develop web pages, they require
conversion into the standard programming code,
specifically HTML, CSS, and/or JavaScript. For
instance, C# can be used to build web pages, but
the resulting C# code will ultimately need to be
converted into HTML, CSS, and/or JavaScript for
use in a web browser. This conversion process

can be time-consuming and may require
additional programming effort. In contrast, HTML,
CSS, and JavaScript are designed specifically for
web development and provide an efficient way to
create dynamic web pages. As a result, they
remain the preferred choice for most web
development projects.

Web server-side scripting languages, such as

PHP, ASP.NET, and JSP (among others), are well-
established and widely used. However, their
primary focus lies in managing web servers
(resource management) rather than general-

purpose programming.

Mobile application development has become a
trend, with two main streams: Android and iOS.
For Android applications, Java was previously the
standard programming language; however,
Google has since emphasized Kotlin for Android

application development. For iOS applications,
Apple recommends Swift, which is a compiler-
based programming language and thus can be
used only on Apple systems. As a result,

developers of mobile applications had to choose
between either Android or iOS. To overcome this
limitation, multi-platform frameworks (Jetbrain,

2025) have been introduced such as Ionic (2013),
NativeScript (2014), React Native (2015),
Dart/Flutter (2017), .NET MAUI (2022), and
Kotlin Multiplatform (2023). These frameworks
allow developers to write source code once that
can be easily run on multiple platforms. Notably,

Dart/Flutter employs the most recent
technologies, including just-in-time and ahead-

of-time compilation.

Industry Demand
Programming languages' popularity can fluctuate

over time. For example, COBOL was once highly
sought-after for business data and process
management during the millennium bug era
(Gaskin, 2000). Although its popularity has
decreased somewhat, it still maintains a presence
in certain sectors, such as finance institutions,
where legacy systems continue to rely on its

functionality.

Visual Basic enjoyed widespread popularity when
Windows desktop applications were prominent in
the 1990s and early 2000s. However, its appeal
has declined in recent years (Anderson, 2023) as

users have shifted their focus towards new
computing environments, such as mobile apps.

Despite these fluctuations, there is ongoing
debate about programming language rankings.
Different sources may have varying rankings, but
according to a recent assessment as of 2024, the

top programming languages are Python (#1),
Java (#2), JavaScript (#3), C# (#7), HTML/CSS
(#10), Dart (#19), among others (Cass, 2024).

When selecting programming languages for IS
major students, industry demand is a critical
factor to consider. However, other factors must

also be taken into account, as trends can change
in the future. In fact, it may be more important

for students to understand programming
concepts, which will enable them to learn other
urgent programming languages later after
completing a general programming course.

6. A CASE EXAMPLE

At our institution, we utilized the presented
framework to screen candidate programming
languages and select the most suitable general

programming languages for IS major students.
Previously, programming languages were chosen
arbitrarily or based on popularity.

Initially, COBOL and C++ were taught in our IS
major program for some time. Later, Java and
Visual Basic were added to the curriculum. Our

computer science department also introduced
Python as part of an introduction to computer
science course.

As we offered C++, COBOL, Java, and Visual
Basic, our information systems department began

to offer a web design course with HTML, CSS, and
JavaScript. A mobile application development

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 7
https://iscap.us/proceedings/

course was later introduced, initially using Java

but later switching to Kotlin. In database courses,
SQL was used, while business analytics courses
employed R.

Recently, our Information Systems department
reviewed its programming language courses,
driven by factors such as the institution's size. As
a consequence, COBOL was removed from the
curriculum, and C++ is no longer taught by
information systems faculty members. SQL and R

continue to be used in relevant courses, while
HTML, CSS, and JavaScript remain essential tools
of the web design course.

To select a suitable programming language for
our general programming course tailored to IS

major students, we applied the proposed model.
Initially, we considered a range of programming
languages, including Java, JavaScript, Python,
C++, C#, Visual Basic, Kotlin, Dart/Flutter, and
Swift. After analyzing these options, Java and
Dart/Flutter emerged as strong finalists. In
accordance with the guidelines (refer to Table B1,

Appendix B), we ultimately chose Dart/Flutter
because it is technologically up-to-date, offers
practical usability by enabling developers to
create applications for various environments and
platforms simultaneously, has pedagogical value
in facilitating the learning of object-oriented
concepts and more, and meets a specific niche

demand in mobile application development – an
area with growing importance. Notably,

prominent companies such as Google, Alibaba,
BMW, Toyota, and others are already leveraging
Dart/Flutter.

This process required instructors or course
designers to conduct in-depth research directly or
indirectly. We then quantified the categories,
subdividing the five factors into subsections if
necessary. Finally, we reviewed the scores to
make the final decision.

Dart/Flutter have been used for a while in a
mobile application development course which is
recommended for IS major students as an
introductory and general programming language

course. The outcome appears to be appropriate,
as our course offerings have continued
successfully.

7. DISCUSSIONS

This paper presents a systematic framework that
can be used for selecting general programming
languages for IS students. The framework can

also be applied to other major students. For
instance, the model suggests that C/C++ or any

compiler-based language would be suitable for

certain purposes, while Python and/or R may be
more appropriate for data science, data analytics,
or business analytics students.

The items for each category are also flexible. In
the future, if new technologies are introduced, the
items may change. For instance, adaptive
compiler is a recent technology. If new
technologies are introduced that are better than
adaptive compiler, the new ones may receive

higher scores and potentially alter the outcome.

Aside from the strengths of the proposed
framework, there are some limitations. Firstly,
there may be other omitted factors such as social
influence. According to Venkatesh et al. (2003),

in addition to perceived usefulness (performance
expectancy) and perceived ease of use (effort
expectancy), two additional factors affect the use
of technology: social influence and facilitating
conditions. Social influence is similar to the
industry demand construct in our model, but they
are not the same. While social influence is driven

by other users' opinions, industry demand is more
focused on a user's benefit. In other words,
industry demand is about a user's benefit while
social influence may not be directly related to that
benefit. The facilitating conditions construct in the
unified theory of acceptance and use of
technology (UTAUT) is less relevant to our model

because it is primarily descriptive in nature
(focusing on explaining what people used), rather

than being prescriptive (guiding users as to what
to do or what to select).

Secondly, the validity of the proposed model has

not been established. With only one case
example, it is premature to determine whether
the model is valid and reliable. The ongoing
assessment of even this single case will take a
significant amount of time. Additionally, plans are
in place to disseminate this model to other
institutions for further evaluation. Until then, this

model remains incomplete, but it can serve as a
valuable starting point.

Thirdly, measuring the success of this model is

unclear. Some possible assessment items
include:

• Continuity of a selected general
programming course: as more
institutions participate in this research,
the number of successful courses can be
used as an index.

• Students' success in completing the

selected course: the percentage of
students who complete the course can be

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 8
https://iscap.us/proceedings/

used as an index.

• Students' success in subsequent courses:
the percentage of students who take a
general programming course and are

successful in subsequent courses can
serve as an index.

• Students' understanding of how
computers work: one of the primary
reasons for teaching programming
languages to IS students is to help them
understand how computers function,

thereby enabling them to use computers
more effectively. This assessment can
also serve as an index.

With these, our proposed model can be flexibly
applied by IS educators to benefit their students

majoring in IS.

Fourthly, the use of the model can be subjective.
For instance, one evaluator may have
significantly different outcomes than others. To
overcome this problem, additional procedural
checks can be incorporated to make the process

more objective. One possible approach would be
for multiple course designers to develop their own
comparisons, and then compare these
comparisons to reach a final decision. This
process can help reduce subjectivity in decision-
making. Additionally, visual grids (refer to Figure
B1, Appendix B) can be used to facilitate visual

comparisons among candidate programming
languages, making the decision-making process

more transparent and easily understandable.

8. CONCLUSIONS

The conceptual framework presented provides a
systematic approach to selecting a general
programming language for IS major students.
This framework considers key factors such as
technical features, practical usability, pedagogical
value, designed purposes, and industry demand
that influence the selection process.

The framework's applicability can be extended to
include other technologies, providing a valuable
tool for educators and course designers alike. In

this context, different or various items for each
construct can be used for different technologies.

With the limitations considered, we hope that the
proposed model will contribute to IS education.

9. ACKNOWLEDGEMENTS

We appreciate the anonymous reviewers for their

valuable suggestions.

10. FOOTNOTES

1 Recent versions of JavaScript have introduced
more formal object-oriented features, specifically

classes (MDN web docs, n.d.).

11. REFERENCES

ABC News. (2009, April 21). Oracle to buy Sun for
$7.4B after IBM drops bid. Retrieved January
3, 2025, from

https://abcnews.go.com/Technology/story?i
d=7395780&page=1.

Anderson, T. (2023, March 20). Microsoft’s Visual
Basic: Why it won, and why it had to die. Dev
Class. Retrieved January 3, 2025, from

https://devclass.com/2023/03/20/microsofts

-visual-basic-why-it-won-and-why-it-had-to-
die/.

Cass, S. (2024, August 22). The Top
Programming Languages 2024. IEEE
Spectrum. Retrieved January 3, 2025, from
https://spectrum.ieee.org/top-
programming-languages-2024.

Dart. (n.d.). Dart documentation. Retrieved
January 3, 2025, from
https://dart.dev/guides.

Davis, F. D. (1989). Perceived Usefulness,
Perceived Ease of Use, and User Acceptance
of Information Technology. MIS Quarterly,

13(3), 319-340.

Flutter. (n.d.). Flutter: Multi-platform. Retrieved
January 3, 2025, from
https://flutter.dev/multi-platform.

Gaskin, J. E. (2000). COBOL Experts: Life After
Y2K. Inter@tive Week, 7(2), p. 2/3.

Goodhue, D. L. & Thompson, R. L. (1995). Task-

Technology Fit and Individual Performance.
MIS Quarterly, 19 (2), 213-236.

Google (n.d.). Get started with Android. Retrieved
January 3, 2025, from
https://developer.android.com/get-
started/overview.

Janicki, T. & Cummings, J. (2022). IS model

curriculum: Adoption rate of IS 2010 model
curriculum in AACSB and impacts of the
proposed 2020 model curriculum.
Information Systems Education Journal
(ISEDJ), 47-56.

Jetbrains (2024, June 10). The six most popular
cross-platform app development frameworks.

Retrived July 15, 2025 from
https://www.jetbrains.com/help/kotlin-

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 9
https://iscap.us/proceedings/

multiplatform-dev/cross-platform-

frameworks.html.

Kelechava, B. (2018, October 5). The SQL
Standard – ISO/IEC 9075:2023 (ANSI

X3.135). ANSI. Retrieved January 3, 2025,
from https://blog.ansi.org/sql-standard-iso-
iec-9075-2023-ansi-x3-135/.

Kernighan, B. W. & Ritchie, D. M. (1988). The C
Programming Language, 2nd ed. Prentice Hall
PTR, Upper Saddle River, New Jersey.

Laudon, K. & Laudon J. (2020). Management

Information Systems: Managing the Digital
Firm, 16th ed. Pearson, New York, NY.

Leidig, P. & Salmela, H. (2020). IS2020: A
competency model for undergraduate

programs in information systems. The Joint
ACM/AIS IS2020 Task Force. Retrieved

January 3, 2025, from
https://www.acm.org/binaries/content/asset
s/education/curricula-
recommendations/is2020.pdf.

Microsoft. (n.d.). C# language documentation.
Retrieved January 3, 2025, from
https://learn.microsoft.com/en-

us/dotnet/csharp/.

MDN web docs. (n.d.). JavaScript Classes.
Retrieved January 3, 2025, from
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Classes.

Oracle. (n.d.). Learn Java. Retrieved January 3,
2025, from https://dev.java/learn/.

Parker, K. R., Chao, J. T., Ottaway, T. A. , &
Chang, J. (2006). A formal language selection
process for introductory programming

courses. Journal of Information Technology,

5, 133-151.

R. (n.d.). The R Project for Statistical Computing.
Retrieved January 5, 2025, from

https://www.r-project.org/.

Python. (n.d.). Python 3.13.1 documentation.
Retrieved January 5, 2025, from
https://docs.python.org/3/.

Tharp, A.L. (1982). Selecting the ‘right’
programming language. ACM SIGCSE
Bulletin, 14 (1), 151-155.

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K.,
Nunamaker, Jr., J. F., Sipior, J. C., & de
Vreede, G. (2010). IS 2010: Curriculum
Guidelines for Undergraduate Degree

Programs in Information Systems.
Communications of the Association for

Information Systems, 26, pp-pp.

Smith T. C. & Jones L. (2021). First course
programming languages within US business
college MIS curricula. Journal of Information
Systems Education, 32(4), 283-293.

Venkatesh, V, Morris, M. G., Davis, G. B., Davis,
&F. D. (2003). User Acceptance of

Information Technology: Toward a Unified
View. MIS Quarterly. 27 (3), 425–478.

W3C. (n.d.). The web standards model - HTML
CSS and JavaScript. W3C Wiki. Retrieved
January 3, 2025, from

https://www.w3.org/wiki/The_web_standard
s_model_-_HTML_CSS_and_JavaScript.

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 10
https://iscap.us/proceedings/

APPENDIX A

Figure A1: Compilers

Figure A2: Interpreters

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 11
https://iscap.us/proceedings/

Figure A3: Hybrid

Figure A4: Adaptive Compilers

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 12
https://iscap.us/proceedings/

APPENDIX B

Table B1 presents a comparison of programming languages suitable for IS major students. Although
additional programming languages had been compared using tables similar to this one they are not

included here due to space limitations. For our institution, the final candidates for general
programming for IS major students were Java and Dart/Flutter; ultimately, Dart/Flutter was selected.

Category Java Dart/Flutter

Technical Features Hybrid programming language
- Uses compiler and interpreter

8 Adaptive compilation
- Utilizes compilers for just-

in-time compiling and
ahead-of-time compiling

9

Practical Usability Support multiple operating

systems

8 Support multiple operating

systems
Support multi-platform
(mobile, desktop, web, etc.)

9

Pedagogical Value Most concepts of object-oriented

programming are supported

9 Selected and more practical

concepts of object-oriented
programming are supported.
E.g., polymorphism is not
directly supported, but uses
other feature (named
constructors) to implement
this practice.

10

Designed Purpose Initially develped for appliance
program development.
Now used for enterprise
application development.
Once was the standard

programming for Android
application development.

9 Mobile application
development for various
operating systems (Android,
iOS, etc.).
Can be used to develop

desktop applications and web
applications

9

Industry Demand High 10 Not high, but growing

8

Total 44 45

Table B1: Review of Programming Languages for IS Students

2025 Proceedings of the ISCAP Conference ISSN: 2473-4901
Louisville, KY v11 n6451

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 13
https://iscap.us/proceedings/

Figure B1 illustrates a visual comparison of selected programming languages, using a grid that
considers three dimensions: technical features (x-axis), practical usability (y-axis), and pedagogical
value (circle size).

Figure B1: Visual Comparison of Programming Languages (Comparison Grid)

As depicted in the figure, Dart/Flutter has the highest positions for technical features and practical
usability. In terms of pedagogical value, it has a similar position to that of Java. For an introductory

general programming course, Dart would have a better position (larger circle). However, for an
advanced programming course, Java would have an edge over Dart.

This comparison grid does not account for the extrinsic forces: designed purposes and industry
demand. If the compared programming languages are tied in the previous comparison grid, they can
be compared in another grid with two dimensions: designed purposes and industry demand.

The sequence may be reversed in certain situations. For instance, a two-dimensional comparison grid
may be used first to identify more popular programming languages with relevant purposes. If some

programming languages remain tied, then a three-dimensional comparison grid can be employed.

If the second comparisons are still tied, voting by course designers can be conducted to finalize the
decision.

