
2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 1 
https://iscap.us/proceedings/ 

Teaching Case  
 

Building Advanced Multi-Agent Chatbots:  
A Low-Code/No-Code Approach 

 
 

Frank Lee 
flee@gsu.edu 

 
Harmanprit Kaur 

hkaur7@student.gsu.edu 
 

J. Mack Robinson College of Business 

Georgia State University 
Atlanta, Georgia 30303, USA 

 
 

Hook 
This tutorial outlines a no-code methodology for developing a multi-agent chatbot for financial 

analysis. 

 

Abstract  
 

This tutorial provides a methodically organized and technically detailed guide for building a multi-agent 
financial analysis chatbot using Langflow on Astra. The chatbot uses Retrieval-Augmented Generation 
(RAG), modular agents, and real-time data integration to offer dynamic, context-aware decision support 

for financial queries. Although this tutorial is based on financial analytics, its architecture and design are 
broadly useful across many fields. The chatbot systematically employs specialized agents to research 
market trends, gather real-time data, and generate evidence-based investment insights. 
 
Keywords: Multi-Agent Chatbots, Retrieval-Augmented Generation, Low-code platform  

 
 
 
 
 

 
 
 
 
 
 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 2 
https://iscap.us/proceedings/ 

Building Advanced Multi-Agent Chatbots:  

A Low-Code/No-Code Approach 
 

Frank Lee and Harmanprit Kaur 
 

 
1. INTRODUCTION 

 
Low-code or No-code platform 
Low-code or No-code platform 
Low-code development employs a visual, model-
driven approach that minimizes manual coding, 

enabling faster and more cost-effective 
application delivery compared to traditional 
programming (Aveiro et al., 2023). Similarly, no-
code platforms allow users to build applications 

through intuitive drag-and-drop interfaces 
without writing code. Both approaches aim to 
accelerate process automation and scalability by 

reducing development time and resource 
demands. While these platforms enhance 
responsiveness to market needs and lower 
complexity, they may offer limited customization 
for complex, highly specialized solutions (Trigo et 
al., 2022). 

 
Multi-agent chatbots   
Multi-agent chatbots represent a significant 
advancement over traditional single-agent 
systems by enabling more dynamic and domain-
diverse interactions (Aksar et al., 2023). Unlike 

single-agent models, which are typically confined 

to narrow tasks, multi-agent architectures 
integrate specialized agents to enhance 
conversational depth, responsiveness, and user 
engagement. However, this complexity 
necessitates advanced orchestration and 
coordination mechanisms to maintain coherence 
and optimize user experience (Calvaresi et al., 

2023). 
 
Although this tutorial is based on financial 
analytics, its architecture and design are broadly 
useful across many fields. The chatbot 
systematically employs specialized agents to 

research market trends, gather real-time data, 
and generate evidence-based investment 

insights. 
 
Key system components include: 
• Real-time market data retrieval via Yahoo 

Finance 

• Natural language synthesis using OpenAI’s 
GPT-4 

• Contextual web research through Tavily AI 
Search 

• Modular agent orchestration via Langflow’s 
visual interface 

• Scalable deployment with Astra DB's vector 
database for memory, RAG pipelines, and 
user-context tracking 

 

Objectives 
The main goals of this tutorial are: 
• Learn how to navigate and set up Langflow 

within the Astra DB environment 

• Retrieve and combine external financial 
data through public APIs 

• Use prompt engineering strategies to guide 

LLM-based agents 
• Build a fully functional Langflow-based 

chatbot for financial analysis 
• Modify and deploy a domain-specific, 

interactive LLM assistant 
 

 
2. UNDERSTANDING LANGFLOW ON ASTRA 
 
Definition and Functionality 
Langflow is a web-based, low-code platform for 
developing LangChain applications. It allows 

developers to visually build workflows using 

connected components like LLMs, prompts, 
retrievers, and tools, simplifying backend 
complexity with an easy-to-use node-based 
interface. 
 
Why Use Astra LangFlow 
• Langflow, integrated with Astra DB—a 

cloud-native, vector-supported NoSQL 
database, enables seamless deployment of 
scalable LLM applications. 

• This combination supports: serverless, 
cloud-native operations; high-performance 
vector search for embedding memory; real-

time data integration using RAG workflows; 
and deployment without backend 

engineering overhead. 
 
Advantages of Astra Langflow 
• Langflow on Astra provides several key 

advantages: 
• Building complete AI workflows with visual 

components 
• Managing memory securely and scalably 

using vector search 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 3 
https://iscap.us/proceedings/ 

• Accelerating prototyping with reusable 

templates and no-code tools 
• Supporting real-time data processing 

essential for financial and trend analysis 

 
PROJECT ACTIVITY 
The chatbot architecture consists of the following 
components: 

Component  Purpose 

Chat Input Node Receives user queries 

Tavily AI Search Search engine optimized 
for LLMs and RAG, aimed 
at efficient, quick, and 
persistent search results 

Yahoo Finance 
Tool 

Fetched real-time financial 
data using yfinance 

Calculator Perform basic arithmetic 

operations on a given 

expression. 

URL Tool Load and retrieve data 
from specified URLs. 
Supports output in plain 
text, raw HTML, or KSON, 
with options for cleaning 

and separating multiple 
outputs. 

Agent 1 
(Researcher) 

Uses OpenAI GPT to 
analyze Tavily search 
results. The agent is 

instructed to identify 
patterns, market 
sentiment, and trends from 

search data 

Agent 2 
(Financial 

Analyst) 

Interprets Yahoo Finance 
output to extract financial 

indicators 

SambaNova 
Node 

Generates the final user-
facing response 

Combine Text 

Nodes (x2) 

Two separate Combine 

Text nodes are used to 
merge the output of each 
agent into a unified input 
string 

Chat Output Displays the final chatbot 
response to the user in 

natural language 

 
3. SETTING UP LANGFLOW ON ASTRA 

 
Accessing Langflow 
 

1. Navigate to Langflow (Figure 1; figures are in 
the appendix) on Astra by opening a web browser 
and visiting: 
 
https://astra.datastax.com/langflow/d53da360-
33e2-4eed-a97c-0b9bae5b0134  

 

2. Log in to your DataStax Astra account.  

 
• If you don't have an account, please 

complete the registration process, which 

includes providing your full name, email 
address, and creating a password. Or log 
in with your Google account 

• Verify the email address and log in 
 
3. Create a new Langflow project by selecting 

"New Flow" at the top-right of the interface 

• This will open the template selection 
screen designed to help users get started 
with different LLM-based workflows 
 

4. Explore available templates 
Astra Langflow offers a wide array of pre-built 

templates organized by use case and 
methodology. These include: 

• Basic Prompting: A minimal workflow to 

perform prompt-based tasks using an 

OpenAI model 

• Vector Store RAG: A prebuilt Retrieval-

Augmented Generation setup for 

contextual search and memory 

• Simple Agent: A basic agent framework 

for decision-based tasks 

 
On the left side, categories like Assistants, 
Content Generation, Q&A, Prompting, and RAG 
are also available for further exploration.  
These templates act as practical references, 

demonstrating that Langflow can be used to 
create assistants for financial analysis, research 
synthesis, content writing, and more.  
  
Figure 2 illustrates Langflow’s template selection 
screen showing “Basic Prompting," "Vector Store 
RAG," and "Simple Agent" templates, with the 

sidebar displaying categorized options under "Use 
Cases" and "Methodology." 

5. Select “Blank Flow” for this tutorial 
While templates are useful for inspiration or quick 
prototyping, this tutorial aims to help students 
understand Langflow in detail. Therefore, choose 
the “Blank Flow” option in the bottom-right corner 

of the screen. Building the chatbot from scratch 

will give insight into how each part functions, how 
data moves between modules, and how to expand 
the architecture for other uses beyond financial 
analysis. 
 

4. BUILDING THE FINANCIAL ANALYSIS 
CHATBOT FROM SCRATCH 

This section guides students in building a 
functional chatbot in Langflow using a visual, no-
code interface. While our example emphasizes 

https://astra.datastax.com/langflow/d53da360-33e2-4eed-a97c-0b9bae5b0134
https://astra.datastax.com/langflow/d53da360-33e2-4eed-a97c-0b9bae5b0134


2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 4 
https://iscap.us/proceedings/ 

financial data, the process can be applied across 

various fields. Students will learn to capture user 
input, generate LLM-based responses, retrieve 
real-time data from Yahoo Finance, Tavily AI 

Search, and combine these elements into an 
interactive system. By the end, each student will 
have created a basic chatbot capable of 
answering queries with both language generation 
and live data. 
 
Integrating the Chat Input and LLM 

Component 
Objective: Create a simple user flow where a 
typed message is processed by a large language 
model (LLM) to generate a coherent response. 
This forms the foundation of the chatbot. Before 
integrating with external data, we want the model 

to reply to user input using its built-in knowledge 
and reasoning abilities.   
Step 1: Add the Chat Input Component 

• In the left panel, click on Components. 

• Click “Input” then drag and drop the 

"Chat Input" node into the workspace 

• Drag the Chat Input node into the center 

workspace 

 

Figure 3 shows the Chat Input in the Canvas, 
which allows users to enter queries into the 
chatbot interface, such as, “What is Apple’s stock 

price today?” 

Step 2: Add Yahoo Finance Node 

• In the left panel, click on Components. 

• Under Tools, drag and drop the Yahoo 

Finance node into the canvas 

- In the node settings: 
• Turn the Tool Mode on above Yahoo 

Finance  

• Set the Data Method to “get_news” or 

“get_stock_summary” depending on the 

use case. 

• Set the Number of Items to 5. 

• Leave the Edit Tools box blank unless 

customization is required. 

Figure 4 shows the Yahoo Finance component. 

Step 3: Add Tavily AI Search 
• In the left panel, click on Components. 

• Under Tools, drag and drop the Tavily AI 

Search node into the canvas 

- Create a Tavily AI Search API Key: 
• Turn the Tool Mode on above Tavily AI 

Search 

• Go to the following link, create an 

account, and create an API key: 

https://app.tavily.com/ 

• Input your API key into “Tavily API Key” 

Figure 5 shows the Tavily AI Search website. 

 
Figure 6 displays the Tavily AI Search component 
in Langflow with Tool Mode toggled on. 
 
Step 4: Add URL node 

• In the left panel, click on Data. 

• Under Data, drag and drop the URL node 

into the canvas 

• Turn the Tool Mode on above Tavily AI 

Search 

• Click on the Controls  

- Toggle on “Output Format” 

- Toggle off  “URLs” and “Max Depth” 

Figure 7 presents the URL component with Tool 
Mode toggled on. 

Figure 8 shows the Calculator Node and its 

available controls. 

Step 5: Add Calculator node 
• In the left panel, click on Tools. 

• Under Tools, drag and drop the Calculator 

node into the canvas 

• Turn the Tool Mode on above Calculator 

Figure 9 illustrates the Calculator Node placed 

within the Canvas. 

Step 6: Create a SambaNova API Key 
• Sign in using your credentials, or click 

Sign up if you don’t already have an 

account 

• After logging in, you’ll land on the 

Dashboard 

• In the left-hand sidebar, click on API Keys 

• Click the Create API Key button on the 

right 

Important Reminder: 
• API keys are partially hidden after 

creation, so copy and store the full key in 

a secure location (such as a password 

manager or encrypted notes app) 

immediately. You won’t be able to view 

the full key again later. 

Figure 10 shows the SambaNova Cloud interface. 

Figure 11 displays the SambaNova “Create API 
Key” screen. 

Step 7: Add Agent node 1 
• In the left panel, click on Agents. 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 5 
https://iscap.us/proceedings/ 

• Under Agents, drag and drop the Agent 

node into the canvas 

Input the following: 
• Model Provider: SambaNova 

• Model Name: Meta-Llama-3.3-70B-

Instruct 

• Sambanova API Key: *Insert Personal 

API Key* 

• Agent Instructions: “You are a financial 

agent, You are a helpful assistant, and 

you have access to several tools. You 

must provide insights given the user 

question, you can get links to the latest 

news, and you must open each link and 

research relevant information. 

 

{input} 

 

Think step by step. Do not call a tool if 

the input depends on another tool output 

you do not yet have. Do not try to answer 

until you get all the tools' output. If you 

do not have an answer yet, you can 

continue calling tools until you do. Your 

answer should be in the same language 

as the initial query. Ensure the tool calls 

are proper parsable json return the URLs 

used to create your response in the final 

answer” 

 

Step 7.1: Connecting Chat Input & Tool Nodes to 
Agent 1 

• Find the Chat Input node in your flow. 

• Drag a connection from its output circle 

to the input port (labeled “input”) on the 

left side of Agent 1. 

This allows Agent 1 to receive the user’s query 

from the chatbot interface. 

• To equip Agent 1 with the right 

capabilities, you need to connect both the 

URL Toolset and Calculator Toolset nodes 

to the agent’s Tools input port (the small 

circle labeled "tools" on the left side of the 

agent node). 

• Drag a connection from the output circle 

(usually on the right side) of the URL 

Toolset node to the tools input circle on 

Agent 1. 

• Repeat the same step for the Calculator 

Toolset node — connect its output to the 

tools input on Agent 1. 

• Once connected, Agent 1 can now use 

both the URL retriever and the calculator 

in its workflow. 

• Tip: If you don’t see the "tools" port on 

Agent 1, make sure it's configured as a 

multi-tool agent that accepts tool input 

connections. 

Figure 12 shows the connections for Agent 1. 

Step 8: Add Agent node 2 
• In the left panel, click on Agents. 

• Under Agents, drag and drop the Agent 

node into the canvas 

Input the following: 
• Model Provider: SambaNova 

Model Name: Meta-Llama-3.3-70B-Instruct 

• Sambanova API Key: *Insert Personal 

API Key* 

• Agent Instructions: “You are a research 

agent, expert in web research, you must 

provide insights given the user question  

{input} Think step by step Do not call a 

tool if the input depends on another tool 

output that you do not have yet. Do not 

try to answer until you get all the tools 

output, if you do not have an answer yet, 

you can continue calling tools until you 

do. Your answer should be in the same 

language as the initial query. Ensure the 

tool calls are proper parsable json” 

Step 8.1: Connecting Chat Input & Tavily Search 
Toolset to Agent 2 

Locate the Chat Input node in your flow. 

• Drag a connection from the output circle 

of Chat Input to the “input” port on the 

left side of Agent 2. 

• This allows Agent 2 to process the same 

user prompt passed to Agent 1, 

supporting multi-agent collaboration. 

• Find the Tavily AI Search Toolset node in 

your flow. 

• Drag a connection from its output to the 

“tools” input port on Agent 2 (usually on 

the left side). 

• This equips Agent 2 with real-time AI web 

search capabilities powered by Tavily. 

Figure 13 illustrates the connections for Agent 2. 

Step 9: Add Combine Text Node 1 

• In the left panel, click on Processing. 

• Under Processing, drag and drop the 

Combine Text node into the canvas. 

o This node will merge the 

responses from both agents into 

one unified output. 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 6 
https://iscap.us/proceedings/ 

 

Step 9.1: Connecting Agent 1 & Agent 2 to 
Combine Text 1 
Locate Agent 1 in your flow. 

• Drag a connection from the Response 

port of Agent 1 to the First Text input on 

the Combine Text node.  

• This sends Agent 1’s output to the first 

input field. 

Locate Agent 2 in your flow. 

• Drag a connection from the Response 

port of Agent 2 to the Second Text input 

on the Combine Text node. 

• This sends Agent 2’s output to the second 

input field. 

• In the Delimiter field of the Combine Text 

node, type: \n\n 

The Delimiter field defines how the two agent 

responses are separated; using \n\n inserts a 

clear line break for improved readability in the 

final output. 

Figure 14 shows the connections for Combine 
Text 1. 

Step 10: Add Combine Text Node 2 
• Repeating step 9: In the left panel, click 

on Processing.  

• Under Processing, drag and drop the 

Combine Text node into the canvas. 

• This node will merge the responses from 

both agents into one unified output. 

Step 10.1: Connecting Chat Input & First 
Combine Text to Second Combine Text Node  

• The second Combine Text node allows 

you to pair the user’s original input with 

the agents’ findings, creating a rich 

prompt for summarization or final 

response generation. 

• Locate the Chat Input node in your flow. 

o Drag a connection from the 

output of Chat Input to the First 

Text input on the new Combine 

Text node. 

• This passes the original user query as the 

first part of the message. 

• Locate the first Combine Text node 

(created in Step 9). 

• Drag a connection from its Combined Text 

output to the Second Text input on the 

new Combine Text node. 

o This sends the merged agent 

responses as the second part of 

the message. 

• In the Delimiter field of this second 

Combine Text node, enter the following: 

\n\nContext: \n 

o This Delimiter separates the 

user’s question from the agent 

responses and labels the second 

section clearly as contextual 

information. 

Screenshot 15 displays the connections for 
Combine Text 2. 

Step 11: Add SambaNova Node 
• In the left panel, click on Agents. 

• Under Agents, drag and drop the 

SambaNova node into the canvas. 

 

Step 11.1: Configure the SambaNova Node 
• Connect “Combine Text 2” port to 

SambaNova’s Input port 

• In the SambaNova node settings: 

Model Name: Meta-Llama-3.3-70B-Instruct 
• Sambanova API Key: *Insert Personal 

API Key* 

• System Message: “Copy and paste the 

following prompt: “You are a helpful 

assistant who writes financial reports 

based on user query. You will get a 

financial and research summary. Please 

write a financial report or answer using 

the provided context and input text only. 

 

{input} 

 

Your answer should be in the same 

language as the initial query.” 

 

Step 11.2: Connect Combine Text 2 to 
SambaNova 

• Locate Combine Text Node 2 (created in 

Step 10). 

• Drag a connection from its Combined Text 

output to the Input port of the 

SambaNova node. 

• This ensures the assistant receives both 

the original user query and the contextual 

information derived from both agents. 

Figure 16 shows the SambaNova Node. 

Step 12: Add Chat Output Node 
• In the left panel, click on Output. 

• Drag and drop the Chat Output node into 

the canvas. 

 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 7 
https://iscap.us/proceedings/ 

Step 12.1: Connect SambaNova to Chat Output 

• Drag a connection from the Message 

output port of the SambaNova node to 

the Chat Output node. 

• This allows the final, context-aware 

response generated by SambaNova to be 

shown directly to the user in the chat 

interface. 

Figure 17 shows the Chat Output, and Figure 18 
shows the Full Build. 

5. TEST YOUR CHATBOT USING THE 

PLAYGROUND 

Steps: 
• Once your entire flow is built and all 

components are connected, it’s time to 

test your chatbot. 

• Open the Playground. In the top right 

sidebar, click on Playground. 

• This will open a chat-style interface where 

you can interact with your flow in real 

time. 

• Type a financial question in the chat input 

box and press Enter. 

• The message will travel through the 

entire Langflow pipeline: 

o Agents will collect and analyze 

data using Yahoo Finance and 

Tavily Search. 

o Combine Text nodes will format 

the responses and context. 

o SambaNova will generate the 

final response. 

o Chat Output will display the 

assistant’s full reply. 

• Sample Questions to Try - Here are some 

realistic prompts you can use to evaluate 

your chatbot: 

o “What’s the latest news about 

Tesla’s stock performance?” 

o “Is Apple a good investment this 

quarter?” 

o “Summarize the market trends 

for Nvidia and AMD over the last 

week.” 

o “Give me a financial report on 

Microsoft based on current news 

and stock data.” 

o “What are the biggest risks for 

investing in Google right now?” 

Figure 19 shows the Playground questions. 

 

6. CONCLUSION 

This tutorial guides you through the step-by-step 

creation of a multi-agent financial analysis 
chatbot using Langflow on Astra. By integrating 
real-time data sources like Yahoo Finance and 
Tavily AI Search, coordinating agent 
collaboration, and delivering outputs through 
SambaNova’s LLM, you’ve built a scalable and 
intelligent system capable of generating live 

financial insights into natural language reports. 
The finished chatbot not only demonstrates key 
principles of Retrieval-Augmented Generation 
(RAG) and agent-based design but also shows 
how low-code tools like Langflow can simplify 
developing domain-specific AI solutions. While 
this build focuses on financial analysis, the 

architecture can be adapted to various other 

fields. As a teaching case, this tutorial helps 
students bridge conceptual understanding with 
practical implementation. It encourages hands-on 
learning while prompting critical evaluation of AI 
toolchains and real-world deployment 

considerations. Future adaptations may 
incorporate classroom assessment results and 
comparative platform analysis. 

 
7. PROJECT 

This assignment will guide you through the 

process of developing a multi-agent AI chatbot 
using Langflow on Astra, applying the principles 
and techniques demonstrated in the "Developing 
a Financial Analysis Chatbot Using Langflow on 

Astra" tutorial. While the tutorial focuses on 
financial analysis, you will adapt the architecture 

to create a chatbot for a domain of your choice. 
 
Submission Requirements: 
 
• Langflow Flow Export: Export your 

completed Langflow project as a .json file. 
• Project Report (2-3 pages): A report 

detailing your chatbot's design, 
implementation, and a reflection on the 
development process. 

• Demo Video (3-5 minutes): A screen 
recording demonstrating your chatbot's 
functionality. 

 

Instructions: 
 
Part 1: Chatbot Development (Hands-on 
Implementation) 
 
Choose Your Domain: Select a domain for your 

AI chatbot. Examples could include: 
• Academic research assistant (e.g., 

summarizing research papers from specific 
journals) 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 8 
https://iscap.us/proceedings/ 

• Product recommendation engine (e.g., 

suggesting books, movies, or tech gadgets) 
• Health information bot (e.g., providing 

general information on symptoms, 

treatments, or healthy living based on 
reliable sources) 

• Local events planner (e.g., finding events 
based on user preferences and location) 

• Real estate assistant (e.g., providing 
property information and market trends) 

 

Access Langflow on Astra: 
• Navigate to Langflow on Astra: 

https://astra.datastax.com/langflow/d53da
360-33e2-4eed-a97c-0b9bae5b0134. 

• Log in to your DataStax Astra account (or 
register if you don't have one). 

• Create a "New Flow" and select "Blank Flow" 
to build your chatbot from scratch. 

 
Integrate Core Components: 
• Add a Chat Input Node to receive user 

queries. 
• Add a Chat Output Node to display the final 

response. 
• Integrate a SambaNova Node (or another 

suitable LLM node if you prefer and have API 
access) for natural language generation. 
Configure it with your API key and a system 
message relevant to your chosen domain. 

 

Incorporate Tools and Agents (Customize for 
your Domain): 

• Using a general web search API (like Tavily 
AI Search if applicable to your domain). 

• Integrating a specialized API (e.g., a book 
API, movie database API, medical 

information API, event API). If a direct 
Langflow component isn't available, you 
might need to use a generic "URL Tool" or 
"Python Function" node to interact with your 
chosen API. 

• Consider the URL Tool for loading and 
retrieving data from specified URLs, with 

options for plain text, raw HTML, or KSON 
output. 

• Agent 1 (e.g., Data Gatherer/Initial 
Researcher): Focus on retrieving raw 

information or performing initial searches 
using your chosen data retrieval tools. 

• Agent 2 (e.g., Synthesizer/Analyzer): Focus 

on interpreting the data gathered by Agent 
1 and formulating insights or structured 
responses relevant to your domain. 

o Research/Data Retrieval Tool(s): Replace 
or adapt the Yahoo Finance and Tavily AI 
Search tools with external data sources 

relevant to your chosen domain. This 
might involve: 

o Agents: Design at least two distinct 

agents, similar to the "Researcher" and 
"Financial Analyst" agents in the tutorial. 
Each agent should have a specific role 

and be configured with appropriate 
instructions (Agent Instructions) and 
relevant tools: 

o Optional Tools: Consider if a Calculator or 
other tools (e.g., a Wikipedia tool if 
relevant) would enhance your chatbot's 
capabilities. 

 
Orchestrate Data Flow with Combine Text 
Nodes: 
• Use Combine Text Nodes to merge outputs 

from your agents and format the input for 
your final LLM, ensuring a coherent and 

context-rich prompt. 
• Experiment with delimiters to enhance 

readability and structure. 
 
Connect All Components: Visually connect all your 
nodes in Langflow, ensuring the data flows 
logically from user input to tool usage, agent 

processing, and final output. Refer to the 
tutorial's screenshots (e.g., Screenshot 16: Full 
Build ) for guidance on connection patterns. 
 
Test Your Chatbot: 
Open the Langflow Playground. 
Test your chatbot thoroughly with various queries 

relevant to your chosen domain. Try to ask 
questions that require your agents to use their 

integrated tools and process information. 
Refine agent instructions, tool configurations, and 
prompt engineering strategies based on your 
testing to improve performance and accuracy. 

 
Part 2: Project Report 
 
Write a 2-3 page report that includes the 
following sections: 
 
Introduction: 

• Briefly describe the purpose of your chatbot 
and the domain you chose. 

• Explain why you selected this particular 
domain and its potential benefits. 

 
Chatbot Architecture and Components: 
• Provide a high-level overview of your 

chatbot's architecture (you can draw a 
simple diagram if helpful, but it's not strictly 
required). 

• Detail each key component you used (e.g., 
Chat Input, Chat Output, LLM, specific tools, 
agents). 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 9 
https://iscap.us/proceedings/ 

• For each tool and agent, explain its specific 

role and how it contributes to the chatbot's 
overall functionality. 

• Describe any modifications or custom 

integrations you made compared to the 
financial analysis tutorial. 

 
Implementation Details: 
• Discuss the specific APIs or data sources 

you integrated and why they were chosen. 
• Explain your prompt engineering strategies 

for directing your LLM-based agents. 
Include examples of your Agent Instructions 
and the System Message for your final LLM. 

• Describe how you used Combine Text nodes 
to manage and structure information flow. 

 

Testing and Results: 
• Present 3-5 sample questions you used to 

test your chatbot. 
• For each sample question, describe the 

expected output and the actual output from 
your chatbot. 

• Discuss any challenges you encountered 

during testing and how you addressed 
them. 

• Highlight the strengths and limitations of 
your chatbot. 

 
Reflection and Future Work: 
• What did you learn from building this 

chatbot? 
• How could your chatbot be improved or 

extended in the future? (e.g., adding more 
tools, improving agent logic, integrating 
memory, enhancing user interface). 

• How broadly applicable do you think this 

architecture and design are to other 
domains? 

 
Part 3: Demo Video 
 
Create a 3-5 minute screen recording 
demonstrating your chatbot's functionality. 

 
• Clearly show the Langflow interface and 

your connected nodes. 
• Demonstrate your chatbot responding to at 

least three different queries, showcasing its 
ability to use its tools and agents effectively. 

• Narrate your demonstration, explaining 

what you are doing and what the chatbot is 
performing at each step. 

 
Grading Rubric: 

 

• Chatbot Functionality: (40%) – Chatbot 
operates as intended, effectively uses 
integrated tools and agents, and provides 

relevant responses for the chosen domain. 
• Architectural Understanding: (20%) – 

Demonstrated understanding of Langflow 
components, agent orchestration, and data 
flow. 

• Report Quality: (20%) – Comprehensive, 
well-written, and insightful report covering 

all required sections. 
• Video Demonstration: (10%) – Clear, 

concise, and effective demonstration of the 
chatbot. 

• Creativity/Domain Choice: (10%) – 
Originality and thoughtful selection of a 

non-financial domain. 
 

8. REFERENCES 
 
Aksar, B., Rizk, Y., & Chakraborti, T. (2023). 

TESS: A Multi-intent Parser for 
Conversational Multi-Agent Systems with 

Decentralized Natural Language 
Understanding Models. arXiv.Org, 
abs/2312.11828. 
https://doi.org/10.48550/arxiv.2312.11828  

Aveiro, D., Freitas, V., Ferreira Da Cunha, E., 
Quintal, F., & Almeida, Y. (2023). Traditional 
vs. low-code development: comparing 

needed effort and system complexity in the 

NexusBRaNT experiment. 
https://doi.org/10.1109/cbi58679.2023.101
87470 

Calvaresi, D., Eggenschwiler, S., Mualla, Y., 
Schumacher, M., & Calbimonte, J.-P. (2023). 

Exploring agent-based chatbots: a systematic 
literature review. Journal of Ambient 
Intelligence and Humanized Computing, 
14(8), 11207–11226. 
https://doi.org/10.1007/s12652-023-04626-
5 

Trigo, A., Varajão, J., & Almeida, M. (2022). Low-

Code Versus Code-Based Software 
Development: Which Wins the Productivity 
Game? 24, 61–68. 

https://doi.org/10.1109/MITP.2022.3189880
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). 
Latent Dirichlet Allocation. The Journal of 
Machine Learning Research, 3, 993–1022. 

 

 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 10 
https://iscap.us/proceedings/ 

APPENDIX A   

Guided Step-by-Step Figures 

Due to the file size limit, not all Figures in the Appendix are displayed here. You can download the full 
Appendix at https://tinyurl.com/lowcodechatbots. 

 

 
Figure 1. Langflow with Astra DB 

https://tinyurl.com/lowcodechatbots


2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 11 
https://iscap.us/proceedings/ 

 
 

Figure 2. Langflow’s template selection screen showing “Basic Prompting," "Vector Store RAG," and 
"Simple Agent" templates, with the sidebar displaying categorized options under "Use Cases" and 
"Methodology." 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 12 
https://iscap.us/proceedings/ 

 
Figure 3. Chat Input in the Canvas 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 13 
https://iscap.us/proceedings/ 

 
 
Figure 4. Yahoo Finance  
 
 

 
 

Figure 5. Tavily AI Search Website 
 
 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 14 
https://iscap.us/proceedings/ 

 
 

Figure 6. Tavily AI Langflow with Tool Mode “toggled on” 
 

 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 15 
https://iscap.us/proceedings/ 

 
Figure 7. URL component with Tool Mode toggled on 
 
 
 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 16 
https://iscap.us/proceedings/ 

Figure 8. Calculator Node Controls 

 
 
 
 

 
Figure 9. Calculator Node in the Canvas 

 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 17 
https://iscap.us/proceedings/ 

 
 
Figure 10. SambaNova Cloud Website 

 
 
 
 

 
Figure 11. SambaNova "Create API Keys” 
 
 
 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 18 
https://iscap.us/proceedings/ 

 
Figure 12. Agent 1 connections 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 

 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 19 
https://iscap.us/proceedings/ 

 
Figure 13. Agent 2 Connections 

  



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 20 
https://iscap.us/proceedings/ 

 
Figure 14. “Combine Text 1” Connections 

 

 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 21 
https://iscap.us/proceedings/ 

 
Figure 15. “Combine Text 2” Connections 
 
 

 
Figure 16: SambaNova Node with Connection 
 



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 22 
https://iscap.us/proceedings/ 

 

 
Figure 17: Chat Output Connections 

  



2025 Proceedings of the ISCAP Conference   ISSN: 2473-4901 
Louisville, KY  v11 n6461 

©2025 ISCAP (Information Systems and Computing Academic Professionals) Page 23 
https://iscap.us/proceedings/ 

 

 
Figure 18: Full Build 
 
 

 
Figure 19: Playground Question w/ real-time data 

 


