
Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Comparison of Dynamic Web Content

Processing Language Performance
Under a LAMP Architecture

Musa Jafar
mjafar@mail.wtamu.edu

Russell Anderson

randerson@mail.wtamu.edu

Amjad Abdullat
aabdullat@mail.wtamu.edu

CIS Department, West Texas A&M University

Canyon, TX 79018

Abstract

LAMP is an open source, web-based application solution stack. It is comprised of (1) an oper-
ating system platform running Linux, (2) an Apache web server, (3) a MySQL database man-
agement system, and (4) a Dynamic Web Content Processor (tightly coupled with Apache)
that is a combination of one or more of Perl, Python and PHP scripting languages paired with
their corresponding MySQL Database Interface Module. In this paper, we compare various
performance measures of Perl, Python and PHP separately without a database interface and in
conjunction with their MySQL Database Interface Modules within a LAMP framework. We per-
formed our tests under two separate Linux, Apache and Dynamic Web Content environments:
an SE Linux environment and a Redhat Enterprise Linux environment. A single MySQL data-
base management system that resided on a separate Redhat Linux box served both environ-
ments. We used a hardware appliance framework for our test configuration, generation and
data gathering. An appliance framework is repeatable and easily configurable. It allows a
performance engineer to focus effort on the design, configuration and monitoring of tests, and
the analysis of test results. In all cases, whether database connectivity was involved or not,
PHP outperformed Perl and Python. We also present the implementation of a mechanism to
handle the propagation of database engine status-codes to the web-client, this is important
when automatic client-based testing is performed, because the HTTP server is incapable of
automatically propagating third-tier applications status-codes to the HTTP client.

Keywords: LAMP solution stack, Web Applications Development, Perl, Python, PHP, MySQL,
APACHE, Linux, DBI, Dynamic Web Content Processor, HTTP 1.1 status-code.

1. INTRODUCTION

The term LAMP, originally formalized by
Dougherty (2001) of O'Reilly Media, Inc.,

refers to the non-proprietary, open source,
web development, deployment, and produc-
tion platform that is comprised of individual
open source components. LAMP uses Linux

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 1

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

for the operating system, Apache for the
web server, MySQL for database manage-
ment, and a combination of Perl, Python or
PHP as language(s) to generate dynamic
content on the server. More recently, Ruby
was added to the platform. Lately, Some
deployments replaced Apache with lighthttpd
from Open Source or IIS from Microsoft.
Depending on the components replaced, the
platform is also known as WAMP when Mi-
crosoft Windows replaces Linux or WIMP
when Microsoft Windows replaces Linux and
IIS server replaces Apache. Doyle (2008)
provided more information on the evolution
of the various dynamic web content proces-
sors framework and the various technologies
for web applications development.

Pedersen (2004), Walberg (2007) and Me-
nascé (2002) indicated that to measure a
web application’s performance, there are
many factors to consider that are not neces-
sarily independent. It requires the fine tun-
ing and optimization of bandwidth,
processes, memory management, CPU
usage, disk usage, session management,
granular configurations across the board,
kernel reconfiguration, accelerators, load
balancers, proxies, routing, TCP/IP parame-
ter calibrations, etc. Usually, performance
tests are conducted in a very controlled en-
vironment. The research presented in this
paper is no exception. Titchkosky (2003)
provided a good survey of network perfor-
mance studies on web-server performance
under different network settings such as
wide area networks, parallel wide area net-
works, ATM networks, and content caching.

Other researchers performed application-
solution web server performance test com-
parisons under a standard World Wide Web
environment for a chosen set of dynamic
web content processers and web servers.
These are closer to the research presented
in this paper. Gousios (2002) compared
processing performance of servlets, FastCGI,
PHP and Mod-Perl under Apache and Post-
gresSQL. Cecchet (2003) compared the per-
formance of PHP, servlets and EJB under
Apache and MySQL by completely imple-
menting a client-browser emulator. The
work of Titchkosky (2003) is complementary
to that of Cecchet (2003). They used
Apache, PHP, Perl, Serve-Side Java (Tomcat,
Jetty, Resin) and MySQL. They were very
elaborate in their attempt to control the test
environment. Ramana (2005) compared the

performance of PHP and C under LAMP,
WAMP and WIMP architectures – replacing
Linux with Windows and Apache with IIS.

Although the LAMP architecture is prevailing
as a mainstream web-based architecture,
unfortunately, there does not appear to be a
complete study that addresses the issues
related to a pure LAMP architecture. The
closest are the studies by Gousios (2002),
Cecchet (2003) and Titchkosky (2003).

In this paper, we perform a complete study
comparing the performance of Perl, Python
and PHP separately and in conjunction with
their database connectors under LAMP archi-
tecture using two separate Linux environ-
ments (SE Linux and Redhat Enterprise Li-
nux). The two environments were served by
a third Linux environment hosting the back-
end MySQL database. The infrastructure
that we used to emulate a web-client and to
configure and generate tests was a hardware
appliance-based framework. It is fundamen-
tally different from the infrastructure used
by the authors just mentioned. The frame-
work allowed us to focus on the task where
a performance engineer designs, configures,
runs, monitors, and analyzes tests without
having to write code, distribute code across
multiple machines, and synchronize running
tests. An appliance framework is also rep-
licable. Tests are repeatable and easily re-
configured.

In the following sections, we present our
benchmark framework and what makes it
different. In section three we present our
test results. Section four is an elaboration
on our methodology and section five is the
summary and conclusions of the paper. All
figures are grouped in an appendix at the
end of the paper.

2. THE BENCHMARK TESTING FRA-

MEWORK

The objective of this research was to com-
pare the performance of the three dynamic
web content processors: Perl, PHP and Py-
thon within a LAMP solution-stack under six
test scenarios.

The first three scenarios were concurrent-
user scenarios. We measured and compared
the average-page-response-time at nine dif-
ferent levels: 1, 5, 10, 25, 50, 75 100, 125
and 150 concurrent users respectively. Sce-
nario one is a pure CGI scenario, no data-

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 2

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

base connectivity is required. Scenario two
is a simple database query scenario. Scena-
rio three is a database insert-update-delete
transaction scenario. For example, for the
25 concurrent users test of any of the above
3 scenarios, 25 concurrent users were estab-
lished at the beginning of the test. Whenev-
er a user is terminated a new user was es-
tablished to maintain the 25 concurrent user
level for the duration of the test. Under
each test scenario, we performed 54 tests as
follows:

For each platform (SE Linux, Redhat)
 For each language (Perl, Python, PHP),
 For each number of concurrent users
 (1,5,10,25,50,75,100,125,50)

1- configure a test,

2- perform and monitor a test

3- gather test results

 End For

 End For

4- Tabulate, analyze and plot the average-
page-response time for Perl, Python and
PHP under a platform

End For

The next three scenarios were transactions
per second scenarios. The objective of these
tests was to stress the LAMP solution stack
to the level where transactions start to fail
and the transaction success rate for the du-
ration of a test is below 80%. For example,
at the 25 transactions per second level of
Perl under SE Linux, we fed 25 new transac-
tions per second regardless of the status of
the previously generated transactions. If a
failure rate of 20% or more was exhibited,
we considered the 25 transactions per
second as cutoff point and we did not need
to go to a test with higher transactions per
second. Failures are attributed to time-outs,
database deadlocks, or the lack of resources
on the web server, database server or the
database management system itself. The
three test scenarios were the same pure CGI
scenario, simple database query scenario,
and an insert-update-delete transaction sce-
nario.

Concurrent Connections Test Scenarios

scenario One (Pure CGI, No data-

base Connectivity): For each platform,

using each of the content generator lan-
guages and each of the configured number
of concurrent users, the web clients re-
quested a simple CGI-Script execution that
dynamically generated a web page, return-
ing “Hello World”. No database connectivity
was involved. Figure 1 is a sequence dia-
gram representing the skeleton of the sce-
nario. Figures 4 and 5 are the comparison
plots under SE Linux and Redhat Linux of
the test scenario.

scenario Two (a Simple Database

query): For each platform, using each of
the content generator languages and each of
the configured number of concurrent users,
the web clients requested execution of a
simple SQL query against the database,
formatted the result, and returned the con-
tent page to the web client. The SQL query
was:"Select SQL_NO_CACHE count(*) from
Person". Figure 2 is a sequence diagram
representing the skeleton of test scenarios
two and three. Figures 6 and 7 are the
comparison plots under SE Linux and Redhat
Linux of the test scenario.

Scenario Three (a Database In-

sert-Update-Delete Transaction): For
each platform, using each of the content
generator languages and each of the confi-
gured number of concurrent users, the web
clients requested the execution of a transac-
tion against the database (which included an
insert, an update, and a delete), formatted
the result and returned the content page to
the web client. Figures 8 and 9 are the
comparison plots under SE Linux and Redhat
Linux of the test scenario.

Transactions per second test: Scenarios

Four through Six

These were stress tests. Scenarios four,
five, and six were performed using a con-
stant transactions per second setting rather
than the previous concurrent user setting.
As stated earlier, the appliance will generate
the configured transactions every second
independent of the status of the previously
submitted transactions. These tests were
performed progressively, increasing the
transaction rate, until the success rate
dropped below 80%. Table 2 is a tabulation
of the maximum number of tolerated trans-
actions per second until we achieved the
threshold degradation rate.

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 3

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Test Metrics Gathered

To generate realistic and high volume traffic
within a replicable environment, a hardware
appliance from Spirent Communication (Spi-
rent 2003) was used, the Avalanche 220EE.
This device is designed specifically to assess
network and server capacity by generating
large quantities of realistic and user confi-
gurable network traffic. It implements a
client-browser emulator with all the funda-
mental capabilities of HTTP 1.0 and 1.1 pro-
tocol (session management, cookies, SSL,
certificates, etc.). Through user defined set-
tings, thousands of web clients from multiple
sub networks can be simulated to request
services from HTTP servers. For testing
purposes, two separate front end LAMP (Li-
nux, Apache Perl, Python, PHP, and data-
base connectors) environments were dep-
loyed: an SE Linux installation and a Redhat
Enterprise server installation. The two
hardware platforms were identical; the con-
figurations of Apache, Perl, Python, PHP and
their connectors on the two platforms were
as identical as possible. The backend MySQL
Database server resided on a separate Red-
hat Enterprise server. Two identical switch-
es and a router were used for the test envi-
ronment to manage the appliance, to pro-
vide connectivity to the HTTP servers and to
the database server. Specification of all test
configurations and their management was
done using the appliance interface. Investi-
gators did not have to write elaborate shell
scripts, distribute the test environment over
multiple clients, and manually or program-
matically gather results. All of this was ac-
complished by the appliance and its accom-
panying analyzer. Figure 3 is a screenshot
of the user interface to configure a test by
the appliance. Table 1 is a sample test out-
put, See (Kenney 2005) for more elaborate
description of the appliance capabilities.

Whether it was concurrent users or transac-
tions per second, each test was composed of
4 phases: (1) a warm-up phase, (2) a ramp-
up phase, (3) a 4 minute steady phase and
(4) a cool-down phase. The total duration of
each test was 6 minutes. For each test per-
formed under the six scenarios, the following
data was collected: a pcap log file of all net-
work traffic of the test (a pcap file is a net-
work traffic dump of packets in and out of a
network interface of a machine); desired and
current load; cumulative attempted, suc-
cessful and unsuccessful transactions; in-

coming and outgoing traffic in KBPS; min,
max and current time to TCP SYNC/ACK in
milliseconds; min, max and current round
trip time in milliseconds; min, max and cur-
rent time to TCP first byte in milliseconds;
TCP hand-shake parameters; min, max and
current response time per URL milliseconds;
and all HTTP status-codes. The appliance
gathered these metrics and provided us with
the summaries listed in 4-second intervals.
In other words, each data point gathered
was a summary of a 4-second interval of
traffic activities. For example the appliance
provided us with summaries of the minimum
page response time, average-page-response
time, and maximum page response time for
each of the 4-second intervals for all users
that were served within the interval. Accor-
dingly, for a 6 minutes duration test, we ga-
thered cumulative and real time summary
statistics for 90 intervals. This paper
presents and compares the average-page-
response time of each test cumulatively.
Other network traffic statistics (TCP statis-
tics, connection management statistics, etc.)
are outside the scope of this paper.

A comparison of our framework with pre-
vious studies exemplifies the benefits of
conducting network tests using an appliance
framework. For example, Gousios (2002)
performed four benchmark tests comparing
FASTCGI, mod-Perl, PHP and servlets. They
used a combination of Apache JMeter (“a
desktop application designed to load test
functional behavior and measure perfor-
mance”) to load Perl scripts to fork
processes and generate load. All the server-
side components were run on the same ma-
chine, using PostgresSQL instead of MySQL.
They did not use a distributed environment.
Gousios did not benchmark a complete LAMP
framework either. Comparing that frame-
work and the effort required to generate
benchmark tests, then gather and analyze
the results, lends strong credence to the in-
clusion of special purpose network ap-
pliances to conduct performance analyses.
Another reason to use dedicated appliances
is that Gousios was “not able to perform the
tests for more than 97 to 98 clients because
the benchmark program exhausted the
physical memory of the client machine”
(Gousios, 2002). Gousios used shell-based
scripting to gather data and perform calcula-
tions and did not use the pcap log contents
from a network analyzer to gather data,

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 4

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

which would have made their results more
reliable. Cecchet (2003) performed elabo-
rate “performance comparison of middleware
architectures for generating dynamic web
content” implementing the TPC-W transac-
tional web e-commerce benchmark specifi-
cation from tpc.org. However, Cecchet’s
platform was Apache, Tomcat, PHP, EJB and
servlets, which is not a complete LAMP ar-
chitecture. Cecchet implemented an elabo-
rate HTTP client emulator that required labo-
rious scripting. In our case, the appliance
provided this functionality. Titchkosky
(2003) extended the work of Cecchet
(2003), relying heavily on shell scripting for
distribution of tests. Also, monitoring and
analysis relied heavily on raw network com-
mands (netstat, httpref, sar, etc.) and web
server log analyses. Titchkosky’s approach
was labor intensive, hard to code, hard to
reconfigure, and had to be programmed to
get the full spectrum of network traffic. In
all of these cases, it was unclear how data-
base server timeouts, deadlocks, connection
errors, etc. were accounted for, managed
and propagated to the HTTP client. In a
multi-tier web environment, the reason for
failure is not necessarily an HTTP error.

3. TEST RESULTS

Scenario One (Pure CGI, No database

Connectivity)

As discussed earlier for each of the concur-
rent connections benchmark, a total of 54
tests were performed. These are 27 tests
for each of the two Linux platforms (9 tests
for each of the three languages within a
platform). The following is the Perl script
code for the scenario. The Python and PHP
scripts are similar.

#!/usr/bin/perl
print "Content-type: text/html\n\n";
print "<html><head><title>”;a
print “Perl</title></head>";
print "<body><H1>”;
print ” Hello from Perl”;
print “</H1></body></html>\n";

Figures 4 shows the average page response
time for a web-page request in milliseconds
averaged for the duration of the six minutes
test under SE Linux. The horizontal axis
records the “number of concurrent users” of
the test; the vertical axis measures the “av-
erage-page-response time” for that test.

Figure 5 shows the same results under Red-
hat Linux. Under both environments, PHP
outperformed Perl and Python. The Linux
flavor was not a factor in these tests. In
looking at the graphs, one can see that the
test results for both SE and Redhat Linux
were almost identical.

Scenario Two (Simple database query)

As previously described, test scenario two
adds a simple database query to scenario
one. The following is the Perl script code for
the scenario. The Python and PHP scripts
are similar. Uniquely identifying names
have been replaced by xxx. Line breaks
were added to beautify the two columns
format.

#!/usr/bin/perl
use strict; use DBI(); use warnings;
my $sqlStatement =

"Select SQL_NO_CACHE count(*)
 from perlperson";

my $dsn =
"DBI:mysql:database=xxx;host='xxx';port

=xxx";
my $dbh = DBI->connect($dsn,

"xxx","xxx",{PrintError=>0});
if(my $x = DBI::err) {
 responseBack(501,
 "Unknown $x DBI Error");
}
my $sth=$dbh-> prepare($sqlStatement);
if(my $x = DBI::err) {
 responseBack(501,
 "Unknown $x DBI Error");
}
my $mysh = $sth->execute();
if(my $x = DBI::err) {
 responseBack(501,
 "Unknown $x DBI Error");
}
my $result;
my $resultSet =
 "<h1>Welcome to Perl-MySQL<h1>
";
while($result =
 $sth->fetchrow_hashref()){
 $resultSet =
 "$resultSet + $result+
";
 if(my $x = DBI::err) {
 responseBack(501,
 "Unknown $x DBI Error");
 }
 }
 $sth->finish();
 if(my $x = DBI::err) {
 responseBack(501,

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 5

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

 "Unknown $x DBI Error");
 }
 $dbh->disconnect();
 responseBack(200, "OK", $resultSet);
sub responseBack {
 my $err = 501;
 my $message =
 "Connection to Database Failed";
 my $results = "$err $message";
 if(@_){
 ($err, $message, $results) = @_;
 }
 print("status: $err $message\n");
 print("content-type: text/html\n\n");
 print("<html>\n");
 print("<head>\n");
 print(
 "<title> $err $message </title>\n");
 print("</head>\n");
 print("<body>\n");
 print("<h1> $results </h1>\n");
 print("</body>\n");
 print("</html>\n");
 exit;
 }

Figures 6 and 7 show the results of the tests
under SE Linux and Redhat Linux. Under
both environments, PHP coupled with its DBI
significantly outperformed Perl and Python.
For the SE Linux environment, however,
both Perl and Python exhibited no difference
in performance. Python DBI performed a lot
better under the Redhat environment than
the SE Linux environment.

Scenario Three (Concurrent Insert-

Update-Delete)

Scenario three adds the transaction over-
head of updates and delete to the database.
The following is the PHP script code for the
scenario. The Python and PHP scripts are
similar.

<?php
 $link = mysql_connect('xxx', 'xxx', 'xxx');
 $errNo = -1;
 $err = "Connection Failed";
 if(!$link){
 if(mysql_errno($link)){
 $errNo = mysql_errno($link);
 }
 if(mysql_error($link)){
 $err = mysql_error($link);
 }
 header("HTTP/1.1 501 $errNo $err");
 header("Content-Length: 0");

 print("HTTP/1.1 501 $errNo $err\n");
 exit;
 }
 if(!mysql_select_db("xxx",$link)){
 $errNo = mysql_errno($link);
 $err = mysql_error($link);
 header("HTTP/1.1 501 $errNo $err");
 header("Content-Length: 0");
 print("HTTP/1.1 501 $errNo $err\n");
 exit;
 }
 function microtime_float() {
 list($usec, $sec) =
 explode(" ", microtime());
 return ((float)$usec + (float)$sec);
 }
 function sendError($errNo,$err){
 header("HTTP/1.1 501 $errNo $err");
 header("Content-Length: 0");
 print("HTTP/1.1 501 $errNo $err\n");
 exit;
 }
 $currTime = microtime_float();
 $sql ="insert into PHPTestInsert(ts)
 values($currTime)";
 $result = mysql_query($sql, $link);
 if(!$result) sendEr-
ror(mysql_errno($link),mysql_error($link));
 $sql = "select 1 from PHPTestInsert
 where ts = $currTime for UPDATE";
 $result = mysql_query($sql, $link);
 if(!$result)
 sendError(mysql_errno($link),
 mysql_error($link));
 $sql = "update PHPTestInsert set volume
 = volume + 1 where ts = $currTime";
 $result = mysql_query($sql, $link);
 if(!$result)
sendError(mysql_errno($link),
 mysql_error($link));
 $sql = "delete from PHPTestInsert
 where ts = $currTime";
 $result = mysql_query($sql, $link);
 if(!$result) sendError(mysql_errno($link),
 mysql_error($link));

print("<HTML> <HEAD><TITLE>”);
print(“Hello from PHP”);
print(“</TITLE> </HEAD>”);
print(“<BODY><H1>”);
print(“Hello PHP”);
print(“</H1>
");

 print("</BODY> </HTML>");
 mysql_free_result($result);
 mysql_close($link);
?>

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 6

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Figures 8 and 9 show the results of the
tests. They are strikingly similar to those of
scenario two.

Scenarios Four through Six (Transac-

tions per Second Stress Tests)
As explained earlier, the same test scenarios

as those for one, two and three were re-

peated with the difference being that a con-

stant level of concurrent transactions was

replaced with a fixed rate of transaction

submission. After each test run, the rate

was incremented until the LAMP environ-

ment under test exhibited a transaction fail-

ure rate over 20%. Table 2 shows the re-

sults for these three test scenarios. Both

results of SE Linux and Redhat Linux are

similar for each language. The tolerable TPS

rate is the highest rate achieved before ex-

ceeding the 20% transactions failure rate.

Again in all cases, PHP outperformed Perl

and Python.

4. ADDITIONAL OBSERVATIONS

Multi-tiered, HTTP based applications suffer
from the inability of the HTTP protocol to
propagate meaningful error and status in-
formation from a back-end tier, such as the
data tier, to the presentation tier – the web
client. Web clients communicate with a web
server only. Standards for communicating
server status information to the client were
defined as static status-codes ranging from
1XX to 5XX by W3C protocol including the
classic “404 Not Found” status-code (RFC-
2616, 1999, HTTP 1.1). These values are
numeric and hard coded. They are not ex-
tensible to allow for the encoding of status
information from a back-end tier such as a
database server. For example, if the MySQL
database engine could not process a DBI
request and returned a database failure
XXXX error code to the DBI, it is the respon-
sibility of the DBI processor (Perl, Python,
PHP, etc.) to trap the failure code, interpret,
handle it and propagate something to the
client. For automatic testing this is a prob-
lem. Yet, with the growth in cloud compu-
ting and their associated behind-the-scenes
HTTP request technologies such as AJAX,
recognition and handling of non-HTTP status
information needs to be more extensively
defined. In this paper we suggest a frame-
work for propagating remote tier errors to

the client, reported as a special category of
HTTP error code that is not within the range
of our experiment codes. To trap database
failures we forced an out of range HTTP er-
ror in scripting code executing on the server.
We did this by selecting the “501 Not Im-
plemented” status-code as a catch all, then
we used this HTTP 501 error in our analysis
to indicate a failure of the DBI. We could
have added more resolution by mapping dif-
ferent database errors to different 5XX HTTP
status codes. In our case, it was not neces-
sary. All that we needed was to know was
when a database failure status had occurred.
Without this additional status information,
database failures would have been passed
and viewed as normal transactions by the
HTTP client. The following is a snippet of
Perl code to accomplish the task. PHP and
Python codes would be similar.

#!/usr/bin/perl
use strict;
use DBI();
………
if(my $x = DBI::err) {
 my $y = DBI::errstr;
 responseBack(501, "$x $y DBI Error");
}

sub responseBack {
 my $err = 501;
 my $message =
 "Connection to Database Failed";
 my $results = "$err $message";

 if(@_){
 ($err, $message, $results) = @_;
 }
 print("status: $err $message\n");
 print("content-type: text/html\n\n");
 print("<html>\n");
 print("<head>\n");
 print("<title> $err $message</title>\n");
 print("</head>\n");
 print("<body>\n");
 print("</body>\n");
 print("</html>\n");

 exit;

}

By pushing the error into the header section,
the web client of the appliance was able to
count it as failure and incorporate it into the
statistics and summaries. We think that
HTTP return codes need to be dynamic and
extensible to allow for the propagation of

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 7

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

multi-tier and vendor specific error and sta-
tus code information to the HTTP client for
handling. This can be accomplished through
a well defined XML schema for HTTP that the
server can propagate and the client is capa-
ble of interpreting.

5. SUMMARY AND CONCLUSIONS

In this paper, performance measures of Perl,
Python and PHP under two LAMP architec-
tures were presented. Our tests clearly indi-
cate that PHP outperformed Perl and Python.
When no database connectivity was involved
(Scenario 1) both Linux platforms exhibited
comparable results for the same language.
When database connectivity is involved
(Scenarios 2 and 3), PHP remained stable,
Python exhibited high performance degrada-
tion with comparable results for both Linux
platforms. Perl also exhibited high perfor-
mance degradation, with better performance
under Redhat than SE Linux. Analyzing the
results (Scenarios 2 and 3), most of the per-
formance degradation was due to the estab-
lishment of the connection with the database
server. With respect to transactions per
second (Scenarios 4, 5, and 6) PHP and Perl
had comparable results when no database
connection was involved. PHP outperformed
Perl and Python otherwise.

An appliance framework allows performance
engineers to focus on the task at hand.
Tests can be replicated, reconfigured and
reproduced in a matter of minutes through
the graphical user interface of the appliance.
The framework transforms the job of the
performance engineer from a programmer to
that of a test designer and analyzer.

Automatic testing exposed the limitations of
the HTTP protocol in propagating third-tier
status codes such as database connection
timeouts, deadlocks and violations as HTTP
header information to the web-client for in-
terpretation.

Finally, designing an enterprise solution
based on the performance of a language
alone is an oversimplification. Solution ar-
chitectures are complicated. Backend
processing, consolidation of data across mul-
tiple domains, robustness, security, scalabili-
ty and services processing are at the core of
enterprise solution architectures. Although
the performance of a language is important,
other factors need to be considered when

selecting languages for an enterprise appli-
cation.

6. REFERENCES

Brebner, P. Cecchet, E. et. al. (2005) Mid-
dleware benchmarking approaches, results
experiences. Concurrency and Computa-
tion: Practice and Experience, Wiley In-
terScience 17:1799-1805

Cecchet, E. Chanda, A. et. al. (2003) Per-
formance Comparison of Middleware Archi-
tectures for Generating Dynamic Web Con-
tent. 4th ACM/IFIP/USENIX International
Middleware Conference, June 2003, 16-20.

Dougherty, D. (2001) LAMP: The Open
Source Web Platform.
www.onlamp.com/pub/a/onlamp/2001/01/
25/lamp.html

Doyle, B. Videira Lopes, C. (2008) Survey of
Technologies for Web Application Devel-
opment. eprint arVix:0801.2618v1

Gousios, G. (2002) A Comparison of Portable
Dynamic Web Content Technologies for the
Apache Server.SANE 2002: 3rd Interna-
tional System Administration and Network-
ing Conference Proceedings, May 2002
103–119 (Best Paper Award)

Jansons, S. and Cook G. J. (2002) Web-
Enabled Database Connectivity: A Com-
parison of Programming, Scripting, and
Application-Based Access. Information
Systems Management 19:1, 14-22.

Kenney John. Avalanche Load Generation:
How to improve your Rate-based Tests.
www.spirent.com/documents/3426.pdf

Menascé, D. (2002) Load Testing of Web
Sites. IEEE Internet Computing vol. 6, no.
4.

Pedersen, A. (2004) Introducing LAMP Tun-
ing Techniques.
www.onlamp.com/pub/a/onlamp/2004/02/
05/lamp_tuning.html

Ramana, U. V. Prabhakar, T. V. (2005)
“Some Experiments with the Performance
of LAMP Architecture” Computer and In-
formation Technology, 2005. CIT 2005.
The Fifth International Conference on
21:23, 916-920

RFC-2616 (1991) Hypertext Transfer Proto-
col – HTTP/1.1. http://www.ietf.org/

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 8

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Spirent Communication (2003) Avalanche
Analyzer User Guide. www.spirent.com/

Spirent Communication (2003) Avalanche-
220EE User and Administrator guides.
www.spirent.com

Titchkosky, L. Arlitt, M. Williamson C. (2003)
A Performance Comparison of Dynamic
Web Technologies. ACM SIGMETRICS Per-
formance Evaluation Review 31:3, 2-11

Walberg S. A. (2007) Tuning LAMP Systems,
Part1: Understanding the LAMP.

www.ibm.com/developerworks/library/l-
tune-lamp-1/index.html#resources

Walberg S. A. (2007) Tuning LAMP Systems,
Part2: Optimizing Apache and PHP.
www.ibm.com/developerworks/web/library
/l-tune-lamp-2.html

Walberg S. A. (2007) Tuning LAMP Systems,
Part1: Tuning Your MySQL Serve.
www.ibm.com/developerworks/linux/librar
y/l-tune-lamp-3.html

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 9

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

7. APPENDIX

Figure 1: Sequence Diagram for Test Scenario One

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 10

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

User WebClient WebServer DynamicContentProcessor MySQL Server

submitRequest

httpRequest

processRequest

databaseCall

resultSet

wellFormedHTMLPage

httpResponse

displayContent

localProcessing

localProcessing

localProcessing

localProcessing

localProcessing

Figure 2: Sequence diagram for test scenarios two and three

Table 1: Avalanche Analyzer Report Table

Test

Results

Summary

Transactions Time (ms) TCP Connections

Total

Rate

Per
Second

Page

Response
To TCP
SYN/ACK

To First

Data
Byte

Est.

Server
Response

Total

Attempted 17782 80 Minimum 4.0 0.117 4.974 0.0 Attempted 17782

Successful 17782 80 Maximum 144.0 108.854 144.767 144.175 Established 17782

Unsuccessful 0 0 Average 8.0 0.184 8.424 8.072

Aborted 0 0

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 11

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Figure 3: Avalanche Commander Interface

Figure 4: SE Linux, Dynamic Web Page Request

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 12

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Figure 5: Redhat Dynamic Web Page Request

Figure 6: SE Linux, Simple Query Request

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 13

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Figure 7: Redhat Simple Query Request

Figure 8: SE Linux, Insert, Update, Delete Transaction

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 14

Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C

Figure 9: Redhat Insert, Update, Delete Transaction

Table 2. Max Tolerated TPS
 HTTP Simple Request – Dynamically

Generated “Hello World” only

Simple data-

base query

Concurrent Database In-

sert, Update and Delete

Perl 100 TPS 15 TPS 10 TPS

Python 25 TPS 15 TPS 15 TPS

PHP 100 TPS 50 TPS 50 TPS

Proc CONISAR 2008, v1 (Phoenix): §2732 (refereed) c© 2008 EDSIG, page 15

