
Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

System Development Methodology Usage in

Industry: A Review and Analysis

Audrey S. Griffin

asb10@psu.edu
Department of Business and Economics

Pennsylvania State University - DuBois

DuBois, PA 15801

Alan A. Brandyberry

abrandyb@kent.edu
Department of Management & Information Systems

Graduate School of Management
Kent State University

Kent, Ohio 44242

Abstract

The primary contribution of this research is to point to the need for more comprehensive, ho-

listic research concerning the relative advantage of employing different system development

methodologies (SDMs) in different settings. We first use the available literature to suggest a

timeline of methodology introduction and discuss the temporal aspects of these introductions

through the characteristics of the specific SDMs. Next we summarize and review the studies

that are available concerning SDM usage from both public-sector and academic sources. Fi-

nally, we discuss the state of research in the area as a whole and suggest directions for future

research.

Keywords: System Development Methodology, SDM, Adoption, Literature Review, Timeline

1. INTRODUCTION

Software is fast becoming ubiquitous in

business. It is used extensively in the health

care industry to operate sophisticated medi-

cal devices and equipment, by the communi-

cations industry to coordinate vast arrays of

networks, by the transportation industry,

finance industry, and virtually every other

industry. It is difficult to find industries not

affected, and sometimes afflicted, by soft-

ware. It is used for production, service, and

support. It is embedded in the appliances we

use in our homes, in our automobiles, and in

our handheld devices and games. For busi-

nesses, the failure of essential software can

cause lost revenues, damage reputation of

company or brand, and increase liability

costs and loss of productivity

(McGraw, 2003).

The need for high-quality software is widely

recognized. Many factors have been identi-

fied that affect software quality, and many

different methods have been developed to

try to attain a quality software product.

These include testing, structured processes,

CASE tools, and code generation tools and

debuggers. We have also tried to achieve

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 1

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

quality by building it into the development

process via a methodology.

Problems with system development were

first noted in Garmisch, Germany in 1968 at

the NATO Software Engineering Conference

(Nuar and Randell, 1969). The problems

noted then were essentially the same as

those encountered today, almost 40 years

later. Many system development projects

fail, being over-budget and/or late; they

may be incompatible with other software or

hardware, not meet the original or revised

specifications, or have quality issues that

hamper use.

Although methodology usage has been high-

ly touted in the academic research arena for

many years, it has not been universally em-

braced by business. IT project failure is still

problematic. As recently as 2007, the bank-

ing industry reports that applications are still

bug-ridden, delivered late, over budget, and

unsatisfactory to users (Crosman, 2007).

These problems are not unique to banking,

and despite the problems, there is still no

consensus on how best to develop software

applications.

A 1997 survey by Fitzgerald (1997) reveals

that 60% of developers responding to the

survey used no formal methodology. There

are several suggested reasons for this. Sys-

tem development methodologies vary in

their complexity and rigor. Highly structured

processes tend to have heavy documenta-

tion requirements. Methodologies are often

process-heavy, and can appear to impede

productivity due to their finely detailed re-

quirements. Developers who choose to use

no methodology often do so to improve

productivity and timeliness of product deli-

very (Fitzgerald, 1997). Not using a highly

structured methodology also allows for in-

creased flexibility, with developers being

able to respond more quickly to changing

business requirements (‘agile’ methodology

proponents suggest these methodologies do

not restrict flexibility). In lieu of using an

entire methodology, companies often adapt

existing methodologies by using only the

high-level definitions as guidelines for the

process rather than the full methodology.

The benefits to be achieved by the structure

and rigor of a full-fledged methodology may

not be reflected in the increased develop-

ment costs.

In 1989, Lyytinen posited that the systems

development process would see dramatic

changes during the 1990’s due to many si-

multaneous changes affecting the industry

(Lyytinen, 1989). Technology changes rapid-

ly, offering new opportunities for firms, but

also presenting new challenges. The area of

software development is affected by these

changes but must also consider users, me-

thods and the organization itself. New appli-

cation types were proliferating, creating

more complex and varied symbols to be

stored in the systems. As applications be-

come larger and more complex, changes are

also occurring within the environment of the

organization that require new skills and new

roles. Lyytinen predicted that development

will no longer be limited to one methodology

but of necessity will be adapted to the needs

of the organization.

The balance of the paper is structured as

follows. We first use the available literature

to suggest a timeline of methodology intro-

duction and discuss the temporal aspects of

these introductions through the characteris-

tics of the specific SDMs. Next we summar-

ize and review the studies that are available

concerning SDM usage from both public-

sector and academic sources. Finally, we

discuss the state of research in the area as a

whole and suggest directions for future re-

search.

2. METHODOLOGY TIMELINE

Software has had a sketchy history regard-

ing quality. From the 1940’s to late 1960’s,

quality was high (Whittaker and

Voas, 2002). Applications were being devel-

oped primarily for mainframes, and the

compilation environment was not friendly to

errors. However, the types of problems be-

ing solved were evolving from simple com-

putations to those that were more complex.

Initially, programmers generally worked

alone in their own area of expertise on appli-

cations that were small by comparison to

today’s programs. This early method of pro-

gramming was known as “code and fix”

(Boehm, 1988). There were no stages for

systems analysis or design, and program-

mers coded on an ad hoc basis. The “fix”

portion became very expensive due to in-

adequate planning and design

(Boehm, 1988). As programs grew larger,

more people were involved in the develop-

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 2

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

ment process, necessitating the implementa-

tion and coordination of planning and control

processes. Methodologies provide a clear-cut

sequence of events to be followed, with deli-

verables specified by the particular metho-

dology (Boehm, 1988).

By the 1970’s, when PC’s were introduced, it

was easier to compile programs, and devel-

opers became lax as they tried to introduce

new types of software. This was also the era

when software began to develop its reputa-

tion as being buggy. Tools and formal me-

thodologies were developed to help develop-

ers produce higher quality code. However,

both were complex and difficult to use. Dif-

fering solutions were and are still being of-

fered, each suggesting that it might be the

silver bullet; however, according to Frederick

Brooks, there is no silver bullet

(Brooks, 1995).

The computing environment has also grown

more complex, with distributed computing,

web-based computing and networking, in-

creased miniaturization along with cheap

production, multiple processors, and com-

plex applications that are typically completed

by teams rather than individuals. These

changes create a more labyrinthine devel-

opment environment that must be carefully

managed if quality software is to be

achieved.

There has been a great deal of interest in

system development methodologies over the

years. Many new methodologies have been

introduced in attempts to improve processes

and developer acceptance. A timeline of se-

lected major system development methodol-

ogies is shown in Figure 1 (see Appendix).

Dates shown are approximate as some am-

biguities exist in establishing start dates.

Of those organizations using a formal me-

thodology, many use methodologies mar-

keted by consulting organizations; others

develop their own in-house methodologies,

sometimes using another methodology as a

template. Occasionally the terms of buy-

outs or mergers will dictate that a methodol-

ogy (any) be used, or that a specific metho-

dology is required. Companies contracting

with the government are required to have

processes in place to ensure repeatability

and quality. Furthermore, some organiza-

tions use frameworks such as the Rational

Unified Process or Capability Maturity Model

Integration in conjunction with their system

development methodology to provide addi-

tional structure and tools to enhance their

development process.

As software development has evolved and

matured, many methodologies for develop-

ing software have been promoted. From the

earliest days of software development, when

no methodology was used, to today’s diverse

menu of methodologies and tools, whether

methodologies help or hinder has been the

subject of much discourse. Proponents of

methodological software development gen-

erally believe that the structure and rigor of

a process promote an end product of higher

quality with less risk and fewer surprises.

Others believe that system development

methodologies are cumbersome and hinder

creativity by putting more emphasis on

process and procedures.

One of earliest methodologies developed for

developing new software systems was the

Systems Development Life Cycle (SDLC). It

was developed in the late 1960’s in response

to the need for management control and

structure in the system development process

(Fitzgerald, 1997). It was an enhancement

of an earlier model known as the Stagewise

model (Boehm, 1988). The SDLC consists of

a series of steps or phases that encompass

all of the steps necessary for planning, de-

veloping, and implementing a software

project. It is commonly referred to as a spir-

al or waterfall model because the steps are

linked, and each builds off of the previous

step. The phases are discrete; however it is

permissible to regress to an earlier stage if

necessary. Each phase has corresponding

activities that are performed in that particu-

lar step, as well as deliverables or outputs

that are required. There are many variations

and adaptations of the SDLC as organiza-

tions extract the phases and activities that

are pertinent to their particular project.

As might be expected, highly structured

processes such as the SDLC have problems

that are inherent in the process (Hoffer

et al., 1996). One such problem with the

waterfall model is the assumption that the

project can only go through the process

once, with user testing and system testing

occurring after completion of the project

(Brooks, 1995). Although it is permissible to

go back to earlier phases, it is actually diffi-

cult and costly to do so once deliverables

have been produced. Second, the SDLC

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 3

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

tends to be a time-consuming and lengthy

process. One of the major problems with

systems development projects in general is

that, not only can requirements not be fully

known in advance (McCracken and Jack-

son, 1982) but, requirements change over

time as technology advances and user needs

change. Also, users must test the software

before requirements can be considered com-

plete (Gordon and Bieman, 1995). If the

project is completed, there is a high likelih-

ood that it will not be acceptable to the end

users. Implementing changes in design after

the design phase is completed increases

both the cost of the project and the time to

completion.

To address some of the short-comings of the

traditional SDLC, many other methodologies

have evolved. Structured Analysis and

Structured Design (SASD) introduced some

of the structure of engineering to program-

ming. It was an attempt to improve the

quality of the design phase by dividing

projects into smaller, more manageable

pieces and using tools such as data flow dia-

grams and entity-relationship diagrams

(Yourdon, 1986; Hoffer et al., 1996). The

Spiral Model of the software process was a

refinement of the waterfall method, incorpo-

rating prototyping into the many stages of

development (Boehm, 1988). This risk-

driven approach was designed to offer the

best features of prior methodologies while

introducing quality objectives into the devel-

opment cycle, thereby enabling developers

to eliminate errors early (Boehm, 1988). The

Object-Oriented Analysis and Design (OOAD)

approach, developed at about the same

time, focused on encapsulation and the

reuse of code. These approaches gained ac-

ceptance because they addressed specific

needs identified by project managers and

programmers, however they are still essen-

tially structured methodologies (Fitzge-

rald, 1997; Hoffer et al., 1996).

Involving the User

Although the development process became

highly structured, systems continued to typi-

cally have lengthy completion times, high

development and maintenance costs, loss of

interest and morale by project participants,

and quality issues, and were still unlikely to

meet user needs (Fitzgerald, 1997; Hoffer

et al., 1996). One solution was to develop

methodologies that incorporate the end user

into the development process. Rapid Appli-

cation Development (RAD) processes such

as prototyping strive to incorporate the us-

er’s input into the design process. Other me-

thodologies strategically incorporate user

input into specific phases of the design

process. Joint Application Development

(JAD) requires intense user involvement ear-

ly in the requirements phase (Hoffer

et al., 1996). In Europe, Participatory Design

(PD) has been widely accepted due to the

involvement of the entire user community

(Hoffer et al., 1996). Because user accep-

tance is gained early in the project, the

project is more likely to be completed and

meet user requirements (Fitzgerald, 1997).

While successful at delivering systems that

are more compatible with end user expecta-

tions, development and maintenance costs

remain high primarily due to quality issues.

Software Engineering

To address concerns of poor-quality soft-

ware, methodologies that incorporate engi-

neering-like specifications, requirements,

and processes were developed during the

middle to late 1980s. One example is the

Cleanroom software engineering process

developed at IBM, an incremental develop-

ment process that uses box structure speci-

fication and design, with each increment

going through rigorous verification to ensure

correctness, followed by statistical quality

certification to emphasize defect prevention

rather than defect removal (Mills

et al., 1987; Hausler et al., 1994). The goal

is zero defects (development goal) and fail-

ure-free performance (operation goal)

(Hausler et al., 1994; Poore, 1999). The

Cleanroom process is a life cycle process,

covering all aspects from planning through

implementation (Hausler et al., 1994).

Agile Methods

The complexity of software engineering’s

mathematically-based methodologies has led

to the development of light-weight metho-

dologies. Several have evolved during the

past decade. Agile methods emphasize the

generation of an early working product with

incremental functionality as opposed to pro-

totyping (Reifer, 2002). Participation by all

stakeholders is critical. Agile methods in-

clude differing types of practices such as pair

programming, team programming, refactor-

ing, RAD, etc. (Reifer, 2002). Benefits

touted include improved productivity, re-

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 4

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

duced costs, shorter time-to-market, and

improved quality (Reifer, 2002).

Many agile methodologies have been intro-

duced during the past ten to fifteen years,

such as Extreme Programming (XP), Scrum,

Dynamic Systems Development Methodology

(DSDM), Adaptive Programming, and Crystal

Clear. All are intended to address aspects of

the system development process that might

be lacking or under-developed in other me-

thodologies, or that certain types of applica-

tions or development environments require.

Additionally, proponents state that these

methodologies respond well to inevitable

changes in requirements. Incremental de-

sign is often a primary tenet, allowing por-

tions of the project to be implemented and

working before other portions have even

formally been added to the requirements

(DeHondt and Brandyberry, 2007). In a

2006 survey of North American and Euro-

pean businesses, Forrester Research found

that the use of agile methods increased in

2006 as wider acceptance was attained (Ri-

chards, 2006).

Frameworks

Six Sigma was conceived at Motorola during

the mid-1980’s. Although not technically a

system development methodology, it is an

approach for managing process and product

quality that can be applied to systems de-

velopment that is reliant on data. Its goal is

to attain a quality level of no more than 3.4

defects per million opportunities or better by

systematically solving problems. IBM’s Ra-

tional Unified Process (RUP) had its roots in

the 1980s at Rational Software. It is a dis-

ciplined, highly customizable process based

on the spiral model that utilizes best practic-

es. RUP is an iterative process that empha-

sizes testing throughout each iteration, thus

enabling defects to be identified and fixed

early in the process.

The Software Engineering Institute’s Capa-

bility Maturity Model (CMM), also introduced

in the mid-1980’s, asserted that a process of

higher maturity leads to increased productiv-

ity, reduced cycle time, and fewer defects. It

was a five-level framework that enabled an

organization to assess its process maturity,

and see what is needed to advance to the

next level (Humphrey, 1988). The emphasis

was on peer review and inspections.

Processes should be under statistical control

if consistent results are to be achieved. The

CMM was replaced with the Capability Matur-

ity Model Integration® in 2002, and is

aligned with more modern iterative ap-

proaches rather than conventional SDLC me-

thodologies.

There is no methodology that is perfect for

every organization or project. Each metho-

dology must deal with variations in people,

project, cultures, and changing technologies

and designs (Cockburn, 2002). Avison and

Fitzgerald (2003) suggest that we are in the

“post-methodology” era, and have transi-

tioned from highly structured processes in-

volving phases through the “methodology

era” to the current reappraisal of the role

and value of methodologies.

While there are many methodologies availa-

ble, acceptance and use of them has been

varied. It is unclear whether they are any

more widely used today than they were in

the 1990’s, despite the benefits attributed to

their use. Many studies and surveys have

been done from different perspectives. The

goals of this study include the consolidation

of findings and identification of industry

trends. Two types of data are generally

available: industry or organization surveys,

and academic research. This study analyzes

results from both types in separate analyses.

3. INDUSTRY SURVEYS

Although industry surveys exist that target

the usage of specific tools or programming

languages, relatively few are concerned with

development methodologies. The criteria for

inclusion in this portion of the study are:

• The survey was conducted by an in-

dustry organization or association.

• The survey assessed system devel-

opment methodology usage.

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 5

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

• The survey reported quantitative da-

ta.

A total of five surveys met the criteria. All

were conducted between 2001 and 2007 and

are listed in Table 1 (see Appendix B). Re-

sults from these surveys should be used with

discretion. Four of the surveys are designed

to assess usage of Agile methodologies, and

bias toward the topic is a possibility due to

the sponsoring organizations and samples.

Therefore results may not be generalizable

to the software development industry in

general. In addition, only the reported re-

sults that are pertinent to this research are

considered here.

Only one survey gives a general overview of

methodology usage. Entitled Changing Ap-

plication Development Needs, it was con-

ducted by TechRepublic and sponsored by

MKS. TechRepublic

(http://techrepublic.com.com/) is a CNET

Network web site that has a self-reported

community of over four million IT profes-

sionals.

TechRepublic members were invited to take

the survey in the fall of 2001. There were a

total of five hundred fifty completed surveys

received from developers or IT Manag-

er/Directors of organizations ranging in size

from 100 - 5,000 employees in the U.S.,

Canada, and Europe.

The results from the TechRepublic, Inc. 2001

(MKS, 2001) survey are reproduced here in

Figure 2 (see Appendix A) for reference. It

should be noted that at the time of this sur-

vey, agile development was in its early days,

and was not included. According to the sur-

vey, the “Other” category also included

those using the Rational Unified Process

(RUP), in-house methodologies, and those

using no methodology. Respondents were

able to choose all methodologies that ap-

plied.

The other four industry surveys (Ambler,

2006; Shine, 2003; VersionOne, 2006; Ver-

sionOne, 2007) were designed to assess

agile methodology usage. Of these, only one

survey specified whether respondents had

skipped the question, or had chosen “none.”

It was unclear whether “none” meant no

agile methodology was used or no metho-

dology was used at all. Results are summa-

rized in Figure 3.

Data from the two 2006 surveys were com-

bined in Figure 4 (see Appendix) to detect

trends. The apparent decrease in 2006 is

probably due to the exorbitant number of

respondents in Survey 2006(a) that selected

“none” as the agile methodology used.

Again, it is unclear what “none” represents.

While the charts show the use of agile me-

thodologies increasing over time, this could

represent some element of bias present in

the respondent population.

Survey results were further broken down to

look at trends for the specific agile metho-

dologies being used. Of the agile methodolo-

gies being used, Figure 5 (see Appendix)

shows that there has been a steady decline

of Extreme programming (XP) use between

2003 and 2007. The percent of Scrum

projects has increased, as has Feature Dri-

ven Development (FDD). The largest in-

crease came in the area of custom/hybrid

methodology development and usage from

zero in 2003 to 32% in 2007, as more com-

panies are customizing their agile methodol-

ogies rather than using one that is pre-

scribed. The use of hybrid techniques may

help in explaining the decline of methodolo-

gies such as XP where the amount of discus-

Figure 3: Agile Use

Figure 4: Consolidated Agile Usage

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 6

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

sion in informal forums and formal press

concerning XP does not necessarily seem to

support such a drastic decline.

4. ACADEMIC STUDIES

The initial literature search produced a total

of thirty-six academic papers dealing with

methodology assessment. To be included in

this portion of the study, academic research

studies meeting the following criteria were

used in order to maintain consistency and

reliability of data:

• The study used survey research to

look at methodology usage.

• Results are quantifiable.

The fourteen methodology studies that sur-

vived the specification requirements were

conducted between 1986 and 2001.

During the 1986-2001 time period, many

changes occurred in software development.

The twenty-one studies that were retrieved

but not used focused primarily on tool usage

or other aspects that included development

methods. Case study results were excluded

due to their applicability to a single organi-

zation. A list of the fourteen studies used is

shown in Table 2 (see Appendix B).

One of the difficulties of assessing metho-

dology usage is the large amount of dispari-

ty in the studies. This is also the reason

that a quantitative meta-analysis of these

results was not deemed appropriate. Addi-

tionally, the large timeframe involved, where

changes in the environment undoubtedly

occurred, lends itself more to a descriptive

analysis of trends rather than to any attempt

to aggregate studies. Reporting of results

was found to be occasionally vague and un-

clear, making it difficult to discern the actual

breakdowns of usage versus non-usage.

Terminologies also differ as methodologies

come and go. The research methodologies

used also differed, making it difficult to

compare results that were not measuring

the same constructs or using similar samples

of respondents.

Several studies reported system develop-

ment methodology usage vs. non-usage. In

a survey of members of the St. Louis Chap-

ter of Association of Systems Managers,

Sumner and Sitek (1986) received forty-five

usable responses (26%) from thirty-eight of

the 172 companies surveyed by mail. Mem-

bers of this association are primarily project

managers and systems analysts. They re-

port that 38 of the 45 respondents use a

system development methodology. There

was no mention that multiple responses

from one firm were in any way adjusted to

firm-level results that would make interpre-

tation consistent with other studies. Of those

respondents using a methodology, nineteen

were developed in-house, seventeen were

purchased, and two indicated that their sys-

tems were both purchased and developed

in-house.

Gordon et al. (1987) surveyed top computer

executives in 990 U.S. firms to ascertain

what processes were being used to develop

computer-based information systems. Their

results were based upon 97 (9.8%) returned

questionnaires. The focus was on the sys-

tems development life cycle (SDLC) ap-

proach of system development. They found

that respondents used a total of thirty-six

different approaches to develop systems

that were used alone or in combination with

the SDLC approach. These included tradi-

tional/classical, structured, automated, pro-

totyping and information center.

In a study that looked at the relationship

between system development and mainten-

ance, Dekleva (1992) surveyed each of the

Fortune 500 companies in 1985. There were

112 (22.4%) respondents. Thirty-five of the

returned questionnaires were excluded from

further study because either no methodology

was used (4), the methodology was un-

known (25), or there were conflicting res-

ponses (6). Those using methodologies were

classified according to the methodology

used: traditional SDLC, software engineer-

ing, information engineering, prototyping,

computer-aided software engineering, and

other. A specific breakdown of the number of

respondents in each category was not given.

Systems were then further categorized as

being modern or traditional, with 44 being

considered traditional and 32 as modern.

Ward et al. (1996) conducted a survey of

senior IS/IT managers and business manag-

ers within the Times Top 100 plus 150 addi-

tional large companies within the U.K. to

evaluate the realization of IS/IT benefits. Of

the 250 surveys mailed, sixty responses

(24%) were received. Results indicate that

52% (31) use a methodology for system

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 7

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

development and 15% (9) use no methodol-

ogy in any of the three areas. Methodology

usage for project management and invest-

ment appraisal were also assessed in this

survey. Respondents were able to select as

many categories as were applicable.

In a survey mailed to 776 named individuals

in different U. K. organizations, Fitzge-

rald (1998) found that methodology usage is

more likely to occur in larger organizations.

Of the 162 responses received (21%), 60%

indicated that no system development me-

thodology is used. The remaining 65 compa-

nies use methodologies classified as com-

mercial (14%), internal based on commer-

cial (12%) or internal not based on commer-

cial (14%).

Roberts et al. (1998) queried sixty-one

companies in the U.S. and Canada in an ex-

ploratory study to determine factors that

impact the implementation of system devel-

opment methodologies. The survey was sent

to 329 contact persons in 61 different com-

panies. A total of 192 completed responses

(58.35%) were received, with eight being

the maximum received from one company.

For participation, respondents were required

to have been using a system development

methodology for at least two years. Explora-

tory factor analysis revealed factors that

companies considering the implementation

of a development methodology should con-

sider. Companies in the study were using

Ernst & Young Navigator, Anderson Consult-

ing METHOD/1, TI Information Engineering,

KW Information Engineering, JMA Informa-

tion Engineering, custom methodologies,

and other unspecified methodologies. Al-

though numbers of responses for each me-

thodology were reported, it was not clear

what the per-company breakdown was due

to the allowance of multiple respondents per

company.

Software development methods in Brunei

Darussalam were studied by Rahim

et al. (1998) to explore usage in both public

and private sector firms in Asia. The survey

was sent to IS managers and executives

from 100 organizations. Each organization

received one survey. Thirty-six responses

were received. It was revealed that a total of

nine methodologies are used by the 24 res-

pondents using methodologies, while twelve

firms indicated that no methodology was

used. A Likert scale (0-4) was used, and

respondents were able to indicate the extent

to which each methodology was used in their

company. Results indicate that in-house de-

veloped methodologies and SSADM were the

more frequently used, and that prototyping

was used on an occasional basis. Other me-

thodologies used included Object Oriented

Design, Information Engineering, Structured

Design by Yourdon, Structured Design by

DeMarco, System Requirements Engineer-

ing, and Jackson Systems Design. They

found differences between public and private

organizations, the nature of the business

sector, and mature and novice organiza-

tions.

The 2000 study by Khalifa and Verner tar-

geted eighty-two senior software developers

from Hong Kong and Australia. They eva-

luated the extent of usage of the waterfall

and prototyping methodologies. It was not

specified whether the respondents were

known or required to be using a methodolo-

gy in order to participate, or whether any of

the respondents did not use any methodolo-

gy. Of the eighty-two respondents, 42%

used the waterfall method only, 8% used

prototyping only, and 44.7% used both wa-

terfall and prototyping (Khalifa and Vern-

er, 2000).

Of the ten studies reporting usage vs. non-

usage of system development methodolo-

gies, half focus on the U.K. Two of the sur-

veys are based on Asian companies, one is

from Finland, one from the U.S., and one

uses Fortune 500 companies not otherwise

specified. Figure 6 shows the overall trend in

general methodology usage. While no overall

trend is apparent due to the diverse geo-

graphic locations being studied and relatively

small sample sizes, it appears that more

than 50% of companies developing software

use some system development methodolo-

gy.

Figure 6: Methodology Usage

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 8

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Since there were only two surveys each from

the U.S. and Asia, there was not enough

data to establish trends. However, the two

U.S. surveys were consistent, averaging

86%, although they were from the mid-

1980’s. The two Asia surveys from 1998

were also consistent with each other, aver-

aging 68% of companies using a system de-

velopment methodology. Although there

were five studies that assessed methodology

usage in the U.K., there was again no ob-

vious trend. This was probably due to differ-

ences in the research methodologies applied.

The remaining six studies looked at the spe-

cific methodologies being used by companies

to develop software and are assessed next.

A survey by Hardy et al. (1995) looked at

methodology usage and customization in the

U.K. Five hundred ten companies were ran-

domly selected from categories determined

by categorizing a list of graduate jobs and

courses. The response rate was 20%. Of

that, although only 18% reported that they

were using no methodology, only 44% re-

ported using a formal structured system de-

velopment methodology. Most used an in-

house methodology which meant it was de-

veloped in-house, or a collection of tools be-

ing used. Twenty-four percent reported us-

ing SSADM. Others used included Yourdon,

JSD, OOD, Formal specification, and IE.

A New Zealand survey in 1996 assessed the

relationship between the methodology used

and the demographics of the organization

(Pastor Urban and Whiddett, 1996). Res-

ponses were received from 353 of the 563

organizations surveyed, the highest re-

sponse rate of any of the studies looked at

in this analysis. The population was repre-

sentative of the population by New Zealand

economic sectors, and evenly represented

large, medium, and small companies. Forty-

seven percent of the companies were using

structured methodologies such as SSADM,

structured, and Yourdon. This type of me-

thodology appears to be most suited for

large organizations. The authors reported

that most of the methodologies are custo-

mized. The remaining 53% used a variety of

methods including object-oriented (15%),

prototyping (35%), Multiview, and Socio-

technical. Medium and small organizations

were more likely to use prototyping.

Chatzoglou (1997) surveyed people involved

in U.K projects that were divided into three

strata - academics, software houses and

consultancies, and industry. Seventy-two

(38.92%) responses of the 182 surveys sent

out were included in the study. Sixty-nine

percent of the projects used methodologies

in various stages of the development

process. It was reported that 31% used no

methodology. For those projects using me-

thodologies, 23% each used SSADM and in-

house methodologies. Only 8% used proto-

typing. Twenty-seven percent of projects

used “other” unspecified methodologies. The

author concluded that when using a metho-

dology for the entire development process

including requirements capture and analysis,

the time to completion, effort and cost of

development, and number of people in-

volved is reduced.

There were two studies included from 1998.

Iivari and Maansaari (1998) sent question-

naires to primarily IS managers of eighty-

seven organizations identified as using CASE

tools. Of the 420 questionnaires mailed,

there were 63 (15%) received from 44 com-

panies. Although most of the questions were

in reference to CASE tool usage, respon-

dents were asked a few questions about the

development methodology used on a 5-point

Likert scale. The majority used object-

oriented approaches (39%), followed by

SA/SD at 23%. Other methodologies used

included IE, JSD, in-house developed me-

thodologies, other, and “anonymous.” In the

“anonymous” category respondents listed

techniques used rather than a formal me-

thod. Twelve respondents did not answer

this question. 34% of respondents indicated

they used a commercial methodology, and

34% used an in-house methodology primari-

ly adapted from a standard method.

In the second study from 1998, an assess-

ment of software engineering practices in

Singapore was conducted to determine the

extent of methodology usage (Poo and

Chung, 1998). Of the 240 organizations sur-

veyed, fifty-four valid responses were re-

ceived. Sixty-eight percent reported using a

methodology, with the remaining 30 percent

using none. One response did not have an

answer to this question. Most of the respon-

dents used the sequential/waterfall model

(37%). Slightly less than seventeen percent

reported using the incremental model, and

nine percent used rapid prototyping. Eleven

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 9

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

percent of the respondents were not sure

what methodology was used.

In a survey designed primarily to look at

multimedia and web development tech-

niques, Barry and Lang (2001) queried the

top 1,000 companies in general industry in

the U.K. regarding their development me-

thods. They received 98 responses (10%).

Sixty-five of the respondents answered the

question regarding methodology usage, with

one quarter of them indicating that they use

no methodology. Seventy-five percent of the

rest use an in-house methodology, 16.9%

use SSADM, and 13.8% use RAD. Respon-

dents could choose more than one metho-

dology. Respondents felt that methodolo-

gies are too cumbersome. Many tend to use

older tools and approaches rather than new-

er ones.

Due to inconsistencies in research metho-

dologies and reporting, it is difficult to obtain

longitudinal data and consolidate the data.

There appear to be regional differences also,

but the samples are too small to make that

distinction. Half of the studies here are from

the U.K. None of the six studies specifying

methodology usage were from the United

States. Figure 7 (Appendix A) shows overall

methodology usage in the six studies that

gave a breakdown. Figure 8 (Appendix A)

shows the methodologies identified in each

of the six studies. The data used to generate

those two charts is shown in Table 3 (see

Appendix B).

5. DISCUSSION

In addition to reviewing and summarizing

the existing research available concerning

the usage of SDMs, one of the primary con-

tributions of this effort is to point to the lack

of good systematic research related to SDM

usage. At any given point of time it is diffi-

cult to judge what the dominant methodolo-

gies are as well as the timelines concerning

their diffusion and abandonment in practice.

The relatively simple question of “who is us-

ing what, for what, and why?” needs to be

answered before questions that are even

more meaningful to practice can be posed.

If SDM usage research is to yield benefits

then it must provide insights into what me-

thodologies are best applied in what scena-

rios. It is conceptually appealing to assume

that the choice of a particular SDM for a par-

ticular project is likely to have a significant

impact on the likelihood for success of that

project. The relative advantage of employ-

ing a specific SDM is likely related to a num-

ber of interrelated determining factors such

as project characteristics, development team

characteristics, corporate culture, societal

cultural differences, individual developer

characteristics, and others. Research that

can add to the body of knowledge concern-

ing these complex relationships is difficult to

operationalize but would yield significant

advances if successfully undertaken.

No obvious trends are seen in looking at sys-

tem development methodology adoption

from 1986 - 2001. This could be due to the

lack of surveys that focused solely on me-

thodology usage, or the wide disparity in

geographical locations surveyed. Discrepan-

cies in survey methods also made it difficult

to compare results. It was clear that many

companies are still using older, more familiar

methodologies. Some companies use more

than one, fitting the methodology to the

project or the team. In studies using Likert

scale responses, many organizations indicate

that they are using more than one metho-

dology in varying degrees. This information

is not possible to ascertain in the other stu-

dies.

If there is any trend to be discerned, it is

that in-house methodologies, whether de-

veloped completely in-house or customized

from other methodologies, seem to be in-

creasing (Griffin, 2008). As more software

tools are available to developers, the inflex-

ibility of a process-intensive methodology

becomes less desirable and is often seen as

unnecessary. The choice of development

methodology is a function of the user, the

organizational environment, and what devel-

opers like and are familiar with. If one were

to ask a member of the general population,

“What is the right or best language to

speak?” the answer would probably be

“There is no ‘right’ or ‘best’ language.”

People speak a language that they know and

that is common to their environment. Varia-

tion is the rule rather than the exception.

Similarly, the question of “Which is the right

or best system development methodology to

use?” will probably generate the same re-

sponse, as developers view it similarly. One

size does not fit all, and the increase in me-

thodology customization seems to support

this.

REFERENCES

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 10

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Ambler, S. (2006) “Survey Says: Agile

Works in Practice.” Dr. Dobb’s Journal.

http:/www.ddj.com/dept/architect/1918

00169.

Avison, D. E. and Fitzgerald, G. (2003).

“Where now for development methodol-

ogies?” Communications of the ACM,

46(1):79-82.

Barry, C. and Lang, M. (2001). “A survey of

multimedia and web development tech-

niques and methodology usage.” IEEE

MultiMedia, 8(2):52-60.

Boehm, B. W. (1988). “A Spiral Model of

Software Development.” IEEE Comput-

er, 5:61-72.

Brooks, Jr., F. P. (1995). The Mythical Man-

Month: Essays on Software Engineering

25th Anniversary Edition. Addison-

Wesley, Reading, Massachusetts, 2nd

edition.

Chatzoglou, P. D. (1997). “Use of methodol-

ogies: an empirical analysis of their im-

pact on the economics of the develop-

ment process.” European Journal of In-

formation Systems, 6:256-270.

Cockburn, A. (2002). Agile Software Devel-

opment. The Agile Software Develop-

ment Series. Addison-Wesley.

Crosman, P. (2007). “Wall street firms turn

to best practices models to speed up

software delivery.” Wall Street \& Tech-

nology:

http://www.wallstreetandtech.com/show

Article.jhtml?articleID=199601961.

DeHondt, G. & Brandyberry, A. (2007).

“Programming in the eXtreme: Critical

characteristics of Agile implementa-

tions.” e-Informatica Software Engi-

neering Journal. 1(1):43-58.

Dekleva, S. M. (1992). “The influence of the

information systems development ap-

proach on maintenance.” MIS Quarterly,

16(3):355-372.

Fitzgerald, B. (1997). “The use of systems

development methodologies in practice:

a field study.” Information Systems

Journal, 7:201-212.

Fitzgerald, B. (1998). “An empirical investi-

gation into the adoption of systems de-

velopment methodologies.” Information

and Management, 34(6):317-328.

Gordon, C. L., Necco, C. R., and Tsai, N. W.

(1987). “Toward a standard systems de-

velopment life cycle.” J. Syst. Manage.,

38(8):24-27.

Gordon, V. S. and Bieman, J. M. (1995).

“Rapid Prototyping: Lessons Learned.”

IEEE Software, 12(1):85-95.

Griffin, A. S. (2008). Examining the Deci-

sion Process and Outcomes of System

Development Methodology Adoption.

(PhD dissertation, Kent State University,

2008).

Hardy, C. J., Thompson, J. B., and Edwards,

H. M. (1995). “The use, limitations, and

customization of structured systems de-

velopment methods in the united king-

dom.” Information and Software Tech-

nology, 37(9):467-477.

Hausler, P. A., Linger, R. C., and Trammell,

C. J. (1994). “Adopting Cleanroom soft-

ware engineering with a phased ap-

proach.” IBM Systems Journal,

33(1):89-109.

Hoffer, J. A., George, J. F., and Valacich,

J. S. (1996). Modern Systems Analysis

and Design. The Benjamin/Cummings

Publishing Company, Inc.

Humphrey, W. S. (1988). “Characterizing

the software process: A maturity frame-

work.” IEEE Software, 5(3):73-79.

Iivari, J. and Maansaari, J. (1998). “The

usage of systems development methods:

are we stuck to old practices?” Informa-

tion and software technology, 40:501-

510.

Khalifa, M. and Verner, J. M. (2000). “Driv-

ers for software development method

usage.” IEEE Transactions on engineer-

ing management, 47(3):360-369.

Lyytinen, K. (1989). “New challenges of sys-

tems development: a vision of the 90’s.”

SIGMIS Database, 20(3):1-12.

McCracken, D. D. and Jackson, M. A. (1982).

“Life Cycle Concept Considered Harm-

ful.” ACM Software Engineering Notes,

7(2):29-32.

McGraw, G. (2003). “Making Essential Soft-

ware Work.” Technical report, Cigital,

Dulles, Virginia. http://www.cigital.com.

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 11

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Mills, H. D., Dyer, M., and Linger, R. C.

(1987). “Cleanroom software engineer-

ing.” IEEE Software, 4(5):19-24.

MKS: Changing Application Development

Needs, a TechRepublic Survey, Spon-

sored by MKS. (2001). Retrieved July 5,

2006 from http://www.mks.com.

Nuar, P. and Randell, B., editors (1969).

Software Engineering. NATO Science

Committe.

Poo, D. C. C. and Chung, M. K. (1998).

“Software engineering practices in sin-

gapore.” The Journal of Systems and

Software, 41(1):3-15.

Poore, J. H. (1999). Cleanroom Software

Engineering: A Reader, Chapter 4 - The

Cleanroom approach to six sigma: Com-

bining information, pages 71-82. NCC

Blackwell.

Rahim, M., Seyal, A. H., and Rahman, M.

N. A. (1998). “Use of software systems

development methods: An empirical

study in brunei darussalam.” Information

& Software Technology, 39:949-963.

Reifer, D. J. (2002). “How good are agile

methodologies?” IEEE Software, pages

16-18. July/August.

Richards, K. (2006). “Early mainstream:

Agile develops in the enterprise.” Appli-

cation Development Trends, page 2.

Roberts, T., Gibson, M., Fields, K., and Rain-

er, R. (1998). “Factors that impact im-

plementing a system development me-

thodology.” IEEE Transactions on Soft-

ware Engineering, 24(8):640-649.

Shine Technologies: Agile Methodologies

Survey Results. (2003). Retrieved from

http://www.shinetech.com/download/att

ach-

ments/98/ShineTechAgileSurvey2003-

01-17.pdf.

VersionOne Survey: “The State of Agile De-

velopment,” (2006). Retrieved from

http://www.versionone.com/surveyresul

ts.asp.

VersionOne 2nd Annual Survey: “The State of

Agile Development,” (2007). Retrieved

from

http://www.versionone.com/pdf/StateOf

AgileDevelopmet2_FullDataReport.pdf.

Sumner, M. and Sitek, J. (1986). “Are struc-

tured methods for systems analysis and

design being used?” Journal of Systems

Management, 37(6):18-23.

Urban, J. L. and Whiddett, R. J. (1996). “The

relationship between systems develop-

ment methodologies and organisational

demographics: A survey of new zealand

organisations.” In Information Systems

Conference of New Zealand, 1996. Pro-

ceedings, page 179, Palmerston North,

New Zealand. ISBN: 0-8186-7710-4.

Ward, J., Taylor, P., and Bond, P. (1996).

“Evaluation and realisation of is/it bene-

fits: An empirical study of current prac-

tice.” European Journal of Information

Systems, 4(2):214-225.

Whittaker, J. A. and Voas, J. M. (2002). “50

Years of Software: Key Principles for

Quality.” IT Pro, pages 28-35. Nov/Dec

2002. Publication of IEEE.

Yourdon, E. (1986). “What Ever Happened to

Structured Analysis.” Datamation, pages

133-138.

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 12

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Appendix A - Figures

Figure 1: Timeline of methodology development

Figure 2: TechRepublic Survey Results (MKS, 2001)

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 13

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 14

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Figure 5: Agile Methods Used

Figure 7: Methodologies Being Used

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 15

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Figure 8: Agile Methodology Usage by Study

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 16

Griffin and Brandyberry Sat, Nov 8, 2:00 - 2:25, Pueblo B

Appendix B – Tables

Table 1: Industry Surveys

Date Title
Sample

(n)
Publisher Sponsor

2001
Changing Application De-

velopment Needs
550

TechRepublic,

Inc.
MKS

2003 Agile Methodologies 131
Shine Technolo-

gies PtY Ltd.

Shine Tech-

nologies PtY

Ltd.

2006
Survey Says: Agile works

in practice
4,232

Dr. Dobb’s

Journal

Scott Amb-

ler/Dr.

Dobb’s

Journal

2006 Survey on Agile Adoption 722 VersionOne
Agile Al-

liance

2007
The State of Agile Devel-

opment
1,681 VersionOne APLN

Table 2: Studies looking at SDM Usage

Table 3: Data for Methodology Studies

Proc CONISAR 2008, v1 (Phoenix): §3522 (refereed) c© 2008 EDSIG, page 17

