
Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Test Driven Development in the .Net

Framework

Sam Lee
sl20@txstate.edu

Mayur R. Mehta
mm07@txstate.edu

Jaymeen R. Shah
js62@txstate.edu

Department of CIS & QMST
Texas State University–San Marcos

San Marcos, Texas 78666, USA

Abstract

Test Driven Development (TDD) is powerful to create and maintain complex packaged soft-

ware for enterprises. The .Net framework and the test-first approach provide synergy for de-

veloping high-quality database applications in the fast-changing business world. This paper

presents a TDD approach that uses unit test cases in the Visual Studio .Net 2008. The data

access classes are quickly built and modified using models in the ADO.Net Entity Framework.

NUnit, free and open software, is employed for unit testing to manage the change of entity

models.

Keywords: Test Driven Development, ADO.Net, Packaged Software, Database, Unit Test

1. INTRODUCTION

Packaged software is a powerful global in-

dustry: the largest firms in this industry –

Microsoft, Oracle, IBM and others – are

household names (Carmel & Sawyer, 1998).

This industry is very competitive, which

leads to intense time-to-market pressures

and the need to always adapt software in

progress to the new functionality of the lat-

est releases of the competitors (Dube,

1998). To deal with the pressure, one of the

most powerful tools is the method of Test

Driven Development (TDD). With TDD, unit

test cases are written for the implementation

of any new functionality (Maximillien & Wil-

liams, 2003). The new functionality is not

ready unless these new unit test cases and

every other unit test case written for the

existing code base are tested automatically

and successfully.

Adding new features one at a time, pro-

grammers who write more tests tend to be

more productive (Erdogmus et al., 2005).

The TDD’s advantages, which are especially

significant to continuously grow the com-

plexity of software systems, include that it

(a) makes the changes virtually risk free

such that the development team can flexibly

change the behavior of one part of the sys-

tem without risking side effects in other

parts (Martin, 2007); (b) delivers software in

smaller units that are less complex (Janzen

& Saiedian, 2008); and (c) effectively cap-

tures requirements such that development

tools can be integrated to continue to im-

prove system quality (Crispin, 2006).

The Microsoft Visual Studio .Net is one of

most popular tools to develop enterprise ap-

plications. Visual Basic facilitates easy crea-

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 1

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

tion of software components in the .Net en-

vironment. This paper discusses the tech-

niques related to component (unit) tests us-

ing the Visual Studio .Net 2008 and the Vis-

ual Basic language.

2. UNIT TESTING IN .NET

Developing unit test cases is a key to TDD.

NUnit, free and open software, is a unit-

testing framework for all .Net languages. To

start using NUnit, you must have Microsoft

Visual Studio .Net installed in your comput-

er. Then you download NUnit from its Web

site (www.nunit.org) and follow the instruc-

tions to install it.

To start developing a demo application, we

first create the project “UnitTestSimple” in

Visual Studio .Net 2008 (see Figure 1). Fig-

ure 2 shows a simple class to be tested by

NUnit. The class, created in the “UnitTest-

Simple” project, is defined by a method that

calculates the distance to the origin for a

point (X, Y). Test data should be gathered

before writing the NUnit program to test the

method. Table 1 shows the test data.

The unit test case (Figure 3), which is also

created in the “UnitTestSimple” project, is

written in a separate program to test the

“Distance to Origin” method. A reference to

the nunit.framework DLL file must be added

to the project (see Figure 4).

Table 1. Test data for writing a unit test

case.

X-axis Y-
axis

Distance to Origin
(**Expected Value)

3.5 4.5 5.701

6.2 10.4 12.108

**Expected values are coded in the unit test

programs

The basic syntax for developing a unit test

class is described as follows.

a) You must import the Nunit.Framework

name space in the unit test program.

b) A “Test Fixture” attribute must be ap-

plied to the unit test program.

c) A “Test” attribute must be applied to

every method that is written to perform

tests.

d) The Assert class is used to test whether

the expected and actual values are the

same.

If there is a code mistake in the “Distance To

Origin” method, the actual value returned by

the method to be tested is most likely wrong

and not the same as the expected value.

Thus, the mistake is detected by a method

of the Assert class.

To run the unit test class in Figure 3, you

must build the Visual Studio project and

start the NUnit GUI application. Then, in the

application, you open the “UnitTestSimple”

project by navigating to its “bin\Release”

subdirectory and select the UnitTestSim-
ple.dll file (see Figure 5). After the project is

opened, you click the Run button to test it.

The “Distance To Origin” method passes the

test if a green bar is displayed (see Figure

6); otherwise, a red bar is shown and there

is a message to indicate that expected and

actual values did not match.

3. UNIT TESTING FOR DATABASE

APPLICATIONS

The Visual Studio .Net 2008 introduces the

ADO.NET Entity Framework, which allows

developers to write less data-access code,

reduces maintenance, abstracts the struc-

ture of the data into a more business-

friendly manner, and facilitates the persis-

tence of data (Papa, 2007). A TDD approach

to integrating NUnit and Entity Frameworks

provide synergy for developing high-quality

and easy-to-maintain database applications.

To demonstrate the TDD approach, we

create a database connection in a database

application project and follow the steps that

are described in this section:

a) Object and Relational Mapping (ORM)

i. Creating database tables.

ii. Generating ADO.NET entity classes

that are mapped to the tables.

b) Code Development

i. Creating service classes that perform

all of the data operations: create,

read, update and delete.

ii. Testing the methods of the service

classes.

Object Relational Mapping

ORM is a technique for converting data mod-

els between relational databases and object-

oriented programs. Programmers apply the

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 2

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

technique to easily make objects persistent

to the database systems.

Tables 2, 3 and 4 show the tables of a sim-

ple shopping cart application: Cart, Cart

Item and Product. The Cart ID and Product

ID fields of the Cart Item table are foreign

keys linking to the Cart and Product tables,

respectively.

After creating the tables in a Microsoft SQL

server, the entity model in Figure 7 is easily

created using a template in Visual Studio

.Net 2008. The template is shown in Figure

8. It is noteworthy that a library of Visual

Basic classes is automatically generated for

writing data-access code. The library in-

cludes the Cart, Cart Item and Product

classes. The ADO.Net Entity Framework pro-

vides a container for all the class in the enti-

ty model.

Table 2. The Cart table

Cart ID
(Primary
Key)

Date Of Crea-
tion

Tax

1 8/11/2008

10:05:00 AM

3.00

2 8/11/2008

11:05:00 AM

1.50

Table 3. The Product table.

Product ID
(Primary
Key)

Product
Name

List Price

1 Keyboard 20.50

2 Mouse 10.20

3 Monitor 120.80

Table 4. The Cart Item table.

Cart
Item ID
(Primary
Key)

Sale
Price

Qty Cart
ID

Product
ID

1 20.5 2 1 1

2 120.5 1 2 3

3 10.2 1 1 2

Code Development

Figure 9 shows a service class that includes

two methods: (a) to find a cart object by

cart ID; and (b) to create a new cart by the

ID and quantity of the first product in the

cart. In the service class, CartDB is the con-

tainer for all the entities in the model of Fig-

ure 7. Using the container, we write a From

statement to find Cart objects from the enti-

ty model, a AddToCart statement to add a

new object to the Cart entity, and a Save-

Changes statement to make the changes of

the entity model permanent in the database

tables.

The unit test program in Figure 10 is written

to test the service class. The FindCart me-

thod is tested to see whether a cart is re-

turned with the expected tax stored in the

database. The test program also checks

whether the CreateCart method creates a

cart and its cart item in database. When

successful, the method returns a valid cart

with a Cart ID greater than 1. Figure 11

shows the test results.

After finishing this project, we can see that

the Entity Framework also facilitates the

construction of a model driven architecture

(MDA) for business application development.

MDA is an initiative by the Object Manage-

ment Group. It deals with the system com-

plexity based on the principles of abstrac-

tion, reuse and patterns; and typically sup-

ports code generation to justify the time and

resources invested in modeling activities.

According to Conn & Forrester (2006), MDA

uses three sets of models: platform inde-

pendent models (PIMs), platform specific

models (PSMs), and transformation models

(TMs). PIMs capture domain-specific know-

ledge from both organizational environments

as well as technical environments. These

models are independent of the actual tech-

nologies needed to implement their functio-

nality.

The diagram in Figure 7, which is very simi-

lar to a class model in Unified Modeling Lan-

guage (UML), is a PIM. The .Net framework

is a PSM that provides implementation struc-

ture and functionality. The ORM is a TM that

is used to guide the process of transforming

the PIM to create a PSM-based code library

that is precise, formal and detailed for de-

velopment.

4. CONCLUSION

This paper presents a TDD approach to de-

velop database applications using the Micro-

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 3

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

soft Visual Studio .Net 2008. In this ap-

proach, the classes that access databases

can be easily built and updated using the

utilities of ADO.Net Entity Framework. NUnit

provides tools to develop unit test cases to

manage the change of entity models, as sys-

tems need consistent improvement.

It is clear that unit tests are still limited to

be used in developing user interfaces. The

future study will include the application of

tiered architecture to improve the proposed

TDD approach. It will reduce the amount of

code written in user interfaces; thus, majori-

ty of the code in a business application can

be unit-tested.

After all, it is intriguing to discover conver-

gence of two development methodologies:

TDD and MDA. The ideas of visual program-

ming become more model-based and less

intuitive than those driven by user interface

design. The new development environment

will lead to the creation of scalable software

modules that can be fully and repeatedly

tested.

5. REFERENCES

Carmel, E. & Sawyer, S. (1998). Packaged

software development teams: what

makes them different? Information

Technology & People, 11 (1), 7-19.

Conn & Forrester (2006). Model Driven Ar-

chitecture: A Research Review for Infor-

mation Systems Educators Teaching

Software Development. Information Sys-

tems Education Journal, 4 (43).

Crispin, L. (2006). Driving Software Quality:

How Test-Driven Development Impacts

Software Quality, IEEE Software, 23 (6),

70-71.

Dube, L. (1998). Teams in packaged soft-

ware development: The Software Corp.

experience, Information Technology &

People, 11 (1), 36-61.

Erdogmus, H., Morisio, M. & Torchiano, M.

(2005). On the Effectiveness of Test-

first Approach to Programming, IEEE

Transactions on Software Engineering,

31(3), 226-237.

Janzen, D.S. & Saiedian, H. (2008). Does

Test-Driven Development Really Im-

prove Software Design Quality? IEEE

Software, 25 (2), 77-84.

Martin, R. C. (2007) Professionalism and

Test-Driven Development, IEEE Soft-

ware, 24 (3), 32-36.

Maximillien, M. & Williams, L. (2003). As-

sessing Test-Driven Development at

IBM, International Conference on Soft-

ware Engineering, Portland, OR, 564-

569.

Papa, J. (July 2007). ADO.NET Data Points:

ADO.NET Entity Framework Overview,

MSDN Magazine, Retrieved August 5,

2008, from

http://msdn.microsoft.com/en-

us/magazine/cc163399.aspx

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 4

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Appendix

Figure 1. A demo project in Visual Studio .Net 2008

Public Class SimplePoint
 Public Function DistanceToQrigin(ByVal X_axis As Double, _
 ByVal Y_axis As Double) As Double

 Return Math.Sqrt(X_axis * X_axis + Y_axis * Y_axis)

 End Function
End Class

Figure 2. A simple class to be tested by NUnit.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 5

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Imports Nunit.FrameWork

<TestFixture()> _

Public Class SimplePointTest
 Dim point As New SimplePoint

 Dim actual As Double
 Dim expected As Double

 <Test()> _
 Public Sub DistanceToQrigin()

 'Test the first point (X, Y) = (3.5, 4.5)

 actual = Point.DistanceToQrigin(3.5, 4.5)
 expected = 5.701

 Assert.AreEqual(expected, actual, 0.001)
 'Test the second point (X, Y) = (6.2, 10.4)

 actual = Point.DistanceToQrigin(6.2, 10.4)

 expected = 12.108

 Assert.AreEqual(expected, actual, 0.001)

 End Sub
End Class

Figure 3. A unit test class to test the class method in Figure 2.

Figure 4. Adding the reference of the nunit.framework DLL file to the demo project

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 6

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Figure 5. Opening the demo project in the NUnit GUI application.

Figure 6. Running the unit test class in Figure 3 using the NUnit GUI application.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 7

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Figure 7. An entity model generated in the Visual Studio .Net 2008.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 8

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Figure 8. The template to add an entity model into a project of Visual Studio .Net 2008.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 9

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Imports CartApp.CartModel

Public Class CartService

 'Find a cart by a cart ID

 Public Function FindCart(ByVal cartID As Integer) As Cart
 Dim cart As Cart = Nothing

 'Using the object service of Entity Framework
 Using db As New CartDB

 cart = (From c In db.Cart _

 Where c.CartID = cartID).First
 End Using

 Return cart
 End Function

 'Create a new cart to contain a product

 Public Function CreateCart(ByVal argProductID As Integer, _

 ByVal argQty As Integer) As Cart
 'Decalre objects
 Dim cart As Cart = Nothing

 Dim cartItem As CartItem = Nothing
 Dim product As Product = Nothing

 'Using the object service of Entity Framework

 Using db As New CartDB

 'Find the product by ID
 product = (From p In db.Product _

 Where p.ProductID = argProductID).First
 'Exit if the product ID is not valid
 If product Is Nothing Then Return Nothing

 'Make a new cart item

 cartItem = New CartItem
 cartItem.Qty = argQty
 cartItem.SalePrice = product.ListPrice

 cartItem.Product = product
 'Make a new cart

 cart = New Cart
 cart.CartItems.Add(cartItem)
 cart.DateOfCreation = Now

 cart.Tax = 0.0

 'Persist the cart to a database

 db.AddToCart(cart)
 db.SaveChanges()

 End Using

 'return a new cart successfully created in database

 Return Cart
 End Function

End Class

Figure 9. A service class for data operations.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 10

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Imports NUnit.Framework

Imports CartApp.CartModel

<TestFixture()> _
Public Class CartUnitTest

 Dim service As New CartService

 'This test is passed if a cart
 ' is returned with the expected

 ' tax

 <Test()> _
 Public Sub testFindCart()

 Dim c As Cart
 'Test first cart (ID = 1)

 c = service.FindCart(1)

 Assert.AreEqual(3.0, c.Tax)

 'test second cart (ID = 2)

 c = service.FindCart(2)
 Assert.AreEqual(1.5, c.Tax)
 End Sub

 'This test is passed if there is no

 ' exception and a positive cart ID

 ' is generated after this method is executed.
 <Test()> _

 Public Sub testCreateCart()
 'product ID = 2 & qty =3

 Dim c As Cart = service.CreateCart(2, 3)
 Assert.Less(1, c.CartID)
 End Sub

End Class

Figure 10. A unit test class to test the class methods in Figure 9.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 11

Lee, Mehta, and Shah Sun, Nov 9, 8:30 - 8:55, Pueblo A

Figure 11. Running the unit test class in Figure 10 using the NUnit GUI application.

Proc CONISAR 2008, v1 (Phoenix): §4113 (refereed) c© 2008 EDSIG, page 12

