
Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

Component-Based Software Development:

Life Cycles and Design Science-Based

Recommendations

Jason H. Sharp
jsharp@tarleton.edu

Computer Information Systems, Tarleton State University
Stephenville, TX 76401, USA

Sherry D. Ryan

Sherry.Ryan@unt.edu
Information Technology & Decision Sciences, University of North Texas

Denton, TX 76203, USA

Abstract

Component-Based Software Development (CBSD) continues to be a relevant area of research

in the systems development and software engineering fields. Its focus is on the integration of

pre-fabricated software components to build systems characterized by increased portability

and flexibility. While the basic premise of CBSD is to build systems by assembling pre-existing

software components, existing CBSD development lifecycles have not adequately separated

component development from the assembly of the system. In order to fully leverage the po-

tential of CBSD this conceptual separation is necessary. Thus, we propose the CBSD Dual Life

Cycle model, which divides the development process into two distinct parts: (1) component

development and (2) system development. We describe each phase of these two life cycles

and use design science principles, whose objective is to develop business-relevant technology-

based solutions, to help formulate recommendations for enhancing quality.

Keywords: component-based software development, life cycle model, design science, sys-

tems development

1. INTRODUCTION

The study of Component-Based Software

Development (CBSD) continues to be a valid

alternative approach in the areas of systems

development and software engineering. One

assertion is that “the traditional built-from-

scratch software ideology is behind us, and

the trend is in the CBSD involving compo-

nent fabrication and component assembly”

(Vitharana & Jain, 2000, p. 302). Although

some feel that the next phase of CBSD,

commonly referred to as service-oriented

computing (SOC) is gaining wide accep-

tance, especially in the distributed systems

development paradigm (Fujii & Suda, 2006;

Yang, 2003). Elfatatry (2007) asserts that

services complement and extend, rather

than replace components altogether. The

objectives of CBSD can be summarized as

follows: development of software from pre-

fabricated parts, reuse of those parts across

applications and contexts, and easily main-

tainable and customizable parts to develop

new functions and features. The end result

is that complex application systems can be

developed rapidly by assembling compo-

nents with well-defined interfaces.

CBSD represents a departure from tradition-

al systems development. Because organiza-

tions may not be involved in the actual de-

sign of the components themselves, but ra-

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 1

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

ther select appropriate components from

outside vendors or reuse existing compo-

nents that were either previously purchased

or developed in-house at an earlier time,

component development and system devel-

opment phases should be decoupled. How-

ever, existing CBSD development lifecycles

have not adequately separated component

development from the assembly of the sys-

tem (Capretz, 2005; Crnkovic, Stig, & Mi-

chel, 2005; Fahmi & Choi, 2008; Sommer-

ville, 2004; Vitharana, Zahedi, & Jain,

2003). In order to fully leverage the poten-

tial of CBSD this conceptual separation is

necessary. Thus, we propose the CBSD

Dual Life Cycle model, which divides the de-

velopment process into two distinct parts:

(1) component development and (2) system

development as shown in Figure 1 (see Ap-

pendix).

Component development involves domain

selection and analysis, the design of the

component architecture, and component

fabrication. Because the basic premise of

the model contends that component devel-

opment is distinct from system develop-

ment, the model indicates that after the in-

dividual components are completed, they are

“funneled in” or selected during the compo-

nent selection phase of system develop-

ment. Conceptually, “n” number of compo-

nents may be selected.

System development, on the other hand, is

conducted within the organization and fol-

lows its own separate life cycle phases. First

it involves the determination of require-

ments; next the design of systems architec-

ture and the subsystems; third, the con-

struction of appropriate schemes for cata-

loging and retrieval and selection of compo-

nents created during component develop-

ment; and finally an implementation phase

that involves component assembly.

We use design science principles, whose ob-

jective is to “develop technology-based solu-

tions to important and relevant business

problems” (Hevner, March, & Park, 2004, p.

83), as a lens to help formulate recommen-

dations for enhancing quality in each life

cycle phase. Prior to discussing each phase

of the CBSD Dual Life Cycle model, we de-

scribe tenets of design science.

2. TENETS OF DESIGN SCIENCE

The design science paradigm “seeks to

create innovations that define the ideas,

practices, technical capabilities, and prod-

ucts which the analysis, design, implementa-

tion, and use of information systems can be

effectively and efficiently accomplished,”

(Hevner et al., 2004, p. 76). Therefore, de-

sign science is an appropriate rubric by

which to evaluate software development and

identify recommendations.

Simon (1996) identified five elements of de-

sign theory:

(1) The Evaluation of Designs - selecting and

applying appropriate theories of evaluation,

such as utility theory, as well as suitable

computation methods for either optimal or

satisfactory alternatives.

(2) The Formal Logic of Design – using both

imperative and declarative logic.

(3) The Search for Alternatives - including

search methods such as means-ends analy-

sis which is an example of a problem solving

technique that exploits factoralization.

(4) The Theory of Design Structure and Or-

ganization – decomposing complex systems

hierarchical systems into successively small-

er functional systems so that the design of

each subcomponent can be carried out with

some degree of independence.

(5) Representation of Design Problems –

formulating recommendations as a function

of the design representation that makes

some aspects evident aspects and others

obscured.

We use these principles to help formulate

recommendations for each life cycle phase

as discussed below.

3. PHASES OF COMPONENT
DEVELOPMENT

Domain Selection and Analysis

Domain selection and analysis involves the

identification of problems that need to be

addressed. Component manufacturers must

select the domains for which they wish to

develop commercially available components.

An issue for component manufacturers is the

potential available market for their compo-

nents. This market is indispensable for the

growth of CBSD since it will facilitate compe-

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 2

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

tition which ultimately leads to better prod-

ucts at lower prices.

It appears that there are an insufficient

number of components available on the

market to meet the demand, especially in

the functional areas of businesses. Vendors

sell many utility components such as com-

ponents to resize windows, upload and

transfer files, or compress files. General

application components for email, spread-

sheets, or calendaring also exist. Less pre-

valent are components that address re-

quirements in businesses’ functional areas,

though finance and accounting appear to

have more components than those in other

areas.

From a design science perspective, the se-

lection of domains component manufacturers

choose for development can be approached

with optimization techniques such as means-

ends analysis. According to Simon, the

problem is to “find an admissible set of val-

ues of command variables, compatible with

the constraints that maximize the utility

functions for the given value of environmen-

tal parameters” (Simon, 1996, p. 116). In

this case, the utility function might be to

optimize the potential sales of a component

based upon a number of constraints and pa-

rameters (for example, mandatory software

functions included in a given domain, the

importance or weight of optional functions,

etc.). Thus, we recommend:

Employ optimization techniques to deter-

mine the command variables and constraints

to allow for creation of generic, domain-

specific components with maximum utility

for functional domains.

Design of the Component Architecture

Component-based systems are a type of hie-

rarchical system that can be decomposed

into component-based subassemblies, which

can further be decomposed until an elemen-

tary level is reached. Each component has

an “inner” environment, which includes its

data structure, algorithms and controls, and

an “outer” environment, or the setting in

which it operates. In other words, a compo-

nent consists of a software element and a

well-defined interface. The interface, the

junction at which the inner and outer envi-

ronments meet, is concerned with ensuring

that the required functionality is delivered to

meet the desired design goals, but can suc-

ceed only if the inner environment appro-

priately adapts to the outer environment.

The separation of the component’s physical

packaging and the interface represents a

unique characteristic of the CBSD approach.

Important design factors include appropriate

encapsulation, appropriate granularity, spe-

cificity, reusability, functional completeness,

reliability, variability, adaptation, and clean

interfaces. The later is especially important

in terms of component adaptability. Often,

whether a component achieves a particular

goal or adapts appropriately to its environ-

ment is dependent upon only a few charac-

teristics in the outer environment and not on

the details of the environment. Including

additional, but unnecessary constraints only

serves to limit the number of outer environ-

mental conditions within which the compo-

nent can operate. Thus we recommend:

Design interfaces without extraneous con-

straints else the components will be re-

stricted in terms of the environments in

which they may be placed and the markets

to which they may be available.

Component Fabrication

This phase entails building and testing the

component via a selected programming lan-

guage. In CBSD, the internal processes of a

component are known only to the compo-

nent developers. The external functionality

is made known through a published descrip-

tion of the component. One of the key dis-

tinguishing factors in component-based de-

velopment is the separation of the interface

and its implementation (Hopkins, 2000).

According to Jain et al. (2003, p. 49), inter-

faces “describe how a client program should

interact with the component while hiding

implementation details”. Considering that

an implementation of a component may

have multiple interfaces, a task of the com-

ponent developer is to ensure compatibility

between the implementation and the inter-

faces.

Quality and performance are crucial factors

that should be evaluated during component

development. Metrics should be developed

to anticipate the performance of component-

based systems before they are actually built.

The performance, quality, and behavior of a

component are partially dependent on the

external environment with which it must in-

teract. Because CBSD differs from tradition-

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 3

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

al approaches in that various combinations

of independently built components are com-

bined, it is crucial that models be created to

assist in evaluating the way the distinct

components will interact with each other.

While the “inner environment” of a compo-

nent may be well understood, due to the

large number of possible permutations of

external environments in which a commer-

cially available component may be placed,

techniques for discovering the implications

of component attributes must be made. Es-

sentially, the component must be tested

without knowing how it will be used or the

environment to which it will eventually be

embedded.

One technique that sheds light on predicting

behavior is simulation. Even if correct pre-

mises about a component’s internal architec-

ture are made, it may be very difficult to

discover what they imply when placed in a

variety of external environments. Therefore,

simulation techniques are needed to work

out the implications of the interactions of

vast number of variables. Therefore we rec-

ommend:

Use simulations techniques for evaluating a

component’s architecture in a variety of ex-

ternal environments to identify potential

quality and performance problems.

4. PHASES OF SYSTEM DEVELOPMENT

Figure 1 (see Appendix) shows the compo-

nent and system development phases as

separate life cycles. In CBSD, the phases of

Component Development, discussed above,

will often be conducted by a component

manufacturer that commercially sells soft-

ware components. The phases of System

Development, discussed below, will typically

be conducted by an organization that re-

quires the overall system functionality.

Requirements Analysis

One of the commonly held reasons that

many systems fail is the fact that require-

ments are not correctly identified in tradi-

tional approaches. An argument has been

made that in comparison with these tradi-

tional approaches, CBSD can improve the

requirements determination process because

CBSD emphasizes more of an active role of

the user in requirements determination and

throughout the development life cycle. Ini-

tial requirements are gathered from users in

the initial requirements gathering phase, but

are further refined and elaborated as com-

ponents are selected. Thus, we stress the

cyclical nature of CBSD life cycles. When

users and developers work together to iden-

tify components that satisfy given require-

ments, they further hone and prioritize re-

quirements given the availability, or lack

thereof, of components with functionality to

meet those requirements. In addition, be-

cause commercially available components

may have features that incorporate industry

best practices within the domain, users and

system developers may discover require-

ments they might not have otherwise identi-

fied.

We suggest that not only the development

approach, but also its combination with the

method of external problem representation

used, will produce differing outcomes in re-

quirements quality and completeness. A

goal of this phase is to make the solution as

clear as possible. One of the tenets of de-

sign science is that the way in which a prob-

lem is represented can make a significant

difference, obscuring some aspects and illu-

minating others. Three-dimensional repre-

sentations of problem spaces yield different

insights than two dimensional maps or tex-

tual lists. In traditional development set-

tings, research has been done investigating

the effects of alternative problem represen-

tations and has shown that there are indeed

variations (Umanath & Vessey, 1994).

Therefore we recommend:

Use a variety of external problem represen-

tations to enhance the quality and com-

pleteness of requirements specified.

Design of the System and Subsystems
Architectures

Design of the system and subsystems archi-

tectures involves the selection of the appro-

priate component model which allows the

components to communicate with one

another. Existing component models include

Microsoft’s Distributed Component Object

Model (DCOM), Object Management Group’s

Common Object Request Broker Architecture

(CORBA) and Enterprise Java Beans (EJB)

from Sun Microsystems. More recent com-

ponent models include Microsoft’s ActiveX,

.NET, and Sun’s J2EE. Though it is true that

a fundamental tenet of components is that

they represent self-contained, self-

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 4

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

functioning units, the components are still

required to “talk” to each other.

Although use of CBSD is growing, some be-

lieve that a comprehensive component mod-

el is still insufficient (Dahanayake, Sol, &

Stojanovic, 2003). The fact that there are a

number of proprietary models places limita-

tions on the use of CBSD across platforms.

For pure CBSD to exist, consideration of

components beyond the implementation and

deployment phases must be taken into ac-

count. Ultimately, components must become

the central focus of the complete develop-

ment process. A factor hindering this shift in

focus is the fact that many of the component

models are highly influenced by Object-

Oriented methodologies and that “fully com-

ponent-oriented and even component-

centered methods are needed, starting and

ending with the component concept” (Daha-

nayake et al., p. 18). Only when compo-

nents become the central focus will infra-

structures be fully utilized for the develop-

ment of complex systems. Thus, we rec-

ommend:

Select robust component models that have

their central focus on components.

Component Selection, Cataloging, and
Retrieval

Three important characteristics to take into

consideration when selecting components

are: (1) utility - whether the component is

relevant to the problem domain; (2) capaci-

ty - the sophistication of the functionality of

the component especially in terms of its

reuse; and (3) versatility – whether it can be

easily integrated into the desired system

(Waguespack & Schiano, 2004). It has also

been suggested that managerial goals

should be mapped with technical features to

ensure that components adequately meet

system requirements. Managerial goals may

include cost effectiveness, ease of assembly,

customization, reusability, and maintainabili-

ty. Ultimately, these goals assist in deter-

mining the most effective component design

to delivery the greatest benefit.

With the growing number of components,

locating and retrieving the appropriate soft-

ware components in order to meet the sys-

tem requirements becomes a complex task

(Waguespack & Schiano, 2004). Approaches

such as attribute value, hypertext, facet-

based, semantic-based, information entropy,

and keyword search strategies have been

devised to address this problem. In spite of

research emphasizing storage, retrieval, and

reuse, the ability to store and retrieve com-

ponents is still somewhat inadequate.

As the number of available software compo-

nents grows, the design science concept of

“satisficing” rather than optimizing may be

more appropriate. The selection would be

based on whether the component in ques-

tion satisfies all the carefully specified design

criteria. The time for the search would be

therefore dependent on the standards for

acceptability and little on the total number of

components available for search whereas

optimization techniques are also dependent

on the total size of the universe being

searched. We therefore we recommend:

Create effective search algorithms for com-

ponents by specifying standards of accepta-

bility and “satisficing.”

Component Assembly

Component assembly consists of integrating

components to build an application system.

This entails the ability to demarcate the re-

quirements into smaller subsets and to con-

firm the overall selection of the component

set.

Thorough integration testing should be con-

ducted and metrics should be developed to

measure the effectiveness of the assembled

components. Because of the iterative nature

of the system development process, there is

a constant cycle of select/assemble/test.

Through this iterative process, subassem-

blies are constructed from components in a

hierarchical fashion. Leveraging stable sub-

assemblies allows a designer to further use

the power of hierarchical structures when

building component-based systems. It al-

lows the designer to potentially reduce the

current problem to a previously solved prob-

lem, then identify what steps must be taken

to reach the new solution. Thus we recom-

mend:

Use stable subassemblies to increase flexibil-

ity in the creation of component-based sys-

tems.

5. CONCLUSION

CBSD echoes the objective of design science

which is to create technology-based solu-

tions for significant business problems. The

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 5

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

CBSD Dual Life Cycle model divides the de-

velopment process into (1) component de-

velopment, often conducted by commercial

component manufacturers and (2) system

development, typically conducted by organi-

zations that will use resulting software sys-

tems. Our design science-based recommen-

dations for enhancing quality for both cate-

gories of development are summarized in

Table 1 and Table 2 (see Appendix).

Overall, CBSD has the potential to signifi-

cantly alter how information systems are

developed. Design science can greatly in-

form these processes as has been shown by

the creation of the proposed CBSD Dual Life

Cycle model and associated recommenda-

tions.

6. REFERENCES

Capretz, Luiz Fernando (2005) “A New Com-

ponent-Based Software Life Cycle Mod-

el.” Journal of Computer Science (1:1),

pp. 76-82.

Crnkovic, Ivica, Stig Larsson and Michel

Chaudron (2005) “Component-Based

Development Process and Component Li-

fecycle.” Journal of Computing and In-

formation Technology (13:4), pp. 321-

327.

Dahanayake, Ajantha, Henk Sol and ZoranS-

tojanovic (2003) “Methodology Evalua-

tion Framework for Component-based

System Development.” Journal of Data-

base Management (14:1), pp. 1-26.

Elfatatry, Ahmed (2007) “Dealing With

Change: Components Versus Services.”

Communications of the ACM (50:8), pp.

35-39.

Fahmi, Syed Ahsan and Ho-Jin Choi (2008)

“Life Cycles for Component-Based Soft-

ware Development.” Proceedings of IEEE

8th International Conference on Comput-

er and Information Technology Work-

shops, July 8-11, pp. 637-642.

Fujii, Keita and Tatsuya Suda (2006) “Se-

mantics-Based Dynamic Web Service

Composition.” International Journal of

Cooperative Information Systems

(15:3), pp. 293-324.

Hevner, Alan R., Salvatore T. March and Jin-

soo Park (2004) “Design science in In-

formation Systems Research.” MIS

Quarterly (28:1), pp 75-105.

Hopkins, Jon (2000) “Component Primer.”

Communication of the ACM (43:10), pp.

27-30.

Jain, Hemant, Padmal Vitharana, P. and Fa-

temah “Mariam” Zahedi (2003) “An As-

sessment model for Requirements Iden-

tification in Component-based Software

Development.” Database for Advances in

Information Systems (34:4), pp. 48-63.

Sommerville, Ian (2004) Software Engineer-

ing, 7th Edition. Addison Wesley.

Simon, H.A. (1996) The Sciences of the Ar-

tificial. The MIT Press.

Umanath, Narayan S. and Iris Vessey (1994)

“Multiattribute Data Presentation and

Human Judgment: A Cognitive Fit Pers-

pective.” Decision Sciences (25:5-6), pp.

795-824.

Vitharana, Padmal and Hemant Jain (2000)

“Research Issues in Testing Business

Components.” Information & Manage-

ment (37:6), pp. 297-309.

Vitharana, Padmal, Fatemah “Mariam” Zahe-

di and Hemant Jain (2003) “Design, Re-

trieval, and Assembly in Component-

based Software Development.” Commu-

nications of the ACM (46:11), pp. 97-

102.

Waguespack, Leslie and William T. Schiano

“Component-based IS architecture.” In-

formation Systems Management (21:3),

pp. 53-60.

Yang, Jian (2003) “Web Service Componen-

tization.” Communications of the ACM

(46:10), pp. 35-40.

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 6

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

Appendix

Figure 1. CBSD Dual Life Cycle Model

Component Selection,

Cataloging and

Retrieval

Component

Assembly

System Development

Systems and

Subsystems

Architecture

Component Development

Design of the

Component

Architecture

Component

Fabrication
Domain

Selection and

Analysis

 Requirements Analysis

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 7

Sharp and Ryan Thu, Nov 5, 2:30 - 2:55, Crystal 4

Table 1. Design Science Based Recommendations for Enhancing Quality in
Component Development

Phase of Component
Development

Design Science
Element

Recommendation

Domain Selection and

Analysis

The Search for

Alternatives

Employ optimization techniques to determine

the command variables and constraints to

allow for creation of generic, domain-specific

components with maximum utility for func-

tional domains.

Design of Component

Architecture
Theory of Struc-

ture and Design

Organization

Design interfaces without extraneous con-

straints else the components will be re-

stricted in terms of the environments in

which they may be placed and the markets

to which they may be available.

Component Fabrication

The Formal Logic

of Design

Use simulations techniques for evaluating a

component’s architecture in a variety of ex-

ternal environments to identify potential

quality and performance problems.

Table 2. Design Science Based Recommendations for Enhancing Quality in System
Development

Phase of System De-

velopment

Design Science

Element

Recommendation

Requirements Analysis Representation

of Design Prob-

lems

Use a variety of external problem representa-

tions to enhance the quality and complete-

ness of requirements specified.

Systems and Subsystems

Architecture

Theory of Struc-

ture and Design

Organizations

Select robust component models that have

their central focus on components.

Component Cataloging

and Retrieval

The Search for

Alternatives

Create effective search algorithms for compo-

nents by specifying standards of acceptability

and “satisficing.”

Component Assembly

Theory of Struc-

ture and Design

Organizations

Use stable subassemblies to increase

flexibility in the creation of compo-

nent-based systems.

Proc CONISAR 2009, v2 (Washington DC): §1545 (refereed) c© 2009 EDSIG, page 8

