
Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

Object Reuse and Integration in

Object-Relational Databases Development

Ming Wang
ming.wang@calstatela.edu

Department of Information systems
California State University

Los Angeles, CA 90032, USA

Abstract

One of the most important features of the Object-relational database (ORDB) is object reuse

and integration. This feature provides standard data structure, data portability, and

maintainability for ORDB database applications development. Despite the undeniable object

reuse and integration features in ORDBs, very little research has been published to address its

importance in database application development in the real world. This paper presents a study

to investigate object reuse and integration in the design and implementation of ORDBs.

Keywords: Relational database, Object-relational database, object-oriented technology

1. INTRODUCTION

With rapidly increasing volumes of digital

information and a broadening range of

applications development, applications have

become more complex and software

development costs have increased. This

tremendous challenge has led to the idea of

information reuse and integration in

software development. The Object-relational

database management system (ORDBMS)

provides a way to solve the problem.

ORDBMS enhances object-oriented

technology into the relational database

management system (RDBMS) and extends

traditional RDBMS to ORDBMS. As an

evolutionary technology, ORDBMS allows

users to take advantages of reuse features

in object-oriented technology, to map

objects into relations and to maintain a

consistent data structure in the existing

RDBMS. If multiple database applications

use the same set of database objects in

ORDBMS, a de facto standard for the

database objects is created, and these

objects can be extended, reused and

integrated in the ORDB.

In response to the evolutional change of

ORDBMSs, SQL:1999 started supporting

object-relational data modeling features in

database management standardization and

SQL:2003 continues this evolution.

Currently, all the major database vendors

have converted their relational databases to

object-relational databases to reflect the

new SQL standards (Hoffer et al., 2009).

Although the ORDB technology is already

available for use in all the major database

vendors’ products, its industrial adoption

rate is not very high. One of the major

criticisms of ORDBMS is that its complexity

results in the loss of the essential simplicity

and purity of the relational database model.

It is challenging to for industrial application

developers who have traditional relational

database background to adopt the emergent

ORDB technology.

This paper presents a case study to

investigate object reuse and integration in

the design and implementation of ORDBMSs.

Firstly, the Unified Modeling Language (UML)

class diagram is used to model the ORDB

design. Secondly, Oracle SQL DCL and DML

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 1

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

scripts are used to illustrate the ORDB

implementation. Finally the paper concludes

with a discussion of the advantages and

implications of ORDB development. The

purpose of the paper is to present object

reuse and integration features in ORDBMS

for industrial database application

developers.

2. CASE STUDY: ORDB DESIGN

The Pacific Bike Traders Co. assembles and

sells bikes to customers. The company

currently accepts customer orders online and

wants to be able to track orders and bike

inventory. The new ORDB system will be

created to handle the current transaction

volume generated by employees processing

incoming sales orders. The new ORDB

system must be able to update the available

quantity on hand to reflect that the bike has

been sold and produce customer sales

orders, invoices and reports showing

inventory levels. Figure 1 illustrates the new

object-relational database design with UML

2.0 for the The Pacific Bike Traders

Company.

Figure 1 Pacific Trader’s ORDB Design Using UML Class Diagram (Wang, 2006)

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 2

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

The following business rules are defined for

the Pacific Bike ORDB scenario.

One customer may originate many orders.

One order must be originated from one

customer.

One order must contain one or more bikes.

One bike may or may not be in many orders.

One employee may or may not place many

orders. One order must be placed by one

employee.

One bike is composed of a front wheel, rear

wheel, crank, and stem.

One employee must be either full-time or

part-time.

Based on the Pacific Bike Trader scenario

and its business rules, a UML class diagram

in Figure 1 is developed to model the Pacific

Bike Trader ORDB design. Each class is

displayed as a rectangle that includes three

sections: the top section gives the class

name; the middle section displays the

attributes of the class; and the last section

displays methods. Associations between

classes are indicated with multiplicity

(“min..max.”) notation.

Aggregation is marked with an empty

diamond, whereas a sales order is made of

line items (bikes). The dotted line links to

the associative class generated from the

many-to-many relationship.

Composition models a closer whole-part

relationship than aggregation. Composition

is marked with a solid diamond. Aggregation

models a whole-part relationship.

Composition shows that inner class bike

parts can be integrated in the outer class

Bike.

Inheritance is indicated with an empty

triangle. Inheritance means that attributes in

the Employee super class are shared and

reused by the Full-time and Part-time

subclasses.

The object types of Name, address, and

phone are reused in both customer and

employee classes as well as the Full-time

and Part-time subclasses.

3. CASE STUDY: ORDB DEVELOPMENT

 Based on the Pacific Trader’s UML class

diagram in Figure 1, the six information

reuse and integration features of ORDBMSs

are identified and implemented with Oracle

SQL Scripts. The implementation shows how

the UML class diagram maps and supports

Oracle ORDBMS. For the sake of simplicity, it

is assumed that referential integrity

constraints will be added later. This section

will focus on discussion of the six

information reuse and integration features:

1) Object type reuse for data

standardization; 2) Encapsulated user-

defined methods for standard data access;

3) Object type inheritance for data reuse; 4)

Integration of nested table data; 5) Object

views for reuse of relational data 6)

Integration ORDB applications with object

type interface.

3.1 Object type reuse

Object type is user-defined data type (UDF)

or abstract data type (ADT) that is used in

ORDB creation. Commonly used objects such

as address and name should be defined with

object types. Once object types are defined

they are stored in the database permanently

and can be used repetitively to create any

new columns and tables in the database.

Reuse of object types can standardize data

stored in ORDBs. The following SQL

statements define Address_ type and

Name_type as object types and

varray_phone_type as a VArray type for

reuse in the ORDB.

CREATE TYPE address_type AS OBJECT

(street VARCHAR2(30),

 city VARCHAR2(25),

 state CHAR(2),

 zip NUMBER(10));

CREATE TYPE name_type AS OBJECT

 (f_name VARCHAR2(25),

 l_name VARCHAR2(25),

 initial CHAR(2));

CREATE TYPE varray_phone_type AS

VARRAY(3) OF VARCHAR2(14);

The above Address_type, Name_type and

varray_phone_type can be used to define

columns in the customer table below.

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 3

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

CREATE TABLE Customer(

Cust_ID NUMBER(5),

CustName name_type,

CustAddress address_type,

CustPhones varray_phone_type);

Object tables can also be entirely defined by

an object type, instead of using relational

tables consisting of one or more object

columns. The employee object table can be

created by the employee_type in the

following statements.

CREATE TYPE employee_type AS OBJECT

 (emp_id NUMBER(10),

 SSN NUMBER(9),

 name name_type,

 dob DATE,

 address address_type,

 phones varray_phone_type);

CREATE TABLE Employee of employee_type;

3.2 Defined methods for reuse

Once attributes of an object type are

defined, the user can define methods for

each object type. Methods describe the

behavior of attributes. For each object type,

the user can define the methods that

operate on attributes in the object type and

encapsulate the methods with the attributes

in the object_type. The following statements

add a method to the Name_type object type

interface defined in Section 3.1. The first

statement adds the method header to the

object type interface. The second statement

adds the method body to the object type

body:

ALTER TYPE name_ty ADD MEMBER

FUNCTION full_name RETURN VARCHAR2;

CREATE TYPE BODY name_ty AS

MEMBER FUNCTION full_name

RETURN VARCHAR2 IS

BEGIN

 RETURN(l_name || ’ ‘ || f_name);

 END full_name;

END;

The following SELECT statement calls the

method defined in the Customer table.

SELECT c.custName.full_name (),

c.custAddress.City FROM customer c;

C.CUSTNAME.FULL_NAME() CUSTADDRESS.CITY

Tommy Ford Des Moines

The name_ty object type is associated with

the full_name () method, which

concatenates the first and last names

together. If this functionality is embedded in

the server, it allows the functionality to be

shared and reused by all the applications.

The specified methods are privately

encapsulated in the object body. Reusability

of methods comes from the ability to store

persistent standard data type and

functionality on the server, rather than

having them coded in each application.

3.3 Object type inheritance for reuse

ORDBMSs allow users to define hierarchies

of data types. With this feature, users can

build subtypes in hierarchies of database

types. If users create standard data types to

use for all employees, then all of the

employee information in your database will

be stored with the same internal format.

Users might want to define a full time

employee object type and have that type

inherit existing attributes from employee_ty.

The full_time_ty type can extend

employee_ty with attributes to store the full

time employee’s salary. The part_time_ty

type can extend employee_ty with attributes

to store the part-time employee’s hourly

rates and wages. Inheritance allows for the

reuse of the employee_ty object data type.

The details are illustrated in the following

class diagram in Figure 2.

Figure 2 Object type inheritance

Object type inheritance was one of the new

features of Oracle 9i/10g. For employee_ty

to be inherited, it must be defined using the

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 4

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

NOT FINAL clause because the default is

FINAL, meaning that object type cannot be

inherited. Oracle 9i can also mark an object

type as NOT INSTANTIABLE; this prevents

objects of that type from being derived.

Users can mark an object type as NOT

INSTANTIABLE when they use the type only

as part of another type or as a super_type

with NOT FINAL. The following example

marks address type as NOT INSTANTIABLE:

CREATE TYPE employee_ty AS OBJECT (

 emp_id NUMBER,

 SSN NUMBER,

 name name_type,

 dob DATE,

 phone varray_phone_type,

 address address_type

) NOT FINAL NOT INSTANTIABLE;

To define a new subtype full_time_ty

inheriting attributes and methods from

existing types, users need to use the UNDER

clause. Users can then use full_time_ty to

define column objects or table objects. For

example, the following statement creates an

object table named FullTimeEmp.

CREATE TYPE full_time_ty UNDER

employee_ty (Salary NUMBER(8,2));

CREATE TABLE FullTimeEmp of full_time_ty;

The preceding statement creates

full_time_typ as a subtype of employee_typ.

As a subtype of employee_ty, full_time_ty

inherits all the attributes declared in

employee_ty and any methods declared in

employee_ty. The statement that defines

full_time_ty specializes employee_ty by

adding a new attribute “salary”. New

attributes declared in a subtype must have

names that are different from the names of

any attributes or methods declared in any of

its supertypes, higher up in its type

hierarchy. The following example inserts row

into the FullTimeEmp table. Notice that the

additional salary attribute is supplied.

A supertype can have multiple child

subtypes called siblings, and these can also

have subtypes. The following statement

creates another subtype part_time_ty under

Employee_ty.

CREATE OR REPLACE TYPE part_time_ty

UNDER employee_ty (rate Number(7,2),

hours Number(3))NOT FINAL;

CREATE TABLE PartTimeEmp of part_time_ty;

A subtype can be defined under another

subtype. Again, the new subtype inherits all

the attributes and methods that its parent

type has, both declared and inherited. For

example, the following statement defines a

new subtype student_part_time _ty under

part_time_ty. The new subtype inherits all

the attributes and methods of

student_part_time _ty and adds two

attributes.

CREATE TYPE student_part_time_ty UNDER

part_time_ty(school VARCHAR2(20),

 year VARCHAR2(10));

3.4 Integration of data in nested tables

A nested table is a table that can be stored

within another table. With a nested table, a

collection of multiple columns from one table

can be placed into a single column in

another table. Nested tables allow users to

embed multi-valued attributes into a table,

thus forming an object. Figure 3 illustrates

the integration of three nested tables to the

outer table Bike.

Figure 3 Integration of nested tables

CREATE TYPE wheel_type AS OBJECT(

 SKU VARCHAR2(15),

 rim VARCHAR2(30),

 spoke VARCHAR2(30),

 tire VARCHAR2(30));

 CREATE TYPE crank_type AS OBJECT

 (SKU VARCHAR2(15),

 crank_size VARCHAR2(15),

 crank_weight VARCHAR2(15));

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 5

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

 CREATE TYPE stem_type AS OBJECT

(SKU VARCHAR2(15),

stem_size VARCHAR2(15),

stem_weight VARCHAR2(15));

 The following scripts creates the nested

table types: wheel_type, crank_type and

stem_type.

CREATE TYPE nested_table_wheel_type AS

TABLE OF wheel_type;

CREATE TYPE nested_table_crank_type AS

TABLE OF crank_type;

CREATE TYPE nested_table_stem_type AS

TABLE OF stem_type;

 The following example creates the table

named Bike with that contains four nested

tables:

CREATE TABLE bike

(serial_no INTEGER PRIMARY KEY,

 model_type VARCHAR2(20),

 front_wheel nested_table_wheel_type,

 rear_wheel nested_table_wheel_type,

 crank nested_table_crank_type,

 stem nested_table_stem_type

)

 NESTED TABLE front_wheel

 STORE AS front_wheel,

NESTED TABLE rear_wheel

 STORE AS rear_wheel,

 NESTED TABLE crank

 STORE AS nested_crank,

 NESTED TABLE stem

 STORE AS nested_stem;

The following statement shows the output of

the nested tables created in the table Bike.

DESC Bike;

Name Type

SERIAL_NO NUMBER(38)

MODEL_TYPE VARCHAR2(20)

FRONT_WHEE

L

NESTED_TABLE_WHEEL_TYP

E

REAR_WHEEL
NESTED_TABLE_WHEEL_TYP

E

CRANK
NESTED_TABLE_CRANK_TYP

E

STEM NESTED_TABLE_STEM_TYPE

3.5 Object views for reuse of relations

Object view allows users to develop object

structures on the top of the existing

relational tables. Object view creates a layer

on the relational database so that the

database can be viewed in terms of objects.

The object view is a bridge that can be used

to create object-oriented applications

without modifying existing relational

database schemas (Loney, K. & Koch,

2002). This enables you to develop OO

features with existing relational data. It is a

bridge between the relational database and

OO programming. The object view is a

bridge that can be used to create object-

oriented applications without modifying

existing relational database schemas. By

calling object views, relational data can be

retrieved, updated, inserted, and deleted as

if such data were stored as objects. Using

object views to group logically-related data

can lead to better database performance.

The following example shows how the object

view reuses existing relational data and

retrieves Analysts as object data from the

relational SalesOrder table.

Relational table: SalesOrder

ORD_ID ORD_DATE CUST_ID EMP_ID

100 05-SEP-05 1 1000

101 05-OCT-05 1 1001

 The following statements show how to

create an object view on the SalesOrder

relational table:

CREATE TYPE SalesOrder_type AS OBJECT(

sales_ord_id NUMBER(10),

ord_date DATE,

cust_id NUMBER(10),

emp_id NUMBER(10));

CREATE VIEW customer_order_view

OF SalesOrder_type

WITH OBJECT IDENTIFIER (sales_ord_id)

AS

SELECT o.ord_id, o.ord_date, o.cust_id

FROM salesOrder o

WHERE o.cust_id = 1;

 The following SQL statement generates the

output of the object view:

 SELECT * FROM customer_order_view;

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 6

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

SALES_ORD_ID ORD_DATE CUST_ID

100 05-SEP-05 1

101 01-SEP-05 1

An object integration solution provides an

integrated view of object data, regardless of

where that data is actually located in the

systems.

3.6 Integration with object interface

The structure of object type includes an

interface and a body. The public interface

declares the data structure and the method

header shows how to access the data. This

public interface serves as an interface to

applications. The private implementation

fully defines the specified methods.

Public Interface

Specification:

 Attribute declarations

 Method specifications

Private Implementation

Body:

 Method implementations

The following statement displays the public

interface of the object type name_type. The

output of the name_type public interface

shows attributes and method headers as

follows:

DESC name_ty;

Name Type

F_NAME VARCHAR2(25)

L_NAME VARCHAR2(25)

INITIALS CHAR(2)

METHOD

 MEMBER FUNCTION FULL_NAME RETURNS

VARCHAR2

Although the user-defined methods are

defined with object data within the object

type, they can be shared and reused in

multiple database application programs. This

can result in improved operational efficiency

for the IT department, as well, by improving

communication and cooperation between

applications.

4. CONCLUSION

The main contribution of this paper is to

identify, present and implement object reuse

and integration features of ORDBMSs in a

real-world scenario. The presented case will

promote awareness and recognition of object

reuse and integration features of ORDBMS.

The beauty of ORDBMSs is reusability and

sharing. Reusability mainly comes from

storing data and methods together in object

types and performing their functionality on

the ORDBMS server, rather than have them

coded separately in each application.

Sharing comes from using user-defined

standard data types to make the database

structure more standardized (Breg &

Connolly. 2010)

The significance of the paper is to provide

readers with guidelines on how to design

and implement ORDBMSs with object reuse

and integration features. The use of

ORDBMS to develop applications can enforce

the reuse of varying user-defined object

types, provide programmers’ an integrated

view of data and allow multiple database

applications to operate cooperatively.

Ultimately, this can result in improved

operational efficiency for the IT department,

increase programmers’ productivity, lower

development effort, decrease maintenance

cost, reduce the defect rate, and raise the

applications’ reliability. With object reuse

and integration, and a standard adherence

access path, database application developers

can create a de facto standard for database

objects and multiple database applications to

make database application development

more productive and efficient.

The solution to the presented case can be

generalized in either the projects of

advanced database courses or industrial

database application development. Major

relational database vendors have upgraded

their products to Object-relational database

management systems (ORDBMSs) and ready

to be used by industrial practitioners.

Practically, ORDBMSs allows the users to

take advantages of OODBMS and to

maintain a consistent data structure in an

existing relational database. Theoretically,

as Stonebraker (1996) predicted in his four-

quadrant view of the database world more

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 7

Wang Sat, Nov 7, 4:30 - 4:55, Crystal 4

than ten years ago, ORDBMS may be the

most appropriate DBMS that processes

complex data and complex queries.

5. REFERENCES

Begg, C and Connolly, T. (2010) Database

systems: A Practical Approach to Design,

Implementation, and Management, 5th Ed.

Addison Wesley.

Hoffer, J. A., Prescott, M. B. & McFadden F. R.

(2009) Modern Database Management,

9th Ed. Prentice Hall.

Loney, K. & Koch, G. Oracle 9i: The Complete

Reference, Oracle Press/McGraw-

Hill/Osborne, 2002.

Stonebraker M. and Moore, D. 1996.

Object-relational DBMSs: the Next Great

Wave. San Francisco, CA: Morgan

Kaufmann Publishers, Inc.

Wang, M. (2006) “Teaching ORDB with UML

Class Diagram in an Advanced Database

Course”, Journal of Information Systems

Education. 17(1); pp.73-83.

Proc CONISAR 2009, v2 (Washington DC): §3743 (refereed) c© 2009 EDSIG, page 8

