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Abstract  

 
Security continues to be a critical issue in the safe operation of electronic voting machines. Risk 
assessment is the process of determining if a particular voting system is at risk and what steps can 
be taken to mitigate the risk. We propose an iterative risk assessment process using threat trees. 
This process involves using a voting system risk taxonomy to categorize a threat, a schema to ex-
press logical hypothesis about a threat, generating a threat tree through functional decomposition, 

expressing threat instance semantics as nodal properties with metrics, validating the threat in-
stance through independent representations, and finally pruning the tree for enhanced usability 
and understandability. This process provides guidance to an analyst in using threat trees to con-
duct risk assessment of electronic voting systems. Because this process is based on abstract and 
extendable structures, it facilitates the comparison and validation of independent risk evaluations. 
Prospective voting system risk assessment metrics are provided. 
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1.  INTRODUCTION 

In their 2004 seminal work Kohono, Stubble-
field, Rubin and Wallach (2004) et al. closed 

the book on the question of whether security 
mechanisms were critical to safe operation of 

electronic voting machines. Their analysis 
showed that there were many critical vulnera-
bilities in a widely used voting system. That 
work also precipitated a firestorm of vulnera-
bility analyses that further confirmed that ex-

isting electronic voting system security me-
chanisms were insufficient to ensure election 
integrity.  

This paper represents a first step in providing 
guidance to analysts for systematically deter-
mining if particular voting systems are at risk 

and to identify steps that can mitigate that 
risk. There is significant work documented in 
the literature regarding fault analysis (Clifton, 

1999) and threat tree analysis (Schneier, 
1999; Uppal, 2007; Evans, Heinbuch, Kyle, & 

Porokowski, 2004), but our work details a spe-
cific approach for specifying voting system 
threats that can facilitate risk analysis. 

As information systems go, voting applications 
are relatively simple. Their core function is to 

capture the will of the eligible voters. There are 
no complex algorithms; addition is simple 
arithmetic and the numbers are relatively 
small, as computer computations go.  

On the other hand, voting systems have been 
under attack for centuries, with malicious par-
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ties trying to influence, or control electoral 
outcomes. An important challenge to conduct-
ing effective elections is to protect against 
these manipulative threats. 

In this paper, we introduce a process for iden-
tifying, categorizing, specifying, validating, and 
pruning voting system threats. At the core of 
this process is the threat tree. 

A threat tree is a data structure for 
representing the steps that an attacker would 
take to exploit a vulnerability in order to ac-

complish malicious intent. While there has re-
cently been much discussion of voting system 
threats and numerous voting system security 

vulnerability assessments, (Black Box Voting, 
2005); Yasinsac, Wagner, Bishop, Baker, Me-
deiros, Tyson, Shamos, & Burmester, 2007; 

Gardner, Yasinsac, Bishop, Kohno, Hartley, 
Kerski, Gainey, Walega, Hollander, & Gerke, 
2007; California Secretary of State, 2007; Eps-
tein, 2007; & Alaska, 2008) we are unaware of 
any systematic or formal effort  to catalog, 
specify, and validate voting system threat 
trees. 

Threat trees allow the analyst to (1) Descrip-
tively name nodes as threat goals and steps 
(2) Graphically express logical relationships 
between nodes and (3) Define attack goal and 

step semantic properties as nodal attributes. 
Collectively these three characteristics allow 
the abstraction and precision that are neces-

sary to reason comparatively about fundamen-
tally different threats. 

The remainder of this paper provides a detailed 
description and discussion of the risk assess-
ment process followed by a brief summary. 

2.  VOTING SYSTEM RISK ASSESSMENT 

PROCESS 

The purpose of the voting system risk assess-
ment process is to provide guidance to an ana-
lyst in using threat trees to conduct risk analy-
sis of voting systems. The power of this 

process derives from the use abstraction to 
produce artifacts that categorize and illuminate 

important voting system security issues while 
facilitating a balance between detail and com-
plexity. These artifacts, because they are 
based on generalizations that are flexible and 
extensible yet explicit in their construction, 
enable an analyst to compare and validate in-
dependent evaluations of risk. In other words, 

these generalizations provide a common struc-

ture upon which to express individual percep-
tions, metrics, and analyses. 

The threat tree generation process consists of 
six iterative steps (see Figure 1). The first step 

is to identify the threat as a high level attack 
goal. In the second step, the analyst rigorously 
defines the high level goal by assigning rele-
vant parameters from the voting system attack 
taxonomy, creating new taxonomy parameters 
where necessary. This level of detail provides 
the foundation for the refinement step that 

follows. 

  

Figure 1. Risk Assessment Process. 

In the fundamental step of the process, threat 
tree generation, the analyst conducts function-
al decomposition, recursively expanding each 

node into its requisite tasks. The recursive 

functional decomposition continues until the 
threat is refined sufficiently to conduct the ne-
cessary analysis. The result of this step is a 
threat tree.  

With the threat tree defined, each node is as-
signed attributes that capture properties that 

are relevant to the analyst. These attributes 
may be metrics, data points that allow analysts 
to compute metrics, or simply observations 
that provide the analyst a point of reference 
for their analytical processes. They differ from 
the taxonomy parameters in that while tax-
onomy parameters are generic threat proper-

ties that allow threat categorization, these 

attributes are specific to the analyst's risk as-
sessment goals. 

In the fifth step, the analyst iterates the first 
four steps to validate and enhance the threat 
tree. Each of the first four steps increases spe-
cificity, adding detail to the threat processes 

and properties.  

In the final step, the analyst prunes the threat 
tree through abstraction leaving a threat tree 
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that is well understood and whose threat in-
stances can be comparatively analyzed.  

The remainder of this section contains a de-
tailed description of each step in using the vot-

ing system risk assessment process. 

2.1.  IDENTIFY THE THREAT 

The first step is to identify the high level 
threat. The analyst may derive high level 
threats through literature searches, brains-
torming, personal experience, newspaper ar-
ticles, etc. To be most useful, the identified 

threat's impact must be tangible and measura-
ble. For example, the threat: "Remove a ballot 

from a ballot box" is concrete while "Change an 
election result" is inherently ambiguous. 

2.2.  APPLY THE TAXONOMY 

The second step of the process requires the 

analyst to define the high-level threat in ab-
stract yet precise terms. In order for these de-
finitions to be useful in making independent 
comparisons and analysis, threats must be ca-
tegorized according to a common structure. 
We offer a voting system threat taxonomy for 
this purpose. Our extensible voting system risk 

taxonomy can capture important properties of 
voting system vulnerability and those that may 
seek to create corresponding exploits. This 

taxonomy employs a hierarchical structure 
based on attribute n-tuples , where the lower 
levels comprehensively describe the properties 
of the parent. 

2.2.1.  TAXONOMY CLASSIFICATION 

Taxonomy fundamentally classifies the target 
group. That is, it provides commonality among 
group members in a way that can facilitate 
understanding and application. For example, 
our proposed taxonomy provides a mechanism 

for analysts to more precisely capture the 
threats that they are expected to analyze. This 
abstraction may be realized by searching, for 
example, against attribute wild cards, i.e. all 
attacks that accomplish wholesale impact, or 

all attacks that involve rogue poll workers. 

These abstractions may allow elections officials 

to devise procedures that can systematically 
mitigate the defined threats. For example, pre-
venting voters from accessing removable me-
dia eliminates the class of attacks that pairs 
the following:  

<Role(Voter), AttackVector(RemovableMedia)>  

Similarly, if the voting system does not include 
commercial off the shelf software, then all at-
tacks associated with the attribute <Soft-
ware(COTS)> are eliminated. 

Finally, the taxonomy can allow the analyst to 
identify and syntactically prohibit conflicting 
attributes. For example, it may not be possible 
to conduct a DoS attack after the voting period 
ends. We term these “constraints” in the tax-
onomy and represent them as predicate pairs, 
e.g.: 

<Objective(DoS), Phase(AfterVotingPeriod)> 

One challenge of modeling any process or is-

sue is to decide what level of detail is opti-
mum. Excessive detail can unnecessarily com-
plicate the model, while too little detail can 
limit its usefulness. Our voting system threat 

taxonomy’s present form is easily extensible. 
As threat attributes emerge, they may be add-
ed to the tree depth or items of less interest 
may be removed. Moreover, the model can be 
automated to prompt manual entry guided by 
the taxonomy’s syntax.  

The content of the threat taxonomy is based 

on an extensive review of the extant literature 
and the experience and expertise of the au-
thors. The taxonomy was constructed in a top-
down process where each logical structure 

block was decomposed into non-overlapping 
sub-block structures. 

We provide our voting system threat taxonomy 

as Appendix A. 

2.2.2.  SCHEMA 

The voting system risk taxonomy enables the 
analyst to consistently classify threats through 
a common syntax. However, the usefulness of 
the resulting artifacts will be limited if 1) the 

analyst does not have a means of consistently 
expressing the logical hypothesis engendered 
by the definition of an attack and 2) a consis-
tent means of expressing terms contained in 
those hypothesis. A schema serves both needs. 

We generate voting system threat tree defini-
tions and schema by creating logical hypothe-

sis regarding prospective voting system at-
tacks and we capture that hypothesis as n-
tuple expressions. For example, we posit, as 
definition, that the only two overarching voting 
system attack goals are to either alter or en-
sure a contest result or to negatively impact 
voter confidence. We capture that hypothesis 

as follows: 
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VSAttack = <AlterContestDecision, Un-
dermineVoterConfidence> 

We similarly posit that there are only four ways 
that an attacker can alter a contest decision, 

given as: 

AlterContestDecision = <AddVotes, Dele-
teVotes, FlipVotes, AlterCount> 

Further, votes are either physical or electronic, 
so: 

DeleteVotes= <DeleteAcceptedBallotsPhys-
ical, DeleteAcceptedBallotsElectronic> 

Finally, we propose the following hypothesis 

regarding any attacker's ability to delete an 
accepted physical ballot, stated as a schema: 

schema: DeleteAcceptedBallotsPhysi-
cal.[Phase].[Control] = <GainPrivateAc-
cessToABPs. 

RemoveABPsFromControlledCustody, 

MoveABPsToPrivateSpace> 

This schema stands as a template or skeleton 
for any voting system attack that involves de-
leting physical ballots.  

The definitions and schema above reveal the 
pseudo-formal language approach that we 

adopt. Our conventions include: 

• Use short phrases coupled as long 
words, with the first letter of each word 
in caps 

• Only abbreviate well known terms or 
phrases 

• Establish a data dictionary of node 

names 

We provide an extended set of definitions and 
schema as Appendix B. 

2.3.  GENERATE THREAT TREE 

Step three involves the recursive functional 
decomposition of a threat into a collection of 

goals and steps necessary to carry out a 
threat. The recursive functional decomposition 
continues until the threat is refined sufficiently 
to conduct the necessary analysis. The result 
of this step is a threat tree. 

2.3.1.  THREAT TREES 

For our purposes, a threat defines the process 

that one or more attackers might take to ac-
complish a malicious act in an election. The 
"tree" is a powerful abstraction that graphically 

captures relationships among nodes that are 
hierarchically connected by directional edges, 
while allowing analysts to express individual 
node properties as nodal attributes. The tree 

structure allows a systematic approach to 
threat analysis, including facilitating abstrac-
tion and decomposition and allows analysts to 
categorize goals and steps so they can focus 
on those that are most critical. 

For threat trees to be most useful, node names 
must capture the node's core function, whether 

the node is a goal or a step. Short, succinct 
names allow the analyst to recognize the col-
lective meaning of the tree based on node 

type, name, and connectivity. 

2.3.2.  THREAT TREE COMPONENTS 

In order to leverage tree structures to 

represent threat processes, we define voting 
system threat trees so that their graphical 
properties capture important process relation-
ship properties. We accomplish this by estab-
lishing the three node types of AND, OR, and 
TERMINAL . Subordination reflects specification 
through functional decomposition, so nodes 

higher in the tree are abstractions of subordi-
nate nodes. All nodes that are immediately 
subordinate to an AND node must be carried 
out in order to meet higher level goals, while 

OR node subordinates reflect alternate means 
to accomplish an intended function. TERMINAL 
nodes have no subordinates, thus reflect the 

primitive operations (i.e. steps) that accom-
plish the modeled threat, while AND and OR 
nodes reflect intermediate attack goals. Figure 
2 illustrates a generic threat tree composed of 
AND [A, D], OR [B, I], and TERMINAL [C, E, F, 
G, H, J, K] nodes. 

 

Figure 2. Generic Voting System Threat Tree. 

A tree represents many threat instances, or 
attacks, as a combination of TERMINAL nodes 

that satisfy the logical requirements of the 
tree. For example, in order to realize threat A, 
an attacker would have to carry out goals B, C 
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and D. Accomplishing E, F, or G would accom-
plish B, while H and J or K would be needed to 
accomplish D. Thus, <E, C, H, K> is one attack 
represented in Figure 1, as is <G, C, H, K>. 

There are four other TERMINAL node (step) 
combinations (threat instances) that realize 
threat A. 

We can identify several properties of the threat 
instances captured in this tree without knowing 
any of the nodes' semantic properties. We 
know for example that:  

• The tree depth  is four and its breadth  
is seven 

• This tree represents exactly six distinct 
threat instances 

• Each threat instance requires four 
steps (i.e. four TERMINAL nodes) 

• Nodes C and H are necessarily steps in 
every threat instance 

These are computations that can be applied to 
all tree structures and all other routine tree 
algorithms and provability properties similarly 
apply to these trees. Thus, we know that split-
ting a TERMINAL node into an OR node doubles 

the number of represented distinct attack in-
stances. If the split is an AND node, it adds 
one step to each attack instance that includes 

the replaced node. The practical importance of 
these properties and computations will be evi-
denced in the validation of threat tree metrics. 

We also know that canonical limitations that 

apply to tree structures also apply to our vot-
ing system threat tree, most importantly that 
their size expands rapidly relative to their 
breadth and depth. In our approach, tree 
depth is controlled by the level of detail neces-
sary to describe the goal or activity 

represented in the node. These decisions are 
made by the analyst. For example, if a particu-
lar threat may involve the task of "Picking a 
lock", one analyst may encode that task as a 
TERMINAL node, while another may encode it 

as an AND node with the subordinate 
TERMINAL nodes of "Acquire necessary skill 

and knowledge" AND "Attain Necessary 
Access" AND "Acquire necessary tools" AND 
"Pick the lock". The latter approach adds one 
level of depth to its branch.  

Note that we intentionally avoid temporal no-
tions of step or goal sequencing in the tree's 
graphical representation. If sequencing is im-

portant to a specific analysis, temporal depen-
dencies may be expressed as nodal properties. 

2.4.  ASSIGN NODAL PROPERTIES 

At this stage in the process, the focus shifts 

from the syntax of generic threat categoriza-
tion to the semantics of the primitive opera-
tions (steps) of a threat in the context of a 
specific risk assessment. The analyst must de-
fine a threat instance for an attack (a realiza-
tion of a threat) and assign attributes specific 
to the threat instance. The two attributes re-

quired by our process are likelihood and im-
pact. Likelihood is the probability that an at-
tack will be realized and impact measures the 

consequences of an attack. Both likelihood and 
impact are expressed and measured as quanti-
fiable metrics. 

2.4.1.  THREAT INSTANCE 

The unit of evaluation for voting system threat 
trees is a threat instance, or equivalently, an 
attack, thus an attack is the realization of a 
threat. We choose to focus on primitive opera-
tions (steps) because steps can be associated 
with a metric. For example, an analyst can es-

timate how much or how little of some re-
source is required to carry out a given set of 
steps. A goal represents an attacker's purpose 
or objective. As such, it is more difficult to as-

sign quantifiable metrics to a purpose or objec-
tive than it is to a concrete activity or se-
quence of steps. 

Metrics are important because they allow the 
analyst to compare and validate independent 
evaluations. This allows the analyst to reason 
comparatively about fundamentally different 
threats to voting systems. However, it is not 
always possible or feasible to provide direct 

evaluations of all possible sets of primitive op-
erations or steps in a threat tree because of 
the potential for state space explosion.   

We use goal nodes to abstract multiple sets of 
steps into a single logical unit of evaluation 

and thus mitigate this problem. Abstraction 
can reduce tree depth and make evaluation 

tractable. For example, in Figure 2, if we un-
derstood the properties of node I sufficiently to 
collapse it into a TERMINAL node, thus elimi-
nating nodes J and K, it would reduce the 
number of threat instances by half (from six to 
three). Thus, it may make sense to decompose 
goals in order to reason about them, but where 

that understanding is sufficiently detailed, to 
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evaluate the tree at a higher abstraction level 
to reduce the evaluation state space. 

2.4.2.  THREAT INSTANCE METRICS 

Threat tree nodes may have many, sometimes 

seemingly contradictory, properties that dictate 
or influence a goal or step's occurrence 
LIKELIHOOD or its potential IMPACT. These 
are, of course, the two parameters for assess-
ing voting system risk. Voting systems in the 
United States are highly complex. Consequent-
ly, risk LIKELIHOOD and IMPACT are varied 

and difficult to capture and express. It is not 
uncommon for two highly qualified election 
experts to disagree vehemently regarding the 

voting system risk.  

We highlight some voting system threat node 
attributes that capture a perspective of each of 

these properties in this section. 

2.4.2.1.  LIKELIHOOD METRICS 

We may measure LIKELIHOOD and IMPACT as 
a continuous variable on a 0 to 1 scale. For the 
former, 0 (as the lower LIKELIHOOD extreme) 
would indicate that the event will not (or can-
not) occur, while 1 (at the upper extreme) 

means that the event is certain to occur. For 
the latter, 0 would reflect no impact while a 
catastrophic result would represent the oppo-

site extreme impact. Alternatively, a simple 
three step discrete metric of high, medium, 
and low could also represent LIKELIHOOD 
and/or IMPACT. 

The only absolute in estimating risk likelihood 
is that there are no absolutes. Issues of rela-
tivity, temporality, uncertainty, and other qua-
lifications render even the most intuitively ac-
curate assumptions invalid, or worse yet, 
counterproductive. The best that we can hope 

for is to leverage heuristics to find metrics that 
incorporate best practice experience and offer 
analysts a chance at estimating comparative 
risk. We offer a few such prospective voting 
system risk assessment metrics below. 

Cost. The resource commitment required to 
carry out a voting system attack always 

bounds the prospective attacker's options. 
Money, labor, time, and equipment are canoni-
cal resources that are represented in a cost 
metric.  

Necessary expertise. We may expect that a 
requirement for specialized knowledge or skill 
diminishes the likelihood of an attack occur-

ring. The obvious likelihood limitation is that 

specialized expertise injects is to reduce the 
pool of potential attackers or increases the 
time and resources that an attacker needs to 
carry out the attack. It also likely indicates that 

there is an advanced sophistication, and a re-
sulting elevated complexity, in the prospective 
attack.  

Detectability. Detection can enable preven-
tion of many types of voting system attacks. It 
can also allow officials to punish perpetrators 
after the fact and can allow correction of dam-

age caused by a voting system attack.  

We use the term "detectability" to capture the 
notion of how difficult or likely it is that an at-

tack will be detected. We posit generally that 
attacks, events, and actions that are more like-
ly to be detected are less likely to be at-

tempted and that they are less likely to 
achieve maximum impact than those that are 
more difficult to detect.  

2.4.2.2.  IMPACT METRICS 

Generically, we think of threat IMPACT as the 
magnitude or degree of damage that will, or is 
expected to, occur as a result of a realized 

threat. In practice, IMPACT is context exclusive 
to the extent that the same voting system 
threat may have a catastrophic impact in one 
environment, but be essentially benign in a 

different environment. Assignment of the 
IMPACT metric is a major and important task 
of the analyst and requires significant subject 

matter expertise.  

The two primary overarching goals of voting 
system attacks are either to impact election 
integrity or to influence public's perception 
about the election. Thus, we partition IMPACT 
metrics according to these two aspects and 

address IMPACT as the magnitude of the effect 
on voting system integrity or public perception. 

2.4.2.3.  INTEGRITY IMPACT METRICS 

Voting system integrity attacks are what we 
think of when we discuss election fraud, that 

is, integrity attacks maliciously influence a con-
test result in an election. This encompasses 

canonical election fraud issues, such as ballot 
stuffing.  

Voting system integrity attack impact ranges 
from deleting one legal vote  (or equivalently, 
injecting one illegal vote) with no impact on 
any contest selection, to controlling the se-
lected candidate or issue decision in all con-

tests. Voting system integrity issues are either 
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related to vote counting (process where each 
voter selection is added to the total, one by 
one) or aggregation (where subtotals are com-
bined to reflect the cumulative result). The fol-

lowing metrics are illustrative (as opposed to 
comprehensive) and represent issues that are 
relevant to risk assessment.  

Without knowing a contest result a priori, an 
attack waged during the voting period has the 
best chance to be decisive if it can effect a 
large volume of votes . Such attacks are simi-

lar in many ways to wholesale purchasing tac-
tics and the term "wholesale vote fraud" has 
become part of the election integrity vernacu-

lar. Wholesale attacks optimize effort-to-effect 
ratio, or more mathematically, retail attacks 
are linear in terms of the effort-to-effect ratio, 

while wholesale attacks are geometric (or ex-
ponential) in effort-to-effect ratio. 

Knowing the magnitude of change necessary to 
control an electoral decision can be important 
to an attacker, allowing a small number of 
votes to be decisive. We have recently seen 
two federal elections (Minnesota Senate 2008 

election and New York's 2009 special election 
for their 20th Congressional district) decided 
by only a few hundred votes. Each of these 
contests was vulnerable to post voting period 
attacks where a relatively small malicious 

change could be decisive.  

2.4.2.4.  PUBLIC PERCEPTION IMPACT 

METRICS 

For a malicious party that desires to negatively 
influence election-related public perception, 
the prospective damage ranges from generat-
ing isolated incidents of misunderstanding to 
wrongfully creating widespread belief that one 

or more electoral decisions were influenced by 
error or malice. While election integrity attacks 
against voting systems predominantly involve 
data and processes that are integral to con-
ducting an election, perception issues are un-
iformly driven through mass information dis-

semination media that is separate from the 

voting system. The voting system responsibili-
ty in this process is to be able to provide 
strong, accurate information about election 
activity. Thus, attacks on public perception are 
either voting system independent, or involve 
modifying data reported to public dissemina-
tion media, as reflected in the following illustr-

ative metrics. 

Elections officials uniformly rely on validation 
mechanisms both to ensure election integrity 

and to reassure the public of election accuracy. 
Virtually all validation mechanisms employ 
some type of redundancy, so attackers may 
attack either the primary electoral product or 

the validation data in order to create a nega-
tive perception (Yasinsac & Bishop, 2008). For 
example, ballot accounting procedures meas-
ure the number of ballots issued against the 
counted. A public perception attack may target 
the records of the number of ballots issued so 
that validation will suggest that there were 

more voters than ballots. The greater the dis-
parity, the greater the potential to create neg-
ative public perception. 

2.4.3.  THREAT INSTANCE STOPPING 
FUNCTION 

A challenge to any system based on functional 

decomposition is how to fashion a stopping 
function. That is, it can be difficult to identify 
the best or most effective abstraction level to 
ensure that the decomposition process does 
not reach a point of diminishing returns. 

In our case, decomposition stops when the 
analyst can assign values to the nodal 

attributes with sufficient precision to accom-
plish the necessary global computations. For 
example, if our metric is cost, the analyst must 
decompose the task to the level that the cost 

of each step is clear and justifiably assigned. 
Justification may be based on the skill of the 
analyst or upon some predefined threshold, 

but the degree of precision is always dictated 
by the metric's context.  

Cumulative analysis must then begin at the 
TERMINAL nodes that comprise each threat 
instance, which is our unit of evaluation. To 
illustrate, we compute the cost (C) of instance 

(i) of threat (a) as (C(a, i)), which is the sum 
of the costs of the steps required to carry out 
threat instance (a, i). For example. if <E, C, H, 
K> is instance 1 of threat A, as shown in Fig-
ure 1 on page 5 above, we compute: 

C(A,1) = C(E) + C(C) + C(H) + C(K) 

Thus, the fundamental voting system threat 

tree unit of evaluation is horizontal. That is, 
metrics are assigned at the TERMINAL nodes 
and those values are accumulated by threat 
instance, which reflects the tree's greatest 
specificity level and the level where the metric 
is assigned. 
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2.5.  VALIDATE THREAT TREE 

Since there are no well known metrics, metric 
validation is essential to the voting system risk 
assessment process. One way to approach va-

lidation is through comparing independent re-
presentations. With voting system threat trees, 
if metrics have suitable computational proper-
ties, we can use redundancy by comparing ex-
pert assessment against computed values.  

To accomplish this validation, an analyst would 
employ a five stage analysis. 

1. Select a metric that that can be as-
signed based on expert opinion 

2. Create an algorithm for computing a 
parent node's metric based on the child 
metric values8. 

3. Apply expert metric evaluation rules to 

every node in the tree  

4. Compute the metric value for each goal 
node and 

5. For non-terminal nodes, compare the 
value assigned in Step 3 to the value 
that is vertically computed from its 
subordinate nodes in Step 4. 

 

Figure 3. Simple, Generic Threat Tree. 

 

To illustrate, consider the simple [hypothetical] 
threat tree in Figure 3 with the nodes: 

A: Threaten voting equipment 

B: Create malware 

C: Install the malware 

D: Design attack 

E: Gain necessary knowledge 

F: Determine sleepover location 

G: Gain access to sleepover location at an 
appropriate time. 

We now conduct the five stage analysis: 

1. Select cost metric C 

2. Compute the cost of a parent as the 
sum  of the cost of the children 

3. For instructional purposes, assume that 

the analyst opinion review assigns the 
cost of each node to be: 

(1) C(A) = 75, C(B) = 10, C(C) = 100, 
C(D) = 5, C(E) = 5, C(F) = 50, C(G) = 
100  

4. We compute the cost of the non-
terminal nodes is: 

(2) C(A) = 160, C(B) = 10, C(C) = 150 

5. Comparison of evaluations (3) and (4) 
reveals an inconsistency between the 
expert analysis and computed analysis 
at the highest level, which would not 
be surprising. It also reveals an incon-

sistency between the expert evaluation 
at the intermediate level for node C, 
suggesting reanalysis of assigned val-
ues for nodes F and G, or consideration 
of re-examining node C's decomposi-
tion. 

2.6.  PRUNE THREAT TREE 

The goal of pruning the threat tree is to strike 
a balance between abstraction and detail. The 

tree must have sufficient detail to be useful 
and understandable by the analyst. However, 
too much detail creates a model that is unne-
cessarily complex. Complexity creates exces-
sive cognitive load for the analyst (reducing 

understandability) while potentially make 
quantitative analysis of the tree’s metrics in-
tractable (reducing usefulness). 

For example, in the simplified threat tree de-
picted in Figure 2, assume that step E (Gain 
necessary knowledge) was originally decom-

posed into two additional OR steps: “H: Inter-
view insider” OR “I: Review software compo-
nents”. Perhaps the analyst constructing the 

threat tree, after validating the tree’s metrics, 
determined that considering whether the at-
tacker interviewed a vendor employee OR ob-
tained a copy of a software component for pri-

vate review was extraneous to understanding 
the likelihood and impact of the attack. There-
fore, to reduce the complexity of the tree, 
make the tree more understandable and usa-
ble, these two steps were pruned from the 
threat tree. 
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3.  SUMMARY 

In this paper, we propose a voting system risk 
assessment process that leverages three cha-
racteristics of threat trees: the ability to (1) 

Descriptively name nodes as threat goals and 
steps (2) Graphically express logical relation-
ships between nodes and (3) Define attack 
goal and step semantic properties as nodal 
attributes. Collectively these three characteris-
tics allow the abstraction and precision that are 
necessary to reason comparatively about fun-

damentally different threats. 

The provision of a voting system risk taxonomy 
and schema facilitates the comparison and va-

lidation of independent risk evaluations. That 
is, because the taxonomy provides a common 
syntax for categorizing threats and the schema 

provides a means of expressing logical hypo-
thesis in consistent terms, the risk assessment 
of independent analysts can be compared in a 
logical and quantifiable manner. Further, be-
cause this process is based on abstract, ex-
tendable and common structures, it can be 
effective for facilitating group risk assessment. 

Rather than comparing independent risk evalu-
ations after the fact, analysts can work collec-
tively through each phase of the process.  

Future research should include a vetting or 

validation of the schema and taxonomy by vot-
ing systems domain experts. 
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Appendix A. VOTING SYSTEM THREAT TAXONOMY 
 

VSRisk = <Attack, Impact, Likelihood> 

Impact = <Magnitude, ContestBreadth, NumberOfContests, Persistence> 

Magnitude = <Retail, Wholesale, CloseRace> 

ContestBreadth = <Federal, State, Local> 

NumberOfContests = <SingleContest, MultipleArbitraryContests,  

MultipleContestsOfGivenType> 

Persistence = <SingleElection, MultipleCycles, Perpetual> 

Likelihood = <Low, VeryLow,  UnMeasurable, UnImaginable> 

Attack = <VS, Command, VSRiskTo, Environment, Protocol, MaliciousIntruder+> 

VS = <PCOS, CCOS, VBM, VBP, DRE, PBHC, IV, BMD> 

Command = <Adjustable, Precision> 

Adjustable = <ChangeOnDemand, LimitedChange, FireAndForget> 

Precision = <Candidate, Contest, Party> 

VSRiskTo = <ElectionAccuracy, VoteAttribution, VoterConfidence> 

ElectionAccuracy = <VoteError, AccumulationError> 

VoteAttribution = <VoteBuying, VoteSelling, VoterCoersion> 

Environment = <Vulnerability, Phase> 

Vulnerability = <Software, Hardware> 

Software = <VendorFirmware, COTS, ElectionDefinition> 

ElectionDefinition = <BallotDef, ConfigItems> 

Phase = <BeforePollsOpen, DuringVoting, AfterPollsClose> 

Protocol = <Objective+, AttackVector+, Tree> 

Objective = <ChangeCount, DoS, VoteAttribution, DiscreditCount> 

ChangeCount = <BallotStuffing, BallotDeletion, VoteFlipping> 

VoteAttributionPurpose = <VoteBuying, VoteSelling, VoterCoersion,  

GeneralIrritation> 

DiscreditCount = <CountAuditMismatch, PublicAnomaly> 

AttackVector = <VoterInput, SupervisorEntryDevice, RemovableMedia,  

Network, VendorKey> 

MaliciousIntruder = <Role, Skills, Resources> 

Role = <Voter, PollWorker, Auditor, ElectionsOfficial, OfficeAdmin> 

ElectionsOfficial = <Permanent, Temp> 

Permanent = <County, State, Vendor> 

Temp = <CountyOffice, Precinct> 

Skills = <HighTech, TechFamiliar, SpecificSkills, TechNovice> 
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Appendix B. VOTING SYSTEM THREAT TREE SCHEMA 
 

VSAttack = <AlterContestDecision, UndermineVoterConfidence> 

AlterContestDecision = <AddVotes, DeleteVotes, FlipVotes, AlterCount> 

UndermineVoterConfidence = <AlterAuditData, AlterContestTotals, DenialOfService, Crea-
teOperationalProblems> 

DeleteVotes = <DeleteAcceptedBallotsPhysical, DeleteAcceptedBallotsElectronic> 

AddVotes = <StuffPhysicalBallotBox, CreateBallotImages> 

schema: DeleteAcceptedBallotsPhysical.[Phase].[Control] =  

GainPrivateAccessToABPs 

RemoveABPsFromControlledCustody 

MoveABPsToPrivateSpace 

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:none] =  

GainPrivateAccessToABPs 

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm 

RemoveABPsFromControlledCustody 

StealBallotBox or RemoveBallotsFromBox 

ConcealContraband 

MoveABPsToPrivateSpace 

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:AcceptedBallotCoC] =  

GainPrivateAccessToABPs,  

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm, 

RemoveABPsFromControlledCustody(Constraint(RiskCoCDetection)), 

MoveABPToPrivateSpace 

Schema: DeleteAcceptedBallotsElectronic.[Phase].[Control].[HackVector] 

Phase = <BVP, DVP, AVP, DR>  

HackVector = <Malware, SupervisorMode, BadData, NetHack, RemovableMediaHack> 

Control = <CommonControl, EControl, PControl> 

CommonControl = <RandomAudit, PollWatchers, TwoPersonIntergrity> 

EControl = <L&STest, EquipCoC, ParallelTesting, HashCodeTest>  

PControl = <VotableBallotCoC, AcceptedBallotCoC, BallotAccounting, BallotWater-
marking> 

DeleteAcceptedBallotsElectronic.[Phase:Any].[Control:none].[HackVector:Malware] =  

CreateMalware, InstallMalware 

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:none].[HackVector:Malware] =  

CreateMalware(BVP, DVP), InstallMalware(BVP, DVP) 

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:L&ATest].[HackVector:Malware] =  

CreateMalware, InstallMalware(Constraint(DefeatL&A or InstallAfterL&A)) 
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