
Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org /proc.conisar.org

A Methodology Tailoring Model for

Practitioner Based
Information Systems Development

Informed by the Principles of General Systems
Theory

Timothy J. Burns
tburns1@ramapo.edu

Anisfield School of Business,

Ramapo College of New Jersey
Mahwah, New Jersey 07430, USA

Fadi P. Deek

fadi.deek@njit.edu
College of Science and Liberal Arts,

New Jersey Institute of Technology
Newark, New Jersey 07102, USA

Abstract

Information system development practitioners tailor system development methodologies to match

the specific circumstances of their software projects. This is not surprising as research has shown
that information systems development is a highly circumstantial process and that no one system
development methodology can be optimal for every context of every project. Several formal
techniques such as the contingency factors approach and situational method engineering have
been introduced to facilitate the tailoring of system development methodologies to fit the needs of
a project. However, there is evidence that system development practitioners have largely

neglected these techniques in favor of ad hoc methodology tailoring approaches.

This paper presents a formal methodology tailoring model geared towards the practitioner. The
model is based on the principles of general systems theory and is designed to provide practitioner
utility, which has been shown to be a determining factor in the employment of a technological
innovation.

Keywords: Information System Development Methodologies; Methodology Tailoring; Method
Engineering; General Systems Theory

1. INTRODUCTION

An information system (IS) development
methodology is defined as a recommended
collection of phases, procedures, rules,
techniques, tools, documentation,
management, and training used to develop a

system (Avison & Fitzgerald, 2003, Cockburn,

2006, Hoffer & Valacich, 2010). Over the
years numerous IS development
methodologies have emerged and many are
currently taught in colleges and universities
around the world (Burns & Klashner, 2005).
While there has been much discussion and

debate as to which of these methodologies is
best, current research shows that there may

mailto:tburns1@ramapo.edu

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /proc.conisar.org

not be one optimal methodology that can be
universally applied to every project. This is
because, while many of the methodologies are
beneficial in certain situations, system

development is a circumstantial process, and
no one methodology will work best for every
context of every project (Cockburn, 2006,
Fitzgerald, Russo, & O‘Kane, 2003).

Background

There have been significant advances and
changes to methodologies over the last 30

years. Those changes can be characterized into
specific eras that include the pre-methodology
era, when no methodologies existed, and the

methodology era, when a plethora of new
methodologies was introduced (Avison &
Fitzgerald, 2003, Fowler, 2005). Some people

in the IS field feel that since 2001 we have
entered a post-methodology era wherein
researchers and practitioners are questioning
the older methodologies (Avison & Fitzgerald,
2003, Fowler, 2005). Most of the serious
criticism of the methodologies from the
methodology era suggests that they are

bureaucratic and labor intensive or ―heavy‖
methodologies (Fowler, 2005)

In response to this, new methodologies
introduced in the post-methodology period are

considered as lightweight or agile
methodologies (Fowler, 2005). These agile
methodologies are considered by some people

in this postmodern era to be ―amethodological‖
(i.e., a negative construct connoting not
methodological) (Truex & Avison, 2003). The
biggest criticism of the agile methodologies has
been the lack of empirical evidence supporting
the claims of their benefits and their lack of

theoretical foundation (Abrahamsson, Warsta,
Siponen, & Ronkainen, 2003). However, there
is a growing body of literature both supporting
and repudiating the claims of success of the
agile methodologies (Abrahamsson et al.,
2003, Conboy, Wang, & Fitzgerald, 2009).

Problem Description

Regardless of whether the methodology is
―heavy‖ or ―agile‖, current research suggests
that the best methodology for a software
development project may be one that has been
selected, tailored, or blended (i.e. a hybrid
methodology created though the blending of
two or more methodologies) (McGregor, 2008)

to fit the specificities of the individual system
development project (Cockburn, 2006,
Fitzgerald et al., 2003). In response to this

discovery, several formal ―methodology
tailoring‖ (i.e. the process of selecting,
tailoring, or blending methodologies)
techniques have been introduced. Two

examples of formal methodology tailoring
techniques are the contingent factors approach
and situational method engineering. The
contingency factors approach suggests that
specific features of the development context
should be used to select an appropriate
methodology from a portfolio of

methodologies. This approach requires
developers to be familiar with every contingent
methodology or have contingency built in as
part of the methodology itself.

A suggested alternative has been a technique
called ―Method Engineering‖ (ME) (Fitzgerald et

al., 2003, Brinkkemper, 1996). With this
technique, a methodology is constructed from
a repository of ―existing discrete predefined
and pre-tested method fragments‖ (Fitzgerald
et al., 2003). Using a method-engineering
tool, software developers build a meta-method
that is made up of fragments from popular

development methodologies. The fragments
are each designed to handle a particular
contingency inherent to the software project.
The fragments are categorized as either
product or process. Product fragments are

artifacts capturing the structure in deliverables
such as diagrams, tables, or models, while

process fragments project strategies and
detailed procedures (Brinkkemper, 1996).

Method Engineering has several shortcomings.
For example, it is impossible to plan for every
contingency that may arise, and therefore,
critical fragments will always be missing

(Rossi, Tolvanen, Ramesh, Lyytinen, & Kaipala,
2000). Also, the burden of selecting the
correct fragment falls upon the analyst (Truex
& Avison, 2003). Furthermore, a tool is
usually required and ME tool development has
been a problematic procedure (Fitzgerald et
al., 2003). Thus, the evolution of software

development methodologies using fragments is
problematic.

Both contingency factors and ME techniques
have had little success in practical industry
applications (Fitzgerald et al., 2003, Rossi et
al., 2000). However, ad hoc methodology
tailoring (whereby practitioners use an

informal process to tailor methodologies to
their situation) has been an implied concept in
industry (Fitzgerald, 1997). This is problematic
because the lack of formality inherent to the ad

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /proc.conisar.org

hoc approach suggests that the knowledge of
how to implement the approach is tacit and
therefore more difficult to acquire and transfer
(Howells, 1996).

As a result, simply stated, the problem is that
there is currently no formal, industry accepted,
widely used, system development methodology
tailoring model (Fitzgerald et al., 2003, Rossi
et al., 2000, Fitzgerald, 1997). While the ad
hoc methodology tailoring approach may, to
date, be the most widely used in industry, its

tacit nature impedes the acquisition and
transference of knowledge about the approach.
Conversely a formalized approach permits the

approach to be more easily learned and
explained.

The remainder of this paper is devoted to

defining a model that solves this problem. The
evolution of the model is explained in terms of
its utility and theoretical foundation and then a
detailed definition of the model is presented.
Finally, a sample application of the model is
provided so that the reader may gain a
complete understanding of its practicality.

2. THE MODEL

It is hypothesized that a model (i.e., an artifact
used to abstract and represent phenomena)
(Hevner, March, Park, & Ram, 2004, March &

Smith, 1995) can be created that will provide a
simple, yet formal process whereby
practitioners can tailor methodologies to the

context of the project. The goal of the model
is to provide practitioner utility (i.e., usefulness
to system developers working in industry).

It is believed that the success of this model in
industry will depend on several conditions.
Fitzgerald (1997) demonstrated that

practitioners will bypass the use of
methodologies simply because they do not see
the utility in using them, therefore the model
must have a perceived utility to practitioners.
The second condition that the model must
meet is that it must be based on sound

academic theory. In order to accomplish this,

a root theory must be found that can be used
to explain the model and its concepts. Finally,
the model must be evaluated using an
accepted methodology and the results must be
reported in a statistically accepted manner.

Practitioner Utility

The practitioner model described in this paper

can be characterized as a technological
innovation. There are several theories and

models that can be used to predict the degree
to which an innovation will be accepted
(Riemenschneider & Hardgrave, 2001).
Included in this list would be the Diffusion of

Innovations Theory (Rogers, 1995), the Theory
of Reasoned Action (TRA) (Fishbein & Ajzen,
1975), the Theory of Planned Behavior (TPB)
(Ajzen, 1985), the Technology Acceptance
Model (TAM) (Davis, 1989), and TAM2
(Venkatesh & Davis, 2000).

TAM has been proven valid in numerous

studies and under a multitude of conditions
(Riemenschneider & Hardgrave, 2001). TAM
suggests that when users are presented with a

new technology, a number of factors influence
the decision about how and when they will use
it. The two primary factors are perceived

usefulness (i.e., the degree to which a person
believes that using a particular technology
would enhance his or her job performance) and
perceived ease-of-use (i.e., the degree to
which a person believes that using a particular
technology would be free from effort). The
TAM2 model extends the TAM model to include

social factors (i.e., subjective norm,
voluntariness, and image) and cognitive factors
(i.e., job relevance, output quality, and results
demonstrability) (Venkatesh & Davis, 2000).

Based on TAM2, in order for a practitioner to

utilize a methodology tailoring model, they
must perceive it to be useful, easy to use, and

socially and cognitively acceptable. Informal,
ad hoc methodology tailoring meets these
requirements given its widespread use in
industry (Fitzgerald, 1997). Therefore, it is
hypothesized that a formal method tailoring
approach that simulates the already accepted,

ad hoc practitioner methodology tailoring
approach would also be accepted, provided it
continues to meet the conditions put forth by
TAM2.

Although the literature is insufficient on the
question of how practitioners informally tailor
methodologies in the field, there are some

things that are known. First, practitioners
generally take a shorter-term view than
academics and tend to emphasize the
completion of tasks and the solution of
problems (Lippert & Anandarajan, 2004).
Second, the methodologies utilized by
practitioners are influenced by the universality

of the methodology, the methodology
introduction process, the experience level of
the developer, developer confidence in the
methodology, and developer participation with

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org /proc.conisar.org

the methodology (Hansen, Jacobsen, & Kautz,
2003).

Based on this information, in order for a formal
methodology tailoring model to be utilized by

practitioners, it must aid in the completion of
tasks and the solution of problems. Also, it
must provide universal applicability, have
management support, provide utility to both
experienced and in-experienced developers,
and encourage developer confidence and
participation.

Theoretical Foundation

The theoretical foundation for the model comes

from General Systems Theory. Hungarian
biologist Ludwig von Bertalanffy originally
proposed general systems theory in 1928 (von
Bertalanffy, 1928) as a reaction against the

reductionistic and mechanistic approaches to
scientific study, and in an attempt to unify the
fields of science. The scientific method is based
on the assumptions that an entity can be
broken down into its smallest components so
that each component can be analyzed
independently (reductionism), and that the

components can be added in a linear fashion to
describe the totality of the system
(mechanism). Rather than reducing an entity
to the properties of its parts or elements,

general systems theory focuses on the
arrangement of and relations between the
parts that connect them into a whole (holism).

One of the goals of general systems theory
was to find common ground upon which
scientific study could be conducted across all
disciplines. Von Bertalanffy felt that it was
futile to try and find a unitary conception of the
world by reducing all levels of reality to the

level of physics. He felt that the answer to a
unitary conception could be found by defining
the commonalities among the fields through
the discovery of the isomorphy of the laws of
the different fields (von Bertalanffy, 1969).
Von Bertalanffy thought that the systems that

are present in the various fields could identify

those commonalities.

Von Bertalanffy defined a system as
―complexes of elements standing in
interaction‖. He found that conventional
physics dealt only with closed systems (i.e.,
systems which are isolated from their
environment). In particular, the laws of

thermodynamics expressly stated that they
were intended for closed systems. The
essence of the second law of thermodynamics

(law of entropy) is that entropy (i.e., the
degree of disorder or uncertainty in a system)
(von Bertalanffy, 1969) will increase over time
in a closed system.

General systems theory realizes that many
systems, by their nature, are open systems
that interact with their environment. Von
Bertalanffy observed that the second law of
thermodynamics does not hold true in open
systems. He realized that in an open system,
the degree of disorder or uncertainty decreases

over time or that ―negative entropy‖ occurs
(von Bertalanffy, 1969). General systems
theory also realizes that open systems have a

tendency to self-organize. This is a process in
which the internal organization of a system
increases automatically without being guided

or managed by an outside source (Ashby,
1947). This happens through a process of
feedback and decision-making.

An IS development methodology can be
considered a ―system‖ (von Bertalanffy,
1969), that is used to develop an information
system. IS development is also a problem

solving process (DeFranco-Tommarello & Deek,
2002, Highsmith, 2000). This suggests that
methodologies are essentially problem solving
systems with several common elements
including the problems (i.e., the difference

between a goal state and the current state of
the system (Hevner et al., 2004), which have a

hierarchical order (Ahl & Allen, 1996), problem
solving processes (i.e., the tools, procedures,
processes, etc. that are used to do define and
understand problems, plan solutions to
problems, implement solutions, and verify and
present the results (Deek, Turoff, and McHugh,

1999), solutions (i.e., the answer to or
disposition of a problem) (American Heritage
Dictionary 2010), feedback (i.e., part of the
output is monitored back, as information on
the preliminary outcome of the response, into
the input) (von Bertalanffy, 1969), and an
environment which defines the context,

contingencies, constraints, rules, laws, etc. of
the organization, people, technology, etc.
These systems employ incremental problem
solving which involves using intermediate
states as intermediate goals in solving
problems (Newell & Simon, 1972).

Based on general systems theory, IS

development methodologies can be
characterized as collaborative, hierarchical,
incremental, and problem solving systems.
They are open systems that interact with their

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org /proc.conisar.org

outer environment (Simon, 1996), which
means that they have the propensity for
negative entropy. Also, these systems all have
a ―system state‖ (Kuhn, 1974) which

represents the current condition of system
variables (such as the current number of open,
unsolved problems in the system).

Model Definition

The practitioner based system development
model is depicted in Appendix One. Based on
general systems theory, the model tailors

and/or combines methodologies, not by
breaking the methodologies down into
fragments, but by using the concepts that are

isomorphic across the methodologies (von
Bertalanffy, 1969). Discovering those
isomorphic concepts requires abstracting

methodologies to a common level. The model
suggests that the commonality among all
methodologies is their inherent role as problem
solving systems.

The practitioner based system development
model represents a problem solving system
that cyclically iterates among three phases

throughout the life of the project. The first
phase is the ―Describe‖ phase. It is used to
understand the current state of the project. As
such, it is a knowledge producing activity

(March & Smith, 1995). The goal of this phase
is to gain knowledge and to identify a problem
or a set of problems that must be solved in

order to progress to the next step of the
project. It includes analyzing the current
environment, identifying circumstances that
have changed since the last definition phase,
analyzing feedback that was obtained from the
previous iteration, analyzing and parsing the

list of problems still open at the conclusion of
the last cycle, and adding to the list any new
problems that can be identified. The
knowledge gained through this phase is
depicted in Appendix One by the central circle.
As the project progresses, the knowledge pool
expands and contributes to the actions

prescribed in the other two phases.

The second phase is the ―Problem Solve‖
phase. During this phase, solutions are found
for the problem(s) identified in the ―Describe‖
phase. If the problem is something simple,
for instance a task that needs to be completed,
then it can immediately pass to the next phase

where an action is prescribed. However, if
the problem is complex, then a problem–
solving technique must be applied in order to
find a solution to the problem. The final phase

is the ―Prescribe‖ phase. This is a knowledge
using activity (March & Smith, 1995). Using
the knowledge gained during the previous two
phases the next course of action is prescribed.

The next course of action could take virtually
any form. It depends on what was identified
as the highest priority problem in the
―Describe‖ phase and the solutions discovered
in the ―Problem Solve‖ phase. The prescribed
action may be a methodology fragment. For
instance, it may be determined that the best

action at this point in time for the project
would be to build a prototype or to create a
UML diagram.

It must be pointed out that the principle of
equifinality (von Bertalanffy, 1969) holds true
in the model. Equifinality is a condition in

which different initial conditions lead to similar
effects or in which different courses of action
lead to similar results. Application of this
principle suggests that there are multiple
methodologies and instantiations that would fit
the model and still produce the desired result.

A Sample Walkthrough of the Model

A sample walkthrough of the practitioner
model is illustrated in Appendix Two. This
walkthrough is designed to show how system
developers can use the model to tailor system

development methodologies to a project. The
process begins with the ―Describe‖ phase of
the model. During this phase, the developers

identify the highest priority problem to be the
selection of a base system development
methodology that will be used to implement
the project. For instance, should the
developers use a traditional approach such as
the waterfall or spiral method or perhaps

should the developers use the object-oriented
approach or one of the agile methodologies?

The problem then passes to the ―Problem
Solve‖ phase where problem solving tools and
techniques are used to select a base
methodology with core competencies, (i.e., the

set of the most strategically significant and

value-creating skills in any organized system
or person), that most closely match the
context of the project and organization.
Several key factors contribute to this selection
process. For instance, the knowledge and
background of the developers, the risk of
change inherent to the project, and the

visibility of the project development process
required by the organization‘s management
will all have to be considered when selecting a
development methodology.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org /proc.conisar.org

The project then progresses to the ―Prescribe‖
phase where the recommended action is to
select the base methodology. For this
walkthrough, given the factors mentioned

previously, the developers decide to implement
a traditional SDLC such as the waterfall
methodology. Given that this selected
methodology provides a framework and not a
mandate, only base fragments will be selected
to be implemented. So, for instance, only the
phases of the waterfall approach will be

selected but the activities typically inherent to
those phases may be supplanted with other
―actions‖ or activities. As an example, typically
during the requirements specification phase

interviews with system users are conducted.
However, using the model, the developers

determine that JAD sessions would be a better
requirements gathering method for this
project.

Once a base methodology has been selected,
the model suggests that we should cycle back
to the ―Describe‖ phase. For this walkthrough,
the developers identify the next problem to be

the identification and extraction of the
fragments from the base methodology that will
serve as a skeleton methodology for the
project. The ―Problem Solve‖ and ―Prescribe‖
phases are used to identify these fragments

and determine their arrangement in a temporal
fashion, with intentional gaps left in the

prescribed process. This is represented by the
base fragments in figure two.

We continue to cycle through the phases of the
model. As we do, we describe problems and
then use problem solving mechanisms to
identify and prescribe activities that will

extend, contribute to, and replace parts of the
base methodology. ―Extends‖ and
―contributes‖ alters the base methodology by
adding additional activities, while replaces
removes a fragment of the methodology and
replaces it with an activity (McGregor, 2008).
The end goal is to enhance the base

methodology and provide a methodology that
is more of a custom fit to the project.

The walkthrough continues to follow this cycle
throughout the course of the project. The base
methodology fragments that were initially
extracted as the skeleton methodology serve
as anchor points which keep the project

grounded. The prescribed actions must be
collated within the fragments of the base
methodology that were initially prescribed.
The methodology can continue to be employed

throughout the lifecycle of the project, even
after the project as progressed into the
maintenance phase.

3. DISCUSSION

The goal of the model is to provide practitioner
utility (i.e., usefulness to system developers).
The model attempts to reach that goal by
presenting a simple process that is intuitive to
the system developer and simulates the
developer‘s typical procedure. The hope is that
the model will be perceived by developers to

be easy to use, and useful, and thus in
accordance with the primary conditions set
forth by the technology acceptance model.

Furthermore, the model is based on a sound
academic theory as it draws its basis from
general systems theory.

Comparing the model to other known
methodology tailoring techniques illustrates its
advantages. The inadequacies of the
contingency factors approach are apparent
(Fitzgerald et al., 2003). It is just not feasible
or possible for all the developers in an
organization to be familiar with all of the

possible methodologies that would work best
for a given situation (Fitzgerald et al., 2003).
Plus as the contingent factors of the project
change over time, so will the optimum

methodology.

If method engineering is analyzed through the
lens of general systems theory, it becomes

apparent that it is both a reductionistic and
mechanistic solution to the problem. It is
reductionistic in the sense that it attempts to
solve the problem by reducing the
phenomenon (the methodology) to its smallest
component (method fragments) and analyzing

the components. It is mechanistic because it
attempts to build a whole meta-methodology
from the sum of its parts, with no regard for
the interrelationships of those parts.

The practitioner model, as specified in general
systems theory, presents an anti-reductionistic

and anti-mechanistic approach. It seeks to

integrate by identifying the isomorphic
characteristics of the IS development
methodologies. In particular, the model
capitalizes on the common inherent problem
solving nature of the various methodologies.

4. CONCLUSION

The separation of the IS development

methodology community around heavy,
proprietary tool oriented approaches versus

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org /proc.conisar.org

―amethodological‖, light, open source
approaches distracts us from more basic
issues. None of the IS development
methodologies that have been developed to

date work well in the majority of situations.
They all have to be refined and tailored
extensively to the actual needs of the
development context (Cockburn, 2006,
Fitzgerald et al., 2003). The existing accepted
approaches to method tailoring (i.e.,
contingency and ME) have shortcomings as

noted earlier.

The model presented in this research directly
addresses the problems inherent with other

development methodology adaptation
approaches. This general systems approach
facilitates an IS community effort to normalize

system development methodologies. The
adherence to design science guidelines lends
itself to the legitimacy of the model.
Practitioners who use this method will not have
to learn methodologies that are not
normalized. Thus, they will have a shorter
learning curve to implement this technique

versus the other method tailoring techniques.
Our research community can work
collaboratively to reduce ambiguity in
methodologies by using the theoretical
foundation presented here.

Future research is needed in several areas.
First, lab experiments are needed to validate

the model. Second, field experiments are
needed that will test the model in a realistic
setting and against other popular
methodologies and approaches. Finally,
specific methodologies and instantiations of the
model need to be developed and evaluated

accordingly.

5. REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M.,
Ronkainen, J., ―New Directions on Agile
Methods: A Comparative Analysis‖, IEEE.
2003.

Ahl, V., Allen, T. F. H. ―Hierarchy theory, a

vision, vocabulary and epistemology‖,
Columbia University Press. 1996.

The American Heritage Dictionary of the
English Language, Fourth Edition,
Houghton Mifflin Company, 2010.

Ashby, W.R., ―Principles of the Self-Organizing
Dynamic System", Journal of General

Psychology, 1947, volume 37, pages 125—
128.

Avison, D., Fitzgerald, G., "Where Now for
Development Methodologies?",
Communications of the ACM, 46,1 2003,
79-82.

Ajzen,I., ―From intention to actions: a theory
of planned behavior, in: J. Kuhl, J.
Beckmann (Eds.), Action Control: From
Cognition to Behavior‖, Springer-Verlag,
New York, NY, 1985, pp. 11-39.

Brinkkemper, S., ―Method Engineering:
engineering of information systems

development methods and tools‖ Elsevier
Science B.V. 1996.

Burns, T., Klashner, R. ―A Cross-Collegiate
Analysis of Software Development Course
Content‖, Proceedings of the 6th
Conference on Information Technology

Education, Newark, NJ, USA, pp. 333-337.
2005.

Cockburn, A., "Agile Software Development"
2nd edition, Addison-Wesley, 2006.

Conboy K, Wang X, Fitzgerald B. Creativity in
Agile Systems Development: A Literature
Review. In: Information Systems –

Creativity and Innovation in Small and
Medium-Sized Enterprises. Vol 301/2009.
Springer; 2009. p. 122-34. (IFIP Advances

in Information and Communication
Technology ; vol 301/2009).

Davis, F.D., ―Perceived usefulness, perceived
ease of use, and user acceptance of

information technology‖, MIS Quarterly 13,
1989, pp. 318-339

Deek, F.P., Turoff, M., McHugh, J., "A Common
Model for Problem Solving and Program
Development", Journal of the IEEE
Transactions on Education, Volume 42,

Number 4., pp. 331-336, November 1999.

DeFranco-Tommarello, J., Deek, F.,
"Collaborative Software Development: A
discussion of Problem Solving Models and

Groupware Technologies" Proceedings of
the 35th Annual Hawaii International
Conference on System Sciences. IEEE.

2002.

Fishbein, M., Ajzen, I., ―Belief, Attitude,
Intention, and Behavior: An Introduction to
Theory and Research‖, Addison-Wesley,
Reading, MA, 1975.

Fitzgerald, B., "The use of systems
development methodologies in practice: A

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org /proc.conisar.org

field study‖, The Information Systems J. 7,
3, 201–212 1997.

Fitzgerald, B., Russo, N., O‘Kane, T., "Software
Method Tailoring at Morotola",

Communications of the ACM, 46, 4, 64-70
2003.

Fowler, M., "The New Methodology‖, WWW
http://martinfowler.com/articles/newMetho
dology.html, Accessed May 18, 2005, 8pm.

Hansen, B., Jacobsen, D., Kautz, K. ―Systems
Development Methodologies in Practice‖, in

Proceedings of the Information Systems
Development Conference, Melbourne,

Australia, August 25-27, 2003.

Hevner, A., March, ST, Park, J., Ram, S.
―Design Science Research in Information
Systems‖, MIS Quarterly (28:1) March

2004, pp. 75-105.

Highsmith, J., "Adaptive Software
Development - A Collaborative Approach to
Managing Complex Systems", Dorset
House Publishing, New York, NY 2000.

Hoffer,J., George, J., Valacich,J., "Modern
Systems Analysis & Design‖, Sixth Edition,

Prentice Hall, 2010.

Howells, J., ‗Tacit Knowledge, Innovation, and

Technology Transfer‖, Technology
Management and Strategic Management,
Vol. 8, No. 2, 1996

Kuhn, A., ―The Logic of Social Systems‖, San
Francisco: Jossey-Bass. 1974.

Lippert, S. K., Anandarajan, M. ―Academic vs.
practitioner systems: Planning and
analysis‖. Association for Computing
Machinery. Communications ofthe ACM,
47(9), 91. 2004.

March, S., Smith, G, "Design and Natural

Science Research on Information
Technology." Decision Support Systems 15
(1995): 251 - 266. 1995.

McGregor, J., "Mix and Match", in Journal of
Object Technology, vol. 7 no. 4, July-
August 2008, pp 7 - 16

Newell, A., Simon, H., "Human Problem
Solving", Prentice Hall 1972.

Riemenschneider, C., Hardgrave, B.,
"Explaining Software Development Tool

Use with The Technology Acceptance
Model", Journal of Computer Information
Systems 41 (4), 2001, pp. 1-8.

Rogers, E., ―The Diffusion of Innovations,
Fourth ed., Free Press, New York, NY,
1995.

Rosnow, R. L., & Rosenthal, R. (2005).

―Beginning behavioral research: A
conceptual primer‖ (5th ed.). Upper

Saddle River, NJ: Prentice Hall.

Rossi, M., Tolvanen, J.-P., Ramesh, B.,
Lyytinen, K., Kaipala, J., ―Method Rationale
in Method Engineering‖, Proceedings of the

33rd Hawaii International Conference on
System Sciences. 2000.

Simon, H., The Sciences of the Artificial, Third
Edition. Cambridge, MA, MIT Press 1996.

Truex, D., Baskerville, R., Travis. J.,
―Amethodical Systems Development: The
Deferred Meaning of Systems Development

Methods‖, Journal of Accounting,
Management, and Information
Technologies, Tech 10. pp 53-79 2000.

Truex, D., Avison, D., ―Method Engineering:
Reflections on the Past and Ways
Forward‖, Ninth Americas Conference on
Information Systems, 2003.

Venkatesh, V., & Davis, F. D., ―A theoretical
extension of the technology acceptance
model: Four longitudinal field studies‖,
Management Science, (46:2), 186-204
2000.

von Bertalanffy, L., ―Kritische theorie der

Formbildung‖, Borntraeger. 1928.

von Bertalanffy, L. General System Theory,
Braziler, New York, 1969.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org /proc.conisar.org

APPENDIX ONE

Figure 1 A Practitioner Based System Development Model.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1524

©2010 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org /proc.conisar.org

APPENDIX TWO

Figure 2 A sample walkthrough of the model.

Problem Solve

Problem Solving

Mechanisms

Prescribe
Action

Describe

Identify

Decompose

Prioritize

Base Fragment

Base Fragment

Base Fragment

Problems

Solutions

Environment

Problems

Solutions

People

Tools

Base Methodology

Action

Action

Action

