
Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org

Plan to Throw one Away: Lessons Learned

Developing an Economic Simulator

Michael Battig

mbattig@smcvt.edu
Computer Science & Information Systems

Saint Michael's College
Colchester, VT 05439, USA

Michael Commo

mcommo@us.ibm.com
Information Technology & Computer Science

Essex Junction, VT 05452, USA

Abstract

This paper presents our experiences designing and building an economic simulator for use in a Public
Finance course. The project was a joint venture between the Information Systems & Computer

Science Department and the Economics Department. Faculty and Students collaborated to create the

simulation system. The second version of the software is currently being used in our Economics
courses and a third major version is in the early design phases. Plans are underway to roll this
software product out to other institutions for use in Economics classes. The current version was
created with Visual Basic and contains some performance issues. The next version will resolve some
database performance issues and employ an expert system in order to ease the maintenance burden.

We also discuss the software hurdles encountered during the development process.

Keywords: information systems, software development, databases, educational software, simulation,
expert systems, public finance, economics

1. INTRODUCTION

For many years we in the computing fields have

created artificial software environments to mimic
the designs of computing systems and their
internal architecture. In recent years, however,
we have begun to view our systems as having
parallel architectures in other domains of science

and nature (Denning, 2007). Here we present
our experiences of the past several years in
building an economic simulation software
environment as a joint collaboration between
our Economics and Computing departments. In
creating this simulated environment, we have

sought to evolve our software toward a model
that more closely emulates the world of
economics than it does the world of computer

hardware and software.

For the past several years our Economists have
been providing detailed requirements for a
custom-built economic simulation system. This

software serves several purposes. It provides a
platform for student learning and student
projects in the Economics Department’s Public
Finance class. The software, and its use in
class, has been the subject of ongoing research
in our Economics Department. In parallel, our

mailto:mbattig@smcvt.edu
mailto:mcommo@us.ibm.com

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org

Information Systems faculty members have
been searching for ideal projects to not only
engage students in the development effort, but
to employ novel software solutions, such as

integrating expert systems. In this quest for a
truly collaborative project, the system is
emerging through three distinct versions.

The first version of our simulator was not a
custom software solution, but rather a
sophisticated spreadsheet that contained the
formulas and requirements that would later

serve as the foundation and requirements for
our software. As a spreadsheet, the system did
not work well as a learning platform for students

in Public Finance. The current version of our
simulator is a Visual Basic program that uses an
interface that allows students to focus on

parameters of their governmental and financial
priorities without getting lost in a sea of
economic computations. The current version
also uses an Access database to store data
related to the user’s public finance model. We
envision that the future version of our simulator
will employ an expert system shell to simplify

future maintenance by our experts (in this case
our economics professors) and to deal with
many performance challenges that our system is
currently experiencing.

To give the reader some perspective on the

simulator, we will present some data and
software metrics. The Visual Basic source code

is contained in 17 modules with a total of 5093
non-blank and non-commentary lines of code
(8155 lines including blanks and comments).
The database consists of five tables: Population,
Globals, Education, Options, and Social Security.
The most critical table from a performance

perspective is the Population table, which
contains 729 cohorts, which represents just over
45 million people (see Figure 1).

We should note at this point that our current
system has received a lot of interest from
economics professors when presented at a
relevant conference (Walsh, 2010). Our long

term plan is to make this system available to
others for use in teaching Public Finance
(perhaps even bundled with textbooks). Despite
the success of the initial version of the
simulation software, this version exhibits major
limitations. First, it is quite slow, with several-
minute runtimes for many of the steps.

Secondly, it is difficult to customize or tweak
without major overhauls. Finally, it only
simulates the present economy, whereas most
of the policy choices made by students have

strong implications for the future. A more
complete model would be able to simulate the
effects of these choices decades into the future.
In the following sections we will provide the

details of our current system’s requirements,
look at some of the obstacles faced, and outline
our future enhancements for the next version.

2. SYSTEM REQUIREMENTS

The Economics Simulator Application represents
the formulaic results of our Economics
Department’s research in economic modeling

programmatically, and attempts to recreate the
intricacies found inherent in a complex economy.
The ultimate objective of this modeling tool was

to have students enrolled in the Public Finance
course model their idealistic economy, and then
fund it using taxation, among other means. This

requirement was, from the developer’s
perspective, a late change in requirements. The
application itself was an early lesson in
requirements gathering, making and adhering to
design decisions; as well as implementing and
testing the design. The application and
simulation is essentially an interface from which

the user can customize an economy. The
economy is represented by a database, and the
application processes data in the database based
upon user selections and the aforementioned
economic modeling formulas from the economics

research. The simulation program consists of
extraneous features that enable the program to

graphically represent results, and also permits
assignment submission wirelessly over the
internet. Our system, however, is not without
defects. We have bottlenecks related to the
database interaction, and even logic errors
inherent to the functional definition of the

underlying mathematical equations that drive
the simulation. Looking beyond the defects,
there is the potential to improve and expand
upon the simulation using (database) stored
procedures and triggers, loop unrolling, and
even Artificial Intelligence.

This pilot system, however, had a predecessor.

The underlying mathematical functions existed
in a previous Excel-based system from which
they were derived and defined for this system.
From this perspective, this project involved quite
a bit of software reverse-engineering and re-
engineering. The system had previously been
implemented on an entirely different platform.

Like many projects, we lacked complete
requirements, be they functional, performance,
security, or otherwise. What we did have was
design documentation describing in detail

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org

functional definitions and their effects on cohorts
in an economy. For brevity, we will refer to a
cohort as a group of people having the same
age, health, and ability factors. Conveniently,

this also translates into one record in the
Population table of the economics database
(EconDB). For example, one of nine cohorts in
the Population table consists of individuals all
having an age of 43, low health and medium
ability. These functional designs drive the
simulation in that they directly affect the people

(cohorts) within the economy, and the results of
the economic simulation are generated by
querying the database after these functions have
been applied to the database. These designs,

however, say little about the actual functional
requirements of the simulation, and leave much

to be inferred by the programmer.

Development History

The software engineering aspect of this project
focused primarily on the process of turning these
functional definitions into working software.
Agile software development methodologies
implicitly came into play throughout the project,

as the primary focus of the project became
producing working software prototypes in order
to test the functional interactions with the
database, and then determine the resulting
economy based on factors derived from the

modified database. The process was
incremental and iterative in that new functions

and groups of functions were added to the
system, a prototype was built and tested, and
then the process repeated itself. Those working
on the project came to value working software,
and the ability to respond to change, which just
happen to be two primary values from the Agile

Manifesto (Fowler 2001).

The prototypes served as a means of testing our
implementations of the functional design against
the underlying mathematical equations that
drive the simulation. When the resulting
economy was not as expected, the functional
definitions were scrutinized, (as was their

implementation in software), and the system
was modified or changed in some way to
produce the expected results. As with many
software engineering projects, requirements had
to be cut and many of the initial requirements
have yet to be featured in the working
simulation model. For instance, people are

currently unable to move between cohorts,
mainly due to another postponed requirement,
that the system will “age” and time will
progress. All functions interact on a stagnant

database of cohorts, which means that the
system is currently incapable of modeling the
effects of minute and incremental changes as
they propagate with time through generations.

An example of this limitation is the inability to
model the correlation (if any) between a
generous Social Security system and the
percentage of low income, or impoverished,
cohorts. Despite missing requirements and
functionality, the system, in its current state, is
described in detail below.

The system’s features and its limitations are the
result of the platform, database management
system, individual modules/components and

their interactions, and user interface design.
The system was programmed in Visual Basic
.NET, and thus, the graphical user interface was

designed in Visual Studio 2008 Professional
using built-in CASE tools. This greatly expedited
user interface design and implementation, but
ultimately limited the ability to represent results
graphically. A class was designed to remedy this
deficiency, and will be discussed later. Microsoft
Access was chosen as the DBMS, primarily for

the reason that its runtime is easily and freely
redistributable, and Access is compatible with
32-bit Windows machines, (which was the target
platform). With the platform, language, IDE,
and DBMS determined, the interface design,

database connections, and the database
population table became the primary focus.

Prerequisite to modeling economic scenarios and
their interactions, a database had to be built
representing the sample population with which
the underlying economic functions interact. This
in itself necessitated two additional
requirements: a user interface, and a means of

connecting to the database. The Population
table in the database was painstakingly
colonized using hand-crafted data from the
previous Excel-based system. After soliciting
user interface requirements, it became apparent
that the system would consist of many sub-
sections, each relating to different parts of the

economy (including healthcare, education,
taxes, etc.), and that the interface should be
designed in a similarly modular fashion. Each
subsection was encapsulated in its own window,
and windows could be switched using menu
buttons at the top of the parent frame. As a
result of this interface design, each section had

to be customized and run independently of all
other sections. Therefore the interactions
between these disparate sections is only
apparent once the “Run Simulation” button is
selected. This modular interface design also

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org

allows for the addition and deletion of categories
should system maintenance be necessary. As
stated previously, the interface’s primary
function is to act on the database, thus a custom

class had to be written to manage access to the
database(s). See the sample interface in Figure
2 of the Appendix.

The ConnectionAdapters.vb class was written as
a means of managing the connection to the
database, and abstracting away the details of
the requests the program makes to the

database. Because many of the functional
definitions from the design documentation
involved updating attributes for every cohort in

the database based on one or more other
attributes, thousands of connection objects had
to be created and managed by the VB.NET

software, thousands of queries (mainly SELECT
and INSERT statements) had to be run by the
DBMS, and the result sets for those queries had
to be returned to the program. This custom
class provides the following public methods for
use by the programmer: DBupdate(),
DBselect(), DBinsert(), and DBdelete(). The

class also provides private methods used by the
system for managing the database connection,
as well as for encryption/decryption. Utilizing
these private methods, the class manages the
connection string, the state of the database, and

connections to the database, and the Object
Linking and Embedding (OLEDB) API calls

required to execute SQL statements on the
database. Unfortunately, this heavy reliance on
linking objects to execute SQL statements on
the cohorts in the database leads to
performance issues that will be discussed later.

With the infrastructure in place to interface with

and query a database representing the
economy’s population, the individual sections of
the simulation were constructed to allow users
to customize the economy in very specific ways.
The earliest working prototypes of the simulation
allowed for these individual modules to update
the production database as they were

customized. This had a significant consequence
– that the order in which the modules were run
mattered. There was a secondary consequence
in that anomalies, (usually resulting from user
input and its effect on the simulation), could be
greatly exaggerated by the repeated execution
of modules that caused anomalous results. For

this reason the current economics simulation
program includes a “Run Simulation” button on
the menu located next to the individual sub-
sections/modules. The modules affect a test
database, which is restored each time a module

is run. This ensures modules can be run only
once and any anomalous impact caused by the
order in which the individual modules are
executed on the database is mitigated by the

fact that the “Run Simulation” button executes
all the individual modules in the correct order on
the production database. The earliest versions
of this program included all the modules
together as a single simulation run. As alluded
to earlier, a change in requirements split the
simulation into two phases. The economic sub-

sections/modules that were bound to the first
phase include pollution, externalities, social
insurance (welfare), social security, healthcare,
and education – essentially all topics that affect

the well-being of the economy. Users working
on phase one can tailor their idealistic economy

by customizing each of these modules. But once
the simulation is run, and the results of phase
one have been submitted for grading, users are
bound to their economic decisions from phase
one when they move onto the second phase.

Economic Requirements

The first phase of the simulation is funded by

what our senior economist calls “magic income.”
It is magic in that the simulation generates
enough income via taxation to fund all of the
modules customized in phase one (and balance
the budget) no matter how expensive. Phase

two allows users to access and customize
income tax, corporate income tax, and

consumption tax systems with the objective of
funding their ideal economy and balancing the
budget manually using taxation. For example,
as part of the income tax system, the user must
specify the income tax brackets and their
corresponding marginal tax rates, as seen in

Figure 3. These marginal rates are then
factored into a function which computes and
collects income tax from every individual, in
every cohort, in the database. Corporate
income tax has similar options and objectives.
Regarding consumption tax, the user can specify
a uniform tax on all consumer goods, or

determine an individual tax rate for each item
category based on that category of good, and
the category’s elasticity. As stated previously, a
paramount functional requirement of this
program was that the user could customize an
economy as they see fit, and then generate the
income to fund the economy. That requirement

is fulfilled by this economic simulation system.
However, there are many other interesting
classes and methods that were designed and
written in order to help fulfill this and other
requirements of the system.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org

Another requirement of the system was that the
students be able to submit their assignments to
the course instructor electronically from the
program. After further requirements gathering,

it was determined that the submission needed
only to consist of the inputs and outputs of the
simulation. Since each sub-category/module
(healthcare, education, taxes, etc.) has one or
more input forms and one or more output forms,
we simply delegated a file name associated with
each form/screen, and any time one or more

modules are run, (and input/output forms are
filled/displayed), their respective files are
updated with the most recent input and output
data. This was initially implemented using the

StreamReader and StreamWriter classes built
into VB.NET System.IO. However, any change

to the form necessitates changing the code
which writes the user input and simulation
outputs to the files, therefore, an alternative
design was created: the program would make
image files of its input forms and output
windows. Using the System.Drawing.Imaging
classs, along with gdi32.dll (the graphical device

interface library), the program essentially takes
screenshots of itself by passing its current
screen coordinates, and an output file name and
location, as parameters into the Imaging
classes. The result is a JPEG image containing
the currently active screen of the program.

Thus, part of the processing for each module of

the simulation is to take screenshots of input
and output forms using these API calls. At the
end of the simulation, the user has a directory
containing the input and output screenshots
representing their work and this folder of image
files is what must be submitted for grading.

Thus we have two new challenges to the project:
compressing and combining the image files, and
transmitting the resulting zipped folder to the
professor. Microsoft provides another API that
allows programmers to compress and store
directories by utilizing the Shell32.dll library file.
After creating an instance of the Shell32.Shell

object, the program makes a system call to

create the zip file, another add the directory
containing the screenshots to the zipped file,
and finally a third to save the file to disk. At this
point the program has all the information
regarding the user’s inputs and resulting
economy in a single zipped folder (file). The

final piece of this requirement necessitates
sending the zipped folder to the instructor for
review and grading. This would only require one
system call (assuming the user had Microsoft
Outlook installed). This is a fairly valid

assumption for computers on our campus,
however, that is not a valid assumption to make
in all instances. Therefore the program was
designed to send emails standalone. By

importing the System.Net.Mail classes, the
system creates a new mailMessage() object, and
passes all the parameters (including the location
of the zipped folder which will be an attachment)
needed in order to send the message to the
instructor. Before sending the message, other
calls allow the program to specify a SMTP mail

server (host) name and port number to enable
SSL and input user credentials for connecting to
the mail server. When a user chooses to submit
their results, the screenshot folder is zipped and

attached to an email and the program securely
connects to Gmail’s SMTP server and sends an

email with the user’s results attached to the
instructor’s inbox. This fulfills one of our most
important functional requirements of any system
used in higher education: allow the instructor to
easily view and grade student results.

What is the value of image screenshots if the
resulting data was merely textual? We alluded

earlier that the Visual Studio CASE toolkit for
GUI development is somewhat restrictive. For
instance, it provides no means for creating
graphs or charts – two great methods of
succinctly conveying large amounts of

information. In the economics simulation, there
are results that are numerically very difficult to

convey. For instance, the change in welfare
benefit with respect to increasing income is
eloquently presented as a graph (see Figure 4)
that is difficult to present through other means.
The solution: build support for making graphs
and charts into the economics simulation. In

order to achieve this, a graphics (paint) object
was instantiated from the System.Drawing
classes and literally used to draw the graph
within a defined output area on the form. The
software had to keep track of the minimum and
maximum values on both axes (and print them
on the output screen). Because we specified

coordinates to the graphing software assuming

the origin at the bottom left corner of the graph,
the software had to implicitly translate the
coordinates to pixel maps which are drawn from
the top left corner. This drawing software
became useful in depicting results from many of
the sub-sections, and this code was later

adapted to draw bar graphs as well (see Figure
4).

3. OBSTACLES

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org

As with any pilot system, this project was not
without hurdles to overcome. The program
exhibited its fair share of programming logic
errors. Perhaps even more insidious were logic

errors that resulted from unexpected
interactions between the underlying
mathematical formulas and equations. Recall
that the economic simulation functions run
independently and they interact by means of
shared resources (the cohorts in the database).
Also note that in VB.NET, division by zero will

cause the Math class to throw an exception and
this exception will terminate the program if it is
not handled. What we present next is an
inherent deficiency of the model that occurs in

many of the functional design definitions. As a
simple example, define the interest rate as

follows:

Assume that average savings is a result that can
be derived from the cohorts in the database and
note what occurs when the average savings is
$1000, $500, $250, $0… It is obvious that this
model is not adept to handle Average Savings
amounts less than 1000 dollars, as it will

drastically inflate the resulting interest rate (or
division by $0 will cause the program to

terminate). When the Average Savings is
greater than $0 and less than $1000, error
propagation is a significant concern. The interest
rate resulting from this function is used as input
into the following functions:

EconomyWideProductivity,
AfterTaxRateOfReturn,
SocialSecurityTrustFundBalance, and
TaxableIncome, just to name a few.

The above example shows that an anomalous
interest rate (which is derived data) could

essentially invalidate the resulting economy due
to calculation propagation into other simulation
functions. The conclusion of this example is that
the functional design was not sufficiently

detailed and the model could be broken. Poorly
solicited requirements and bad functional design
meant that every method which uses derived or

user-inputted data had to retrospectively be
evaluated for problems similar to the interest
rate deficiency described above. The end result
of this evaluation was restriction. For example,
derived average savings amount was given a
minimum value of 1000 to mitigate the problem
described above. Even user input had to be

restricted by use of combo boxes, sliders,
maximum and minimum values applied to

numeric text boxes, and by other means. The
end result was a more robust simulation, at the
expense of some challenge for the user. The
severe restrictions on input data intrinsically act

as a guide for the user making it easier to model
their economy and complete the simulation
assignment satisfactorily. Because bad input
and derived data can effectively invalidate
simulation results, restricting inputs and results
was the only alternative. The functional design
necessitated these restrictions, but this was not

the only area in which the simulation suffered.

Database Issues

The database became a bottleneck within the

simulation, but not for the reasons one might
initially suspect. Not one of the thousands of
queries run by the simulation requires a single

table join, since the entire population
deliberately resides in a single table.
Nevertheless, functions that rely heavily on
retrieving statistics about the population or
updating the population statistics take a long
time to execute. To describe the reasoning for
this latency, we return to the previous example

regarding interest rate calculation. Interest rate
is a function written in VB.NET that is called
after any function that updates the savings
amounts in the database. The interest rate
must retrieve and sum every savings amount

from the Population table, average the sum, and
then store the result in a separate table. This

interest rate function only requires two database
queries, one to return the subset of the
Population table containing the savings amounts,
and another to write the resulting average to a
different table (which was designed to track of
certain derived data, such as the interest rate).

This could be more efficiently implemented as a
stored procedure that returns the program the
interest rate; or as a trigger that updates the
interest rate attribute when any savings amount
changes. But since the function only makes two
database accesses, it is not terribly inefficient.
So why then does the program take so long to

run certain calculations? And why was the
interest rate function a good example, if it’s not
that inefficient? The answer is scale. Most of
the functions are not computing an average that
is stored globally, they are updating attributes
on a per-cohort basis, which means updating
every row in the population table. This still only

takes one query to retrieve (SELECT) a subset of
the population table that includes all
elements/attributes required for the calculations.
But it now takes N update queries, where N is
the number of rows in the population table for

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org

the function to update an attribute for every
cohort in the database.

Some of the many functions/calculations that
behave in this way are:

calculateWorkHoursPerYear,
calculateYearlyIncome, and calculateIncomeTax,
just to name a few of the functions used in the
Taxes section of the simulation. Now consider a
Population table with N=1000 cohorts (which is
fairly representative of the simulation’s actual
Population table size). These functions must

execute one DBselect() call and 1000
DBupdate() calls from the
connectionAdapters.vb class described earlier.

Note that executing 1001 SQL statements from
a VB.NET program is not the same as executing
1001 SQL statements directly from within a

DBMS. As stated previously, the database
functions allow the programmer to query the
database, with the extra work being handled
implicitly. This means 1001 SQL statements in
VB equates to creating 1001 OleDbDataAdapter
objects, each of which must create a connection
to the database, and run the query that was

passed into them as a parameter.

What this example depicts is the vast amount of
work required to update the database for each
function that acts on an attribute for every
cohort in the database. Now scale this even

further; consider the fact that the taxes module
simulation contains 10+ functions, many of

which act on one or more attributes for every
cohort. Now it’s apparent that the taxes
simulation is allocating memory for tens of
thousands of objects, and each of these objects
will connect to and run a query on the database,
and some of these queries will return result sets

that the objects must handle. The defect we are
depicting with these examples is the vast
amount of overhead required to accomplish
some of the functions that act on the database.
As stated previously, many of these functions
don’t need to be in software, and would be more
efficiently implemented as stored procedures or

triggers. However, many of the functions do
rely on the VB.NET software for calculations, and
they cannot be implemented as part of the
database. Functions that meet this definition
are the true bottleneck routines of the
simulation.

4. ENHANCEMENTS

One of the most obvious ways to make our
functions more efficient is by loop unrolling. If
the program is acting on an attribute for each
cohort in the database, loop unrolling by a factor

of four (to act on four cohorts at a time) would
dramatically improve performance by turning
1000 DBupdate() calls into 250 calls. The
drawback to this is that it makes code less

readable (which is important in the agile
software development methodology), and also
makes the SQL update statements more
complex as they must update attributes of four
cohorts at the same time. There is also extra
processing that must be written to account for
the situation where the number of rows

(cohorts) is not a multiple of four. Loop
unrolling could drastically improve the simulation
performance by reducing the number of OLEDB
objects created, the number of connections

established to the database, and the number of
SQL statements run. It does, however, require

substantial modification to every function and
method that falls into this category. This
solution does promise to improve performance in
future iterations of the economics simulation
program.

Performance can be improved by making
significant changes to the database, and to the

software with which it interacts; but there are
other means that also promise great
performance improvements for our economics
simulator. The field of Artificial Intelligence can
improve the performance and robustness of the

economics simulation. By implementing
bottleneck routines using an Expert System we

could not only drastically reduce the amount of
processing that needs to be completed, but we
could also increase the robustness of the
software by introducing fuzzy logic into the
system. An expert system implementation of a
bottleneck routine would take the population

table entirely out of play, and the result would
be inferred via rules firing, rather than by
scrutinizing the database post simulation.
Remember we just determined that these
routines could also be improved using loop
unrolling, so this is an alternative
implementation of a routine, and not a

supplement. This is a very appealing alternate

approach in that it introduces the idea of fuzzy
logic. Fuzzy logic has the potential to fix many
of the defects inherent to the mathematical
definitions of the functions, (like in the interest
rate example above). Rather than defining the
function formulaically as it is now, we could

describe it using heuristics and confidence
factors. For example, the Interest Rate
calculation could be re-written using expert
system rules (the results are shown in Table 1,
Appendix).

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org

This simple rule-based system requires no
expert system shell, proprietary inference
engine, or special processing to handle fuzzy
logic (since it contains no fuzzy logic). This

system could be programmed very efficiently as
a series of conditional statements in nearly any
modern programming language. So why wasn’t
this used in place of the flawed Interest Rate
calculation described above? The simple
explanation is that even though these rules
appear to imitate the intended purpose of the

interest rate calculation, they were not
developed by experts. While the interest rate
example is simple enough that a translation to a
rule based system is trivial, this is not the case

for the vast majority of the functions utilized by
the economics simulation. Therefore, to make a

rule-based expert system implementation of
certain functions a feasible approach, a
knowledge engineer would have to solicit
heuristics from domain experts to try to
determine what overarching rules govern the
functions being re-engineered.

As mentioned earlier, a major benefit to using

expert systems is the ability to introduce fuzzy
logic into the simulation. Recall that the result
of the interest rate calculation is utilized by a
number of other functions. Many of these
functions don’t require the specific interest rate,

and just need to know if the rate is relatively
“low”, “normal”, or “high”. Therefore, fuzzy set

theory could significantly reduce the complexity
of the functional definitions, and in doing so,
reduce the chance for the logic errors described
earlier. Reducing the chance for logic errors due
to derived or input data will in turn reduce the
heavy restrictions currently placed on the user

and on the simulation, making the simulation
more challenging and realistic. All of these
benefits could be realized with help from fuzzy
logic and the use of rule-based expert systems.

5. FUTURE PLANS & LESSONS LEARNED

Despite the promising benefits Artificial
Intelligence promises to bring into this project,

there is currently no part of the simulation
taking advantage of rule-based expert systems
or fuzzy logic. In describing our pilot system,
we have unveiled many improvements planned
for future iterations of the project. The
economics simulator serves as a working
economics modeling tool for an economics

course pertaining to public finance at our
institution. The pilot features custom tools for
graph and chart design, as well as the file and
networking functionality required for the

program to submit student results to the
instructor. Currently, the model severely
restricts derived data and user inputs in order to
ensure results are not skewed by anomalous

values. The implementation of the sample
population economy as a database table has
caused program latency due to repeated object
instantiations to handle connections and
accesses to the database. This can be remedied
in many ways. First by reducing the number of
object instances and connections to the

database by converting applicable functions into
database stored procedures or triggers, and loop
unrolling the functions that cannot be
implemented at the DBMS level. An expert

system could provide the means of improving
performance without the loop unrolling.

With the completion of a new version of the
project, we will have a new generation of
economics simulation software. The user will
operate the software in two phases. First, the
user will be presented with a detailed menu of
policy choices in five broad areas. In
Externalities, students will have to grapple with

traffic congestion, pollution, and CO2–induced
climate change. In Social Security, students will
have to adjust the Social Security system to
remain solvent in the face of longer life spans
and a retiring Baby Boom. In Social Insurance,

students will have to create a system that
provides income support to low-income families

without dis-incentivizing paid work. In Health
Care, students will design their own healthcare
system, maximizing coverage and quality while
containing costs. In Education, students have a
range of options for raising educational
achievement while lowering costs. The health,

educational, and budgetary implications of
student policy choices will be forecasted out for
the next 50 years.

In the second phase of the new system, the
policy choices made in the first phase will be
locked in place, and students must raise tax
revenue to pay for all the programs they created

in the first phase. Again, a wide range of
options are available to the students, including
traditional income taxes, payroll taxes,
consumption taxes, and value-added taxes.
Once again, the budgetary and economic
implications of the students’ policy choices will
be forecasted out for the next 50 years.

Overall, the current system serves its
requirement of allowing users to first customize
their economy, and then fund it by means of
setting up a taxation system. As we evaluate

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org

our work and experience with this system, Fred
Brooks’ (1975) often-quoted preposition from
The Mythical Man Month comes to mind. The
management decision is not whether to build a

pilot system. Every system has a pilot, hence
“plan to throw one away; you will, anyhow”
(p.116). Is this system merely a pilot that will
inevitably be thrown away? Could our program
foreshadow new and exciting progress in
economics modeling and simulation? Despite
the vast amount of progress made in the

simulation, there are apparent defects in the
current version and obvious improvements that
can be made to the model. Through fruition, the
pilot software successfully fulfilled its purpose in

the classroom; however the real value will come
in the next iteration of the system, which

promises better design, more efficiency, and
inclusion of features dropped from the pilot
system due to time and other constraints. In
short, the value of this pilot system will not be
fully realized until the system’s next version.

We stated in the beginning that we are
motivated to create a system that encapsulates

a design that looks more like our problem
domain (an economic model envisioned by the
user) than computing architecture. Volumes
have been written about the economics of
software development (Royce, Bittner, & Perrow,

2009). Yet it remains a difficult challenge that
requires enormous time and effort. And as we

have shown, the developer must be prepared to
throw it all away and start anew. However, as
we start anew we are reassured that we possess
significantly more experience and knowledge of
the problem domain than we did before we
began. So, in addition to re-learning one of

Brook’s theses, we have also rediscovered in
working with our economists and students, that
software development is indeed a social learning
process (Pressman, 2001). We still have much
to learn.

5. REFERENCES

Brooks, Frederick P. (1975). The Mythical Man-

Month. Addison-Wesley, Reading, MA.

Denning, Peter J. (2007). Computing is a Natural
Science. Communications of the ACM, 50(7),
13-18.

Fowler, Martin (2001). The Agile Manifesto.
Software Development, August, 28-32.

Pressman, Roger S. (2001). Software

Engineering: A Practitioner’s Approach. 5th
Ed. McGraw-Hill, New York, NY.

Royce, W., Bittner K., & Perrow, M. (2009). The
Economics of Iterative Software
Development. Addison-Wesley, Reading,
MA.

Walsh, Patrick (2010) “Your Turn: Simulation
Software for Teaching Public Economics.”
Proceedings of 21st Annual Teaching
Economics: Instruction and Classroom
Based Research. Robert Morris University,
Pittsburgh, PA.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org

Appendix

Cohorts are indexed by the year of their birth, b.

Health is indexed by h (low, medium, high)

Ability is indexed by a (low, medium, high)

Time is indexed by t. The present period is t=T

Whole population

 age

 (up to

 80 or 90)

 Ability Health one Cohort (all the same age)

 (3 categories) (3 categories)

 Ability Groups within Cohort

 Health Groups within Cohort

 One Demographic Block

Characteristics of a block:

age, ability, health, size, health insurance type,

Social Security Private Account balance
Figure 1. Description of a cohort.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org

Figure 2. VB Interface for current simulator.

Figure 3. Income Tax Brackets Interface.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1803

©2011 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org

Figure 4. Sample Graph from the Economic Simulator.

Rule 1: IF AverageSavings <= 1000 THEN InterestRate =

0.35

(Confidence +=

100%)

Rule 2: IF 1000 <= AverageSavings <

1500

THEN InterestRate =

0.25

(Confidence +=

100%)

Rule 3: IF 1500 <= AverageSavings <

2000

THEN InterestRate =

0.20

(Confidence +=

100%)

Rule 4: IF 2000 <= AverageSavings <

2500

THEN InterestRate =

0.15

(Confidence +=

100%)

Rule 5: IF AverageSavings >= 3000 THEN InterestRate =

0.10

(Confidence +=

100%)

Table 1. Potential Rules for Future Expert System.

