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Abstract  

 
Given a new product (a tuple), we consider the problem of selecting a small subset of attributes to 
highlight such that the product stands out in a crowd of existing competitive products and is widely 
visible to the pool of potential customers.  This problem has applications in marketing and product 

manufacturing and has been the subject of recent investigations.  In this paper, we consider an 
important variant where a product is considered to be visible to a customer if it occurs in the skyline of 
the query posed by the customer.  Given a set of d-dimensional points, a skyline query returns points 
that are not dominated by any other point on all dimensions.  This problem variant poses new 
challenges that cannot be solved optimally using prior techniques.   We develop a novel optimal 
algorithm based on the Signature Tree data structure as well as approximation algorithms to solve the 
problem.  We conduct a performance study illustrating the benefits of our methods on real as well as 

synthetic data. 
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1.   INTRODUCTION 
 

Skyline query processing has been extensively 
investigated in recent years.  Given a set of 
points, the skyline comprises of the points that 
are not dominated by other points.  A point 
dominates another point if it is as good or better 
in all dimensions and better in at least one 

dimension.  For example, a student attending a 
conference might want to search within a hotels 
database for a cheap hotel with reasonable 
ratings near the conference venue.  This kind of 

query sometimes contains conflicting goals, as 
hotels near the conference venue with 
reasonable ratings are expected to be rather 

expensive.  It is of interest to return as query 
results the set of skyline hotels; where for each 
skyline hotel there is no other hotel that is 
cheaper, nearer, and with better ratings.  While 
skylines are naturally defined for numeric data, 
they can also be defined for categorical and 
Boolean data if the data values within each 

attribute’s domain have natural total (or even 

partial) orderings.  In this paper we mainly 
consider Boolean skylines (skylines with Boolean 

data), where all the attributes asked by a query 
need not to be present in the tuple to be 
returned by the query.  For example, let us 
consider a car database with Boolean attributes 
such as whether the car has AC, Power Doors, 
Power Brakes, etc.  Thus if a user poses a query 

such as “Select * from Cars where Make = 
Honda and AC = yes and Power Windows = 
yes”, then a car such as <Toyota, AC, Power 
Windows> would appear in the skyline if there is 

no car that exactly satisfies the query 
conditions. 
 

Thus, skyline query processing techniques or 
skyline operators are designed to provide all 
interesting answers that may satisfy a user’s 
need.  Skyline semantics are less rigid than 
conjunctive range query semantics and can be of 
use in exploratory search applications.   
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Our goal in this paper is however not to design a 
skyline operator.  Instead, we consider an 
interesting generalization of a problem that has 
applications in marketing and product 

manufacturing, and has been the subject of 
recent investigations (Miah, Das, Hristidis, & 
Mannila, 2009).  Given a new product (a tuple), 
we consider the problem of selecting a small 
subset of attributes to highlight such that the 
product stands out in a crowd of existing 
competitive products and is widely visible to the 

pool of potential customers.  So the goal is not 
to develop a better search technique to help the 
user (buyer of a product) but to help the seller 
of the product to reach maximum number of 

users.  This problem was investigated by Miah et 
al.  (2009), where primarily a somewhat rigid 

model of conjunctive query semantics was used 
to define product visibility – a product is visible 
to a customer if it satisfies all conditions of the 
query posed by the customer.  The skyline 
variant of the problem was also discussed very 
briefly and the same solution was proposed for 
both the Boolean and skyline problem variants, 

which later proved not to be optimal for skyline 
variant (Miah, 2009).  In this paper we mainly 
consider skyline semantics – a product is visible 
to a customer if it appears in the skyline of the 
customer’s query, i.e., although it may not 
exactly match all query conditions, it is 

nevertheless potentially “more interesting” to 

the customer than many other competing 
products. 
 
Selecting [a/the] subset of attributes to highlight 
a product plays an important role in marketing 
and manufacturing of products as well as in 

operation[s] research.  We can consider a real 
world scenario: assume that one wishes to 
publish a classified-ad in a newspaper (online or 
printed) to advertise a house for sale.  The 
house may have a lot of attributes (number of 
bedrooms, bathrooms, close to beach, close to 
school, etc.).  However, due to the 

advertisement costs involved, it is not possible 

to describe all attributes in the ad.  So one has 
to select, say the ten best attributes.  Which 
ones should be selected within the budget limit 
such that the published ad will be viewed by as 
many customers as possible? From a 
manufacturing point of view, a house builder 

might want to find the most popular combination 
of features to add to a house to be constructed 
in so as to be more interesting than other 
competing homes to as many potential 
customers as possible.  Another interesting real 
world example would be to select a small set of 

keywords or a title for an advertisement 
campaign. 
 
In this paper, we mainly focus on the important 

and interesting variant of the problem where the 
data is Boolean and the queries follow skyline 
retrieval semantics.  Here, a tuple does not have 
to have all the attributes present asked by a 
query, but it has to be visible on the skyline of 
the query.  This problem variant cannot be 
solved optimally by the existing algorithms.  

Moreover one query can have multiple skylines, 
i.e., multiple sets of attributes for which 
different data points (tuples) are visible on the 
skyline of the query.  We develop a technique to 

solve the skyline version of the problem that is 
quite different from the methods proposed by 

Miah et al.  (2009).  The new method is based 
on a judicious application of the signature tree 
data structure (Chen & Chen, 2006 and Miah, 
2009) with modifications and smart prunings.  
Interestingly, our new algorithm can also solve 
easily the old problem variant of conjunctive 
query semantics optimally. 

 
Our main contributions are summarized below: 
 
1. We investigate the problem of selecting 

attributes of a tuple for maximum visibility 
in skylines as a promising data exploration 

problem that benefits a certain class of users 

interested in designing and marketing their 
products.   

2. Though the problem is proved to be NP-hard 
(Miah et al., 2009), we are able to develop 
an optimal algorithm based on the signature 
tree data structure to solve the problem that 

works well for moderate problem instances. 
3. We also present fast approximation 

algorithms that work well for larger problem 
instances. 

4. We perform detailed performance 
evaluations on both real and synthetic data 
to demonstrate the effectiveness of our 

developed algorithms. 

 
2.   PROBLEM FRAMEWORK 

 
Before formally defining the problem, we first 
provide some useful definitions and notations in 
Appendix 1. 

 
The problem formally can be defined as follows. 
 
PROBLEM: Given a database of competing 
products D, a query log Q with Skyline Query 
semantics, a new tuple t, and an integer m, 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html


Conference for Information Systems Applied Research 2011 CONISAR Proceedings 
Wilmington North Carolina, USA  v4 n1804 

_________________________________________________ 

_________________________________________________ 
©2011 EDSIG (Education Special Interest Group of the AITP) Page 3 

www.aitp-edsig.org 

compute a compressed tuple t′ by retaining m 
attributes such that the number of queries that 
retrieve t′ on the skylines is maximized. 
 

 
Car ID Attributes/Features present in the car 

t1 {AC, Four Door, Power Doors} 

t2 {Four Door, Turbo} 

t3 {AC, Auto Trans, Power Brakes, Power Doors} 

t4 {AC, Four Door, Power Brakes, Power Doors} 

t5 {AC, Four Door} 

t6 {Four Door, Power Doors} 

t7 {Power Doors, Turbo} 

Database D 
 

Query 

ID 

Attributes/Features asked by the query 

q1 {AC, Four Door} 

q2 {AC, Power Doors} 

q3 {Four Door, Power Doors} 

q4 {Power Brakes, Power Doors} 

q5 {Auto Trans, Turbo} 

Query Log Q 
 

New 

Car 

Attributes/Features present in the car 

t {AC, Auto Trans, Four Door, Power Brakes, 

Power Doors} 

New tuple t to be inserted 
 

Figure 2.  Running EXAMPLE 1 
 
The following running example will be used to 
illustrate problem. 
 
EXAMPLE 1: Consider an inventory database of 

an auto dealer, which contains a single database 

table D with N=7 rows and M=6 possible 
attributes a car can have (AC, Auto Trans, Four 
Door, Power Brakes, Power Doors, and Turbo) 
where each tuple represents a car for sale.  The 
table has numerous attributes that describe 

details of the car: Boolean attributes such as AC, 
Four Door, etc; categorical attributes such as 
Make, Color, etc; numeric attributes such as 
Price, Age, etc; and text attributes such as 
Reviews, Accident History, and so on.  Figure 2 
illustrates such a database (where only the 

Boolean attributes are shown) of seven cars 
already advertised for sale.  The figure also 
illustrates a query log of five queries, and a new 
car t that needs to be advertised, i.e., inserted 
into this database.   

 

Now we can find the skyline points (cars) for the 
given database D and Query log Q in Figure 2.  
As we know, a skyline point is a point which is 
not dominated by any other point in all 
dimensions.  For query q1 {AC, Four Door}, we 
can see it easily that tuples t4 and t5 are the 

tuples (skyline points) which are not dominated 
by any other tuples in D.  For query q2 {AC, 
Power Doors}, tuples t3 and t4 are the skyline 

points, and so on.  Table 1 (Appendix 2) displays 
all the skylines found for the given query log Q 
and database D.  A skyline tuple or data points 
can have many attributes but we are interested 

only in the attributes for which the tuple is 
visible on the skyline, as our goal is to find the 
subset of attributes for the new tuple which will 
maximize the number of queries having the new 
tuple visible on their skylines.  A query can have 
more than one skyline; e.g., for query q5, tuples 
t2 and t7 are visible on one skyline whereas tuple 

t3 is visible on another skyline.  We keep 
separate record for each skyline as shown in 
Table 1 (Appendix 2). 
 

Suppose we are required to retain m = 3 
attributes of the new tuple.  It is not hard to see 

that if we retain the attributes AC, Four Door, 
and Power Doors (i.e., t′ = {AC, Four Door, 
Power Doors}), the compressed tuple t′ will be 
visible on the skylines for the maximum of three 
queries (q1, q2, and q3).  No other selection of 
three attributes of the new tuple will remain on 
skylines of more queries. 

 
3.   OPTIMAL ALGORITHM 

 
There are several methods proposed for efficient 
processing of skyline queries such as Block-
Nested-Loops and Divide & Conquer (Kossmann 

& Stocker, 2001), Bitmap-based and Index-

based (Tan et al.  2001), Nearest Neighbor 
(Kossmann, Ramsak, & Rost, 2002), Branch and 
Bound Skyline (Papadias, Tao, Fu, & Seeger, 
2003).  Any good skyline processing technique 
can be used here to find the skylines for the 
query log.  We can assume that the skylines for 

each query in the log have already been 
computed by any one of these algorithms.  Once 
these skylines have been found, then our 
problem is to find the subset of the attributes for 
the new tuple so that skylines from the 
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maximum number of queries will retrieve the 
new tuple.   
 
A Naïve optimal algorithm and its infeasibility 

are discussed in Appendix 3. 
 
We propose a novel optimal algorithm based on 
Signature Tree data structure (Chen & Chen, 
2006) which is much more efficient than the 
Naïve algorithm. 
 

Optimal Algorithm Based on Signature Tree 
(AST) 
 
We adapt the candidate set generating function 

apriori-gen used in the Apriori algorithm for 
mining association rules (Agrawal & Srikant, 

1994) to generate possible candidate sets in this 
algorithm.  The apriori-gen function takes Lk-1, 
the set of all large (k-1) itemsets.  It returns a 
superset of set of all large k-itemsets.  The 
function works as shown in Figure 3. 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 

Figure 3.  Function apriori-gen 
 

The signature tree, its construction, and 

definition are discussed in Appendix 4. We build 
a balanced signature tree for the skylines using 
the weight based method (Chen & Chen, 2006).  
The process of creating the balanced signature 
tree is discussed in Appendix 4. 
 

The traditional approach of searching the 
signature tree is discussed in Appendix 5. 
 
The traditional searching of signature tree has 
two major problems (discussed in Appendix 6).  

So we propose a new approach for searching the 
signature tree. 
 
New Approach for Searching the Signature 

Tree: First we create the signature tree for the 
skylines as described above.  Then, we search 
the tree at each level from 2-attributes 
candidate sets to up to m-attributes candidate 
sets.  Candidate sets at each level k (= 2…m) 
are generated using function apriori-gen as 
discussed above.  At each level searching is 

done as follows: 
 

i. Let v be the node encountered and st[i] be 
the position to be checked. 

ii. We move both the right and left child of v 
whether st[i] = 0 or st[i] = 1. 

iii. We maintain a variable m′ = (m - k), 
which is the number of mistakes allowed.  
Here, m is the number of attributes we 
need to retain for the new tuple t, and k is 
the current number of attributes in the 
candidate set.  A mistake during the search 
occurs when we move to the right of a 

node (i.e., skyline has value 1 for the digit 
mentioned by the node) and the candidate 
set has value 0 for that digit.  If this 
situation happens, we increase the count 
for mistakes.  Consider the signature tree 
in Figure 5 (Appendix 4) for our running 

example.  Assume current value of k = 2, 

m = 3, and we have a candidate set with 
signature 110000.  So, the value of m′ = 
m - k = 1.  As mentioned above, when we 
search the tree, we move both right and 
left of a node.  Moving left never increases 
the number of mistakes because if a 

skyline s has value 0 for a digit then a 
candidate set c can have either value 0 or 
1 for the corresponding digit.  When we 
move right from the root node (Figure 5 in 
Appendix 4), the value of digit 5 (root 
node) in candidate set 110000 is 0, so we 
increase the number of mistakes made so 

far, which is (0+1) = 1.  Next we move 

both left and right from node labeled 1 
(right child of root).  Moving right from 
node labeled 1 does not increase the 
number of mistakes made as the value of 
digit 1 in candidate set is also 1.  But when 
we move right of the node labeled 3 (left 

child of node labeled 1), we increase the 
number of mistakes made because value of 
digit 3 in the candidate set is 0.  Here a 
new value for the number of mistakes 
made so far is (1+1) = 2 which is greater 
than m′.  So we do not consider any nodes 

First in the join step, it joins Lk-1 with Lk-1: 
 

Insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

from Lk-1 p, Lk-1 q 

where p.item1 = q.item1, …, p.itemk-2 = q.itemk-2,  

  p.itemk-1, = q.itemk-1 

 
Next, in the prune step, it deletes all 

itemsets  such that some (k-1) subset 

of c is not in Lk-1: 

 

for all itemsets  do 

 for all (k-1)-subsets u of c do 

  if (  then 

   delete c from Ck 

 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srikant:Ramakrishnan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html
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to the right of node labeled 3.  As we can 
see from the tree in Figure 5 (Appendix 4), 
we do not consider s3 with signature 
001010 as a possible subset of the 

candidate set 110000 in future.  We can 
see easily that adding 1 to the candidate 
set 110000 will not make s3 (001010) a 
subset of the candidate in future. 

iv. Once we reach a node and number of 
mistakes made so far reaching the node 
from the root is greater than m′, then we 

do not consider the node and its children 
(if it is an internal node) as the possible 
subset of the candidate set. 

v. Once we reach a leaf node (skyline) and 

the number of mistakes made so far 
reaching the node from the root is not 

greater than m′, we keep the skyline for 
further match. 

 
Once we find the corresponding skylines S (leaf 
nodes) by searching the tree for a candidate set 
c, for each skyline si we do the following: 
 

a) We find the number attributes r present in 
skyline si which is not present in candidate 
set c.  If r ≤ (m - k), we count si as the 
possible subset of c.  Here, m is the number 
of attributes we need to retain for the new 
tuple t, and k is the current number of 

attributes in the candidate set.  If r > (m - 

k), we do not consider that skyline or leaf 
node for c as a possible subset, i.e., do not 
increase count for c. 

b) We keep a count for each candidate set c 
that how many skylines have been found as 
possible subsets of c.  Here, we count each 

query only once.  For example, considering 
our running example, if we find two skylines 
s5 and s6 are the subsets of any candidate 
set ci, we only count them once because 
both come from the same query q5.  This is 
why we keep information in the tree for both 
the skyline and the query from which it 

came.  We remove the candidate set c if the 

total count for it is less than the minimum 
support. 

c) At level m (candidate sets with m-
attributes), we simply check how many 
skylines (found after searching the tree) are 
actually the subsets of the candidate set.  

Again, we count skylines for each query only 
once for a candidate set.  We return the 
candidate set with highest count as the top-
m attributes for the new tuple t.   

 
 

4.   APPROXIMATION ALGORITHMS 
 
A simple greedy heuristic would be to select the 
top-m attributes with highest frequency in the 

skyline log (frequency is the number of times an 
attribute appear in the skyline log).  But this is 
not a good approach when attributes are 
correlated, which is quite common in practice.  
We propose three effective approximation 
algorithms based on greedy heuristics that 
perform well. 

 
Backward Elimination (BE) 
 
We propose a backward elimination greedy 

heuristic where all single attributes are 
considered first and then remove one at a time 

until m attributes are left.  The summary of the 
approach is shown in Figure 6 below. 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 6.  Approximation Algorithm: Backward 
Elimination (BE) 

 
 
 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 

Figure 7.  Approximation Algorithm: Forward 
Selection (FS) 

 

1. Take the original set of attributes, So. 

2. Remove an attribute randomly from So which was 

not tested (removed) before and count how many 

skylines are subsets of the new set (So -1).   

3. Restore the attribute removed in step 2. 

4. Repeat steps 2 and 3 for each attribute in So. 

5. Remove the attribute from So permanently with 

highest count, i.e., remove the attribute which has 

lowest impact. 

6. Repeat steps 2-5 until So remains with m attributes 

1. Let So = set of all original attributes present in 

skyline log 

2. Let S = an empty set, and an integer k = 0 which is 

the number of attributes currently present in S.   

3. For (k = 0 to m) 

4. For each attribute ai left in So, check if we add  (m-

k) attributes from So including ai to S, then how 

many skylines could be possible subsets of S.  

In fact we check the number of attributes in a 

skyline which are not present in S including ai.   

If the number is less than (m – number of 

attributes in S including ai), then the skyline is 

considered as a possible subset of the candidate 

set S 

5.   Add the attribute to S with highest count in step 4. 

6.   Remove the attribute added to S in step 5 from So. 

7. End 

8. Return S.   
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Forward Selection (FS) 
 
Forward selection heuristic starts with an empty 
set of attributes, S and adds one attribute at a 

time until S has m attributes.  In order to find 
the best m attributes, we can first add the 
attribute with highest frequency in the skyline 
log (frequency means number of times the 
attributes appear in the skyline log).  Next we 
add the attribute which occurs most with the 
first attribute, then add the attribute which 

occurs most with the first and second attributes 
together, and so on until S remains with m 
attributes.  In this method, we might find S is a 
good selection of m attributes if we want to find 

the new t as a subset of maximum number of 
skylines or queries.  But our goal is the 

opposite; we want to find S as a superset of the 
maximum number of skylines.  So, just adding 
top-m attributes may not result a good selection 
of attributes.  We modify the addition criteria of 
an attribute to S.  Figure 7 shows the summary 
of the algorithm FS. 
 

Combination of Forward Selection and 
Backward Elimination (FSBE) 
 
Now we propose another heuristic which 
combines both the algorithms BE and FS 
considering bidirectional hill climbing techniques.  

Hill climbing is a well known procedure for 

sequential attribute selection.  Greedy 
algorithms such as BE and FS implement so 
called unidirectional hill climbing, i.e., attributes 
once added (removed) cannot be later deleted 
(added).  The advantage of bidirectional hill 
climbing compared to either FS or BE is that one 

or several previously deleted (added) attributes 
can be brought back to (removed from) the 
subset if the accuracy of the algorithm 
increases.  But this technique can be time 
consuming as both the BE and FS has to perform 
completely and then somehow combine the 
results.  So, we propose a new technique to 

improve the performance of the algorithm, 

described as follows: 
 
Once an attribute is removed by BE it is not 
considered to be added by FS anymore.  
Similarly, once an attribute is added by FS it is 
not considered to be removed by BE.  So, at 

every step BE eliminates one attribute and FS 
adds one.  We repeat the procedure until FS 
adds m attributes.  The summary of the 
algorithm FSBE is given in Figure 8. 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Figure 8.  Approximation Algorithm: FSBE 
 

5.   EXPERIMENTS 
 
In this section we measure (a) the time cost of 
the proposed optimal and approximation 
algorithms, and (b) the quality of the 
approximation algorithms.   
 

The system configuration and details of datasets 
are discussed in Appendix 7. 
 
The top-m attributes selected by our algorithms 
seem very effective.  For example, both for real 
and synthetic query logs, our optimal algorithm 

could select top features or attributes specific to 

a car, e.g., sporty features are selected for 
sports cars, safety features are selected for 
passenger sedans, and so on. 
 

 
 
Figure 9.  Quality on Real Query Log for varying 

m 
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1. Let So = set of all original attributes present in 

skyline log 

2. Let S = an empty set, and an integer k = 0 which is 

the number of attributes currently present in S. 

3. For (k = 0 to m) 

4.      Perform BE on So.  // every step removes one 

attribute from So. 

5.      Perform BS on So.  // every step adds one 

attribute to S. 

6.      Remove the attribute from So which is added by 

FS to S in step 5 

7. End 

8. Return S. 
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Figure 9 shows the quality of the algorithms on 
the real query log which has a total of 185 
queries.  The x-axis represents m which is the 
number of attributes needing to be selected, and 

y-axis represents the number of queries for 
which the new tuple with selected m attributes is 
visible on the skylines.  We use several 
experiments for each algorithm with varying m.  
The real query log in fact has no query as well 
as skyline with less than or equal to 3 attributes, 
so we can see all algorithms produce zero output 

for m = 3.  We can see from the graph that 
approximation algorithms work really well. 
 

 
Figure 10.  Performance on Real Query Log for 

varying m 
 

 

 
 

Figure 11.  Quality on Synthetic Query Log 
(1000 queries) for varying m 

 

Figure 10 displays the execution times of each 
algorithm for the real query log.  Here x-axis 
represents m.  The y-axis represents the time in 
seconds to execute the algorithm.  We can see 

that the approximation algorithms are faster 
than optimal AST, which is expected. 
 
Next we show the quality on synthetic query log 
of size 1000 queries in Figure 11.  As we can see 
from the graph, for the synthetic query log our 
approximation algorithms also produce very 

good outputs similar to the real query log. 
 

 
 

Figure 12.  Performance on Synthetic Query Log 
(1000 queries) for varying m 

 
 

 
 

Figure 13.  Quality on Synthetic Query Log 
(100K queries) for varying m 
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Figure 12 shows the execution times of the 
algorithms for the synthetic query log of 1000 
queries.  As we can see from the graph, the 
approximation algorithms are also very fast for 

synthetic query log.  When m increases, 
execution time for AST also increases more than 
approximation algorithms. 
 
Figure 13 and Figure 14 show the quality and 
execution times respectively of each algorithm 
for the synthetic query log of 100000 queries.  

The algorithms perform similar way as in the 
previous cases. 
 

 
 
Figure 14.  Performance on Synthetic Query Log 

(100K queries) for varying m 
 
We can see from the graphs that approximation 
algorithm FS is faster than both BE and FSBE, 
which makes sense.  FS starts with an empty 
attribute set and at each step adds one attribute 

until m attributes are added to the set.  Usually 
m is a small number compared to the total 
number of attributes, M present in the database.  
So, FS has to iterate only m times.  On the other 
hand, algorithm BE starts with a set of all M 
attributes and at each step eliminates one 
attribute from the set until it is left with m 

attributes.  As we said, typically M is a larger 
number than m, so BE has to iterate (M-m) 
times which is typically much larger than m.  So 
BE is slower than FS.  Because BE has to iterate 
more times, it usually produces better output 
than FS that we can see easily for the synthetic 
query logs.  FSBE is the combination of FS and 

BE, so it is slower than FS but faster than BE.  
But as FSBE considers both elimination and 
addition in each step, it usually produces better 
output than both BE and FS. 
 

6.   RELATED WORK 
 
A large corpus of work has tackled the problem 
of ranking the results of a query.  In the 

documents world, the most popular techniques 
are tf-idf based (Salton, 1989) ranking 
functions, like BM25 (Robertson & Walker, 
1994), as well as link-structure-based 
techniques like PageRank (Brin & Page, 1998) if 
such links are present (e.g., the Web).  In the 
database world, automatic ranking techniques 

for the results of structured queries have been 
recently proposed ([Agrawal, Chaudhuri, Das, & 
Gionis, 2003], [Chaudhuri, Das, Hristidis, & 
Weikum, 2004], [Su, Wang, Huang, & 

Lochovsky, 2006]).  In addition to ranking the 
results of a query, there has been recent work 

(Das, Hristidis, Kapoor, & Sudarshan, 2006) on 
ordering the displayed attributes of query 
results. 
 
Both of these tuple and the attribute ranking 
techniques are inapplicable to our problem.  The 
former inputs a database and a query, and 

outputs a list of database tuples according to a 
ranking function, and the latter inputs the list of 
database results and selects a set of attributes 
that “explain” these results.  In contrast, our 
problem inputs a database, a query log, and a 
new tuple, and computes a set of attributes that 

will rank the tuple high for the skylines of as 

many queries in the query log as possible. 
 
Our work differs from the extensive body of 
work on feature selection (Guyon, & Elisseeff, 
2003) because our goal is very specific – to 
enable a tuple to be highly visible to the users of 

the database as well as stand out in the crowd of 
existing products – and not to reduce the cost of 
building a mining model such as classification or 
clustering.   
 
Kleinberg, Papadimitriou, & Raghavan (1998) 
present a set of microeconomic problems 

suitable for data mining techniques; however no 

specific solutions are presented.  Their problem 
closer to our work is identifying the best 
parameters for a marketing strategy in order to 
maximize the attracted customers, given that 
the competitor independently also prepares a 
similar strategy.  Our problem is different since 

we know the competition (other data items).  
Another area where boosting an item's rank has 
received attention is Web search, where the 
most popular techniques involve manipulating 
the link-structure of the Web to achieve higher 
visibility (Gori & Witten, 2005). 
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Computing frequent itemsets is a popular area 
of research in data mining and some of the best 
known algorithms include Apriori (Agrawal & 

Srikant, 1994) and FP-Tree (Han, Pei, & Yin, 
2000).  In frequent itemset mining, a subset of 
items are predicted which are frequent (occurs 
together more than a threshold) in the 
transaction database.  Here, a frequent itemset 
is basically a subset of a transaction.  Our 
problem is the opposite, we want to identify the 

subset of attributes (items) which to retain for 
the new tuple t such that t becomes a superset 
of a skyline (transaction). 
 

The works on dominant relationship analysis (Li,  
Ooi, Tung, & Wang, 2006) and dominating 

neighborhood profitably (Li, Tung, Jin, & Ester, 
2007) are related to our work.  The former tries 
to find out the dominant relationship between 
products and potential buyers where by 
analyzing such relationships, companies can 
position their products more effectively while 
remaining profitable, and the latter introduces 

skyline query types taking into account not only 
min/max attributes (e.g., price, weight) but also 
spatial attributes (e.g., location attributes) and 
the relationships between these different 
attribute types.  Their work aims at helping 
manufacturers choose the right specs for a new 

product, whereas our work aims at choosing the 

attributes subset of an existing product for 
advertising purposes. 
 
Skyline query processing has been well 
investigated recently.  Several techniques have 
been proposed for efficient skyline query 

processing ([Borzsonyi, Kossmann, & Stocker, 
2001], [Tan, Eng, & Ooi, 2001], [Kossmann,  
Ramsak, & Rost, 2002], [Papadias, Tao, Fu, & 
Seeger, 2003]).  There has been recent work on 
categorical skylines (Sarkas, Das, Koudas, & 
Tung, 2008), where the authors proposed a 
method for maintaining efficiently the skylines of 

streaming data with partially ordered, 

categorical attributes.  One main difference of 
our work with the existing works is that we 
consider Boolean skylines and our goal is not to 
propose a method to efficiently process or 
maintain the skylines, instead we use skylines as 
a query semantic where a new tuple can be 

visible for a maximum number of queries. 
 

7.   CONCLUSIONS 
 
In this paper we consider a problem that has 
applications in marketing and product design - 

given a new product (a tuple), to select a small 
subset of attributes to highlight such that the 
product stands out in a crowd of existing 
competitive products and is widely visible to the 

pool of potential customers.  A product is 
considered to be visible to a customer if it occurs 
in the skyline of the query posed by the 
customer.  This problem variant poses new 
challenges that cannot be solved optimally using 
prior techniques, hence we develop novel 
optimal algorithm based on the signature tree 

data structure as well as approximate algorithms 
to solve the problem.   
 
Clearly, the definition of visibility of a product to 

customers can be extended beyond the concept 
of skylines.  As future work we are considering 

other interesting definitions of product visibility, 
and investigating whether signature trees and 
similar techniques can be used for solving such 
problems. 
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Appendices 
 
Appendix 1: Some Useful Definitions and Notations 
 
Database: Let D = {t1…tN} be a collection of tuples with Boolean attributes over the attribute set A = 
{a1…aM}, where each tuple t is a set of attributes.  Considering a car database, a t has the actual 
attribute names which represents that an attribute is present in the tuple (e.g., AC). 
 

Tuple Compression: Let t be a tuple and let t′ be a subset of t with m attributes.  Thus t′ represents 
a compressed representation of t. 
 
Query: We view each query as a subset of attributes where users search for a product specifying their 
attributes of interest. 
 

Query Log: Let Q = {q1…qR} be collection of queries where each query q defines a subset of 

attributes. 
 
Skyline: Given a set of points, the skyline comprises the points that are not dominated by other 
points.  A point dominates another point if it is as good or better in all dimensions and better in at 
least one dimension (Tan, Eng, & Ooi, 2001).  Consider a common example in the literature, “choosing 
a set of hotels that is closer to the beach and cheaper than any other hotel in distance and price 

attributes respectively from the database system of the travel agents’ (Kossmann & Stocker, 2001)”.  
Figure 1 illustrates this case in 2-dimensional space, where each point corresponds to a hotel record.  
The x-axis specifies the room price of a hotel, and the y-axis specifies its distance to the beach.  
Clearly, the most interesting hotels are the ones {a, g, i, n}, called skyline, for which there is not any 
other hotel in {a, b, .  .  .  , m, n} that is better on both dimensions. 
 

 
Figure 1.  Skyline Example 

 

 
Skyline Log: Let S = {s1…sL} be collection of skylines where each skyline s defines a subset (i.e., 
projection) of attributes for which any data point (tuple) remains on the skyline.  For example, if a 

user poses a query q = “Select * from Cars where Make = Honda and AC = yes and Power Windows = 
yes”, and the database has three cars t1 = <Toyota, AC, Power Windows>, t2 = <Honda, AC, Power 
Brakes> and t3 = <Nissan, AC, Power Brakes>.  We can see it easily from the skyline definition that 
the cars t1 and t2 will be on the skyline of q, which are not dominated by any other cars (t3 here) 
present in the database based on the attributes asked by the query q.  We do not store the actual 
skyline data points (all attributes present in the tuple) such as t1 and t3 in skyline log, instead the set 
of attributes for which a data point is visible on the skyline.  Here, t1 = <Toyota, AC, Power Windows> 

is visible on the skyline of q because it has attributes {AC, Power Windows} present asked by q.  So, 
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the skyline we define here as s1 = {AC, Power Windows}.  Similarly skyline of for t2 is s2 = {Honda, 
AC} for which t2 is on the skyline of q.  Skylines log contains all such skylines for the query log. 
 
 

Appendix 2: Skylines of queries 
 
 

Skyline ID Query ID Car ID (cars on the skyline) Attributes for which the car is on the skyline 

s1 q1 t4, t5 {AC, Four Door} 

s2 q2 t3, t4 {AC, Power Doors} 

s3 q3 t1, t4, t6 {Four Door, Power Doors} 

s4 q4 t3, t4 {Power Brakes, Power Doors} 

s5 q5 t2, t7 {Turbo} 

s6 q5 t3 {Auto Trans} 

 

Table 1.  Skylines of the Queries 
 

 
Appendix 3: Optimal Naive Algorithm 
 
The problem is proved to be NP-hard (Miah et al.  2009).  A naïve optimal approach to find the subset 
of attributes (m attributes) to retain for the new tuple t to maximize the number of queries which will 
have t on the skylines as follows: 
 

I. Generate all possible m-attributes candidate sets. 
II. For each candidate set c in step (I), scan the skyline log and find for how many queries the 

skylines are the subsets of c. 
III. Return the candidate set c with the highest count. 

 
In practice, the Naïve algorithm is not feasible when the number of attributes is large since the 

algorithm has to generate a huge number of possible candidate sets.  If the database has a total of M 

attributes and we want to retain m attributes, then there are total (M
m) possible attribute sets which 

can be a very large number.   
 
 
Appendix 4: Signature Tree 
 

Signature Tree and its Construction: Once we have the skylines found then we can create 
signature for each skyline.  We keep attributes sorted in each skyline.  Creating signatures is as 
follows.  We first initialize a bit vector of length M (total number of attributes in the database) with 
default value 0 for a skyline.  In our running example, we have M = 6 attributes (AC, Auto Trans, Four 
Door, Power Brakes, Power Doors, and Turbo), so the length of the signature for each skyline would 
be 6 and the initialize vector of the signature is 000000.  Then for each attribute present in the 
skyline, we set that the corresponding bit in the bit vector to be 1.  For example, for skyline s1 = {AC, 

Four Door}, the signature is 101000.  A signature file contains the signatures of all the skylines (or 

transaction traditionally).  Table 2 shows the signatures of the skylines (signature file) for our running 
example. 
 

Skyline ID Query ID Signature 

s1 q1 101000 

s2 q2 100010 

s3 q3 001010 

s4 q4 000110 

s5 q5 000001 

s6 q5 010000 

 
Table 2.  Signature of Skylines (Signature File) 
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Definition (Signature tree): A signature tree for a signature file S = s1,.s2…sn, (where ji ss  for 

ji   and |sk| = d for k = 1, …, n)  is a binary tree T such that 

 
i. For each internal node of T, the left edge below it is always labeled with 0 and the right edge 

is always labeled with 1. 
ii. T has n leaves labeled 1,2, …,n, used as pointers to n different positions of s1, s2, …, and sn in s.  

Let v be a leaf node.  Denote p(v) the pointer to the corresponding signature. 
iii. Each internal node v is associated with a number, denoted by sk(v), denoting which digit will be 

checked. 
iv. Let, i1,…,ih be the numbers associated with the nodes in a path from the root to a leaf v labeled i.  

Then, this leaf node is a pointer to the ith signature in S, i.e., p(v) = i.  Let p1,…,ph be the 
sequence of labels of edges on this path.  Then, (j1, p1)…(jh, ph) makes up a signature identifier 
for si, si(j1, …, jh). 

 

Creating Balanced Signature Tree: A balanced signature tree is a signature tree which is 
completely or almost evenly balanced.  The method of building a balanced signature tree is described 
below.  The tree might not be always perfectly balanced, but it would be close to being evenly 
balanced. 
 
A signature file S = s1.s2 .  .  .  sn can be considered as a Boolean matrix.  We use S[i] to represent 
the ith column of S.  For our example above, we have the digits of signature represented for the 

attributes as follows: 
 
 

Attribute AC Auto Trans Four Door Power Brakes Power Doors Turbo 

Digit 1 2 3 4 5 6 

 
We calculate the weight of each S[i], i.e., the number of 1’s appearing in S[i], denoted w(S[i]).  Then, 
we choose a j such that |w(S[i]) – n/2| is minimum.  Here, the tie is resolved arbitrarily.  Using this j, 
we divide S into two groups g1 = {si1, si2, .  .  .  , sik} with each sip[j] = 0 (p = 1, .  .  .  , k) and g2 = 

{sik+1; sik+2 ; .  .  .  ; siN} with each siq[j] = 1 (q = k + 1, .  .  .  , n); and generate a tree as shown in 
Figure 4(a).  In fact, we partition the signatures based on the value on column j; signatures with value 
0 on column j go into one group and signatures with value 1 on column j go into another group.  In a 
next step, we consider each gi (i = 1, 2) as a single signature file and perform the same operations as 
above, leading to two trees generated for g1 and g2, respectively.  Replacing g1 and g2 with the 
corresponding trees, we get another tree as shown in Figure 4(b).  We repeat this process until the 

leaf nodes of a generated tree cannot be divided any more.  Considering our running example, we can 
see that at the first time the sum of 1’s in each column w(S[i]) is as follows: column 1 (AC) = 2, 
column 2 = 1, column 3 = 2, column 4 = 1, column 5 = 3, and column 6 = 1.  Here, n = 6 which is 
the total number of skylines.  So, column 5 has the minimum value for |w(S[i]) – n/2| which is (3 – 
6/2) = 0.  So we choose column 5 which is Power Doors as the root of the tree.  We follow the same 
process for each sub-tree from the root.  In Figure 4(a), g1 = {s1, s5, s6} and g2 = {s2, s3; s4}; and, in 
Fig.  6(b), g11 = {s5, s6}, g12 = {s1}, g21 = {s3, s4}, and g22 = {s2}.  Figure 5 shows the complete 

signature tree built for the skylines of our running example. 
 

At the leaf node of the tree, we keep information for the skyline as well as the query where it came 
from.  As we recall, our goal is to maximize the number of queries for which the new tuple will be 
visible on the skylines.  We do not want to count skylines from the same query for a candidate set 
more than once. 
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Figure 4.  Process of Building Signature Tree 

 

At this step we generate the signature tree only for the skylines with less than or equal to m 
attributes.  The reason we ignore the skylines with more than m attributes is that none of them can 
eventually be subset of any m-attributes candidate set which we generate in next step.  This will be an 
efficient technique where there are many skylines which have more than m attributes present in the 

skyline log. 
 

 
 

Figure 5.  Signature Tree for the Skylines 

 
 

Appendix 5: Traditional Approach of Searching the Signature Tree 
 
We search the signature tree for the new tuple (m attribute set).  As in the Apriori algorithm (Agrawal 
& Srikant, 1994), we start with frequent 1-itemsets (attribute sets).  A minimum support is used such 
that when we select top-m attributes for the new tuple t, then t should be on the skylines for the 
number of queries at least or equal to the minimum support.  A minimum support is the lower bound 
such that at least these many queries should have the new tuple visible on their skylines.  We use a 

heuristic method to select a good minimum support.  We first use a fixed value, for example 1% and 
execute the algorithm.  Then we change the minimum support as required, for example if we find no 
queries for the new tuple then we decrease the minimum support and if too many queries are found 
then we increase the minimum support until a good value for minimum support is set.  Using the 
minimum support we generate frequent 1-itemsets (attribute sets) from the skylines.  Here we only 
consider the attributes which are present in the new tuple to be advertised.  One approach now could 
be to generate all possible m-attribute sets using apriori-gen function in Figure 3, and then search the 

tree.  We can search the signature tree as follows: 
 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srikant:Ramakrishnan.html
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i. Create signature for each of the m-attribute candidate sets.  Let st be the candidate set signature.  
The ith position of st is denoted as st[i].  During the traversal of a signature tree, the inexact 
matching is done as follows: 
 

a. Let v be the node encountered and st[i] be the position to be checked. 
b. If st[i] = 0, we move to the left child of v. 
c. If st[i] = 1, both the right and left child of v will be explored. 
 
In fact, this process just corresponds to the signature matching criterion, i.e., for a bit position 
i in st, if it is set to 0, the corresponding bit position in s must be set to 0; if it is set to 1, the 
corresponding bit position in s can be 1 or 0.  In a traditional signature tree, a query q is 

passed to the tree and finds the transactions (leaf nodes of the tree) which are possibly the 
supersets of q (i.e., how many transactions will be retrieved by the query).   But our problem 
is different.  We pass a candidate m-attribute set c to the tree and find the skylines (leaf 
nodes) which are possibly subsets of c.  Searching of the tree is done in a depth-first manner.  

When we reach a leaf node, we match all the signatures of the leaf node with m-attribute 
candidate set c.  Here skylines have to be subsets of c.  We keep a count for each candidate 

set c that how many skylines have been found as subsets of c.  Here, we count each query 
only once.  For example, considering our running example, if we find two skylines s5 and s6 
are the subsets of any candidate set ci, we only count them once because both come from the 
same query q5.  As we recall, our problem is not to maximize the number of skylines, but to 
maximize the number of queries which will have the new tuple on their skylines.  We remove 
the candidate set c if the total count for it is less than the minimum support. 
 

ii. For all m-attributes candidate sets found in step (i), we simply return the set that has the highest 
count. 

 
 
Appendix 6: Major Problems of Traditional Searching of the Signature Tree 
 

There are two major problems with the traditional approach of searching the trees: (a) the number of 

candidate sets can be huge as there is no pruning at intermediate steps by searching the tree, and (b) 
small itemsets would get an unfairly small count because it increases the count of a candidate if it 
satisfies whole skyline itemsets in the signature tree.  Hence, in order to be able to grow the candidate 
itemsets and not start directly from m-itemsets, we start generating and searching the tree in order 
to increase the count of a candidate k-itemset for every query it has a chance to cover if (m-k) items 
are added.  For instance, the 2-itemset 110000 has a chance to cover 110100 if 1 more item is added.  

So we follow a new method where for each k-itemset we navigate the signature tree from top to 
bottom and only prune subtrees that need more than (m-k) additional items to be covered. 
 
 
Appendix 7: System Configuration and Datasets used for the Experiments 
 
System Configuration: We used Microsoft SQL Server 2000 RDBMS on a P4 3.2-GHZ PC with 1 GB 

of RAM and 100 GB HDD for our experiments.  We implemented all algorithms in C#, and connected 

to the RDBMS through ADO.   
 
Dataset: We use an online used-cars dataset consisting of 15,211 cars for sale in the Dallas area 
extracted from autos.yahoo.com.  There are 32 Boolean attributes such as AC, Power Locks, etc.  We 
used a real query log of 185 queries created by university users, as well as synthetic query logs of 
1000, and 100000 queries.  In the synthetic query logs, each query specifies 1 to 5 attributes chosen 

randomly distributed as follows: 1 attribute – 20%, 2 attributes – 30%, 3 attributes – 30%, 4 
attributes – 10%, 5 attributes – 10%.  That is, we assume that most of the users specify two or three 
attributes. 
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