
Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org

Maximizing Visibility in Skylines

Muhammed Miah
mmiah@suno.edu

Management Information Systems Department
Southern University at New Orleans

New Orleans, LA 70126, USA

Abstract

Given a new product (a tuple), we consider the problem of selecting a small subset of attributes to
highlight such that the product stands out in a crowd of existing competitive products and is widely
visible to the pool of potential customers. This problem has applications in marketing and product

manufacturing and has been the subject of recent investigations. In this paper, we consider an
important variant where a product is considered to be visible to a customer if it occurs in the skyline of
the query posed by the customer. Given a set of d-dimensional points, a skyline query returns points
that are not dominated by any other point on all dimensions. This problem variant poses new
challenges that cannot be solved optimally using prior techniques. We develop a novel optimal
algorithm based on the Signature Tree data structure as well as approximation algorithms to solve the
problem. We conduct a performance study illustrating the benefits of our methods on real as well as

synthetic data.

Keywords: maximize visibility, subset of attributes, skylines, signature tree, algorithms.

1. INTRODUCTION

Skyline query processing has been extensively
investigated in recent years. Given a set of
points, the skyline comprises of the points that
are not dominated by other points. A point
dominates another point if it is as good or better
in all dimensions and better in at least one

dimension. For example, a student attending a
conference might want to search within a hotels
database for a cheap hotel with reasonable
ratings near the conference venue. This kind of

query sometimes contains conflicting goals, as
hotels near the conference venue with
reasonable ratings are expected to be rather

expensive. It is of interest to return as query
results the set of skyline hotels; where for each
skyline hotel there is no other hotel that is
cheaper, nearer, and with better ratings. While
skylines are naturally defined for numeric data,
they can also be defined for categorical and
Boolean data if the data values within each

attribute’s domain have natural total (or even

partial) orderings. In this paper we mainly
consider Boolean skylines (skylines with Boolean

data), where all the attributes asked by a query
need not to be present in the tuple to be
returned by the query. For example, let us
consider a car database with Boolean attributes
such as whether the car has AC, Power Doors,
Power Brakes, etc. Thus if a user poses a query

such as “Select * from Cars where Make =
Honda and AC = yes and Power Windows =
yes”, then a car such as <Toyota, AC, Power
Windows> would appear in the skyline if there is

no car that exactly satisfies the query
conditions.

Thus, skyline query processing techniques or
skyline operators are designed to provide all
interesting answers that may satisfy a user’s
need. Skyline semantics are less rigid than
conjunctive range query semantics and can be of
use in exploratory search applications.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org

Our goal in this paper is however not to design a
skyline operator. Instead, we consider an
interesting generalization of a problem that has
applications in marketing and product

manufacturing, and has been the subject of
recent investigations (Miah, Das, Hristidis, &
Mannila, 2009). Given a new product (a tuple),
we consider the problem of selecting a small
subset of attributes to highlight such that the
product stands out in a crowd of existing
competitive products and is widely visible to the

pool of potential customers. So the goal is not
to develop a better search technique to help the
user (buyer of a product) but to help the seller
of the product to reach maximum number of

users. This problem was investigated by Miah et
al. (2009), where primarily a somewhat rigid

model of conjunctive query semantics was used
to define product visibility – a product is visible
to a customer if it satisfies all conditions of the
query posed by the customer. The skyline
variant of the problem was also discussed very
briefly and the same solution was proposed for
both the Boolean and skyline problem variants,

which later proved not to be optimal for skyline
variant (Miah, 2009). In this paper we mainly
consider skyline semantics – a product is visible
to a customer if it appears in the skyline of the
customer’s query, i.e., although it may not
exactly match all query conditions, it is

nevertheless potentially “more interesting” to

the customer than many other competing
products.

Selecting [a/the] subset of attributes to highlight
a product plays an important role in marketing
and manufacturing of products as well as in

operation[s] research. We can consider a real
world scenario: assume that one wishes to
publish a classified-ad in a newspaper (online or
printed) to advertise a house for sale. The
house may have a lot of attributes (number of
bedrooms, bathrooms, close to beach, close to
school, etc.). However, due to the

advertisement costs involved, it is not possible

to describe all attributes in the ad. So one has
to select, say the ten best attributes. Which
ones should be selected within the budget limit
such that the published ad will be viewed by as
many customers as possible? From a
manufacturing point of view, a house builder

might want to find the most popular combination
of features to add to a house to be constructed
in so as to be more interesting than other
competing homes to as many potential
customers as possible. Another interesting real
world example would be to select a small set of

keywords or a title for an advertisement
campaign.

In this paper, we mainly focus on the important

and interesting variant of the problem where the
data is Boolean and the queries follow skyline
retrieval semantics. Here, a tuple does not have
to have all the attributes present asked by a
query, but it has to be visible on the skyline of
the query. This problem variant cannot be
solved optimally by the existing algorithms.

Moreover one query can have multiple skylines,
i.e., multiple sets of attributes for which
different data points (tuples) are visible on the
skyline of the query. We develop a technique to

solve the skyline version of the problem that is
quite different from the methods proposed by

Miah et al. (2009). The new method is based
on a judicious application of the signature tree
data structure (Chen & Chen, 2006 and Miah,
2009) with modifications and smart prunings.
Interestingly, our new algorithm can also solve
easily the old problem variant of conjunctive
query semantics optimally.

Our main contributions are summarized below:

1. We investigate the problem of selecting

attributes of a tuple for maximum visibility
in skylines as a promising data exploration

problem that benefits a certain class of users

interested in designing and marketing their
products.

2. Though the problem is proved to be NP-hard
(Miah et al., 2009), we are able to develop
an optimal algorithm based on the signature
tree data structure to solve the problem that

works well for moderate problem instances.
3. We also present fast approximation

algorithms that work well for larger problem
instances.

4. We perform detailed performance
evaluations on both real and synthetic data
to demonstrate the effectiveness of our

developed algorithms.

2. PROBLEM FRAMEWORK

Before formally defining the problem, we first
provide some useful definitions and notations in
Appendix 1.

The problem formally can be defined as follows.

PROBLEM: Given a database of competing
products D, a query log Q with Skyline Query
semantics, a new tuple t, and an integer m,

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org

compute a compressed tuple t′ by retaining m
attributes such that the number of queries that
retrieve t′ on the skylines is maximized.

Car ID Attributes/Features present in the car

t1 {AC, Four Door, Power Doors}

t2 {Four Door, Turbo}

t3 {AC, Auto Trans, Power Brakes, Power Doors}

t4 {AC, Four Door, Power Brakes, Power Doors}

t5 {AC, Four Door}

t6 {Four Door, Power Doors}

t7 {Power Doors, Turbo}

Database D

Query

ID

Attributes/Features asked by the query

q1 {AC, Four Door}

q2 {AC, Power Doors}

q3 {Four Door, Power Doors}

q4 {Power Brakes, Power Doors}

q5 {Auto Trans, Turbo}

Query Log Q

New

Car

Attributes/Features present in the car

t {AC, Auto Trans, Four Door, Power Brakes,

Power Doors}

New tuple t to be inserted

Figure 2. Running EXAMPLE 1

The following running example will be used to
illustrate problem.

EXAMPLE 1: Consider an inventory database of

an auto dealer, which contains a single database

table D with N=7 rows and M=6 possible
attributes a car can have (AC, Auto Trans, Four
Door, Power Brakes, Power Doors, and Turbo)
where each tuple represents a car for sale. The
table has numerous attributes that describe

details of the car: Boolean attributes such as AC,
Four Door, etc; categorical attributes such as
Make, Color, etc; numeric attributes such as
Price, Age, etc; and text attributes such as
Reviews, Accident History, and so on. Figure 2
illustrates such a database (where only the

Boolean attributes are shown) of seven cars
already advertised for sale. The figure also
illustrates a query log of five queries, and a new
car t that needs to be advertised, i.e., inserted
into this database.

Now we can find the skyline points (cars) for the
given database D and Query log Q in Figure 2.
As we know, a skyline point is a point which is
not dominated by any other point in all
dimensions. For query q1 {AC, Four Door}, we
can see it easily that tuples t4 and t5 are the

tuples (skyline points) which are not dominated
by any other tuples in D. For query q2 {AC,
Power Doors}, tuples t3 and t4 are the skyline

points, and so on. Table 1 (Appendix 2) displays
all the skylines found for the given query log Q
and database D. A skyline tuple or data points
can have many attributes but we are interested

only in the attributes for which the tuple is
visible on the skyline, as our goal is to find the
subset of attributes for the new tuple which will
maximize the number of queries having the new
tuple visible on their skylines. A query can have
more than one skyline; e.g., for query q5, tuples
t2 and t7 are visible on one skyline whereas tuple

t3 is visible on another skyline. We keep
separate record for each skyline as shown in
Table 1 (Appendix 2).

Suppose we are required to retain m = 3
attributes of the new tuple. It is not hard to see

that if we retain the attributes AC, Four Door,
and Power Doors (i.e., t′ = {AC, Four Door,
Power Doors}), the compressed tuple t′ will be
visible on the skylines for the maximum of three
queries (q1, q2, and q3). No other selection of
three attributes of the new tuple will remain on
skylines of more queries.

3. OPTIMAL ALGORITHM

There are several methods proposed for efficient
processing of skyline queries such as Block-
Nested-Loops and Divide & Conquer (Kossmann

& Stocker, 2001), Bitmap-based and Index-

based (Tan et al. 2001), Nearest Neighbor
(Kossmann, Ramsak, & Rost, 2002), Branch and
Bound Skyline (Papadias, Tao, Fu, & Seeger,
2003). Any good skyline processing technique
can be used here to find the skylines for the
query log. We can assume that the skylines for

each query in the log have already been
computed by any one of these algorithms. Once
these skylines have been found, then our
problem is to find the subset of the attributes for
the new tuple so that skylines from the

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org

maximum number of queries will retrieve the
new tuple.

A Naïve optimal algorithm and its infeasibility

are discussed in Appendix 3.

We propose a novel optimal algorithm based on
Signature Tree data structure (Chen & Chen,
2006) which is much more efficient than the
Naïve algorithm.

Optimal Algorithm Based on Signature Tree
(AST)

We adapt the candidate set generating function

apriori-gen used in the Apriori algorithm for
mining association rules (Agrawal & Srikant,

1994) to generate possible candidate sets in this
algorithm. The apriori-gen function takes Lk-1,
the set of all large (k-1) itemsets. It returns a
superset of set of all large k-itemsets. The
function works as shown in Figure 3.

Figure 3. Function apriori-gen

The signature tree, its construction, and

definition are discussed in Appendix 4. We build
a balanced signature tree for the skylines using
the weight based method (Chen & Chen, 2006).
The process of creating the balanced signature
tree is discussed in Appendix 4.

The traditional approach of searching the
signature tree is discussed in Appendix 5.

The traditional searching of signature tree has
two major problems (discussed in Appendix 6).

So we propose a new approach for searching the
signature tree.

New Approach for Searching the Signature

Tree: First we create the signature tree for the
skylines as described above. Then, we search
the tree at each level from 2-attributes
candidate sets to up to m-attributes candidate
sets. Candidate sets at each level k (= 2…m)
are generated using function apriori-gen as
discussed above. At each level searching is

done as follows:

i. Let v be the node encountered and st[i] be
the position to be checked.

ii. We move both the right and left child of v
whether st[i] = 0 or st[i] = 1.

iii. We maintain a variable m′ = (m - k),
which is the number of mistakes allowed.
Here, m is the number of attributes we
need to retain for the new tuple t, and k is
the current number of attributes in the
candidate set. A mistake during the search
occurs when we move to the right of a

node (i.e., skyline has value 1 for the digit
mentioned by the node) and the candidate
set has value 0 for that digit. If this
situation happens, we increase the count
for mistakes. Consider the signature tree
in Figure 5 (Appendix 4) for our running

example. Assume current value of k = 2,

m = 3, and we have a candidate set with
signature 110000. So, the value of m′ =
m - k = 1. As mentioned above, when we
search the tree, we move both right and
left of a node. Moving left never increases
the number of mistakes because if a

skyline s has value 0 for a digit then a
candidate set c can have either value 0 or
1 for the corresponding digit. When we
move right from the root node (Figure 5 in
Appendix 4), the value of digit 5 (root
node) in candidate set 110000 is 0, so we
increase the number of mistakes made so

far, which is (0+1) = 1. Next we move

both left and right from node labeled 1
(right child of root). Moving right from
node labeled 1 does not increase the
number of mistakes made as the value of
digit 1 in candidate set is also 1. But when
we move right of the node labeled 3 (left

child of node labeled 1), we increase the
number of mistakes made because value of
digit 3 in the candidate set is 0. Here a
new value for the number of mistakes
made so far is (1+1) = 2 which is greater
than m′. So we do not consider any nodes

First in the join step, it joins Lk-1 with Lk-1:

Insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1 = q.item1, …, p.itemk-2 = q.itemk-2,

 p.itemk-1, = q.itemk-1

Next, in the prune step, it deletes all

itemsets such that some (k-1) subset

of c is not in Lk-1:

for all itemsets do

 for all (k-1)-subsets u of c do

 if (then

 delete c from Ck

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srikant:Ramakrishnan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org

to the right of node labeled 3. As we can
see from the tree in Figure 5 (Appendix 4),
we do not consider s3 with signature
001010 as a possible subset of the

candidate set 110000 in future. We can
see easily that adding 1 to the candidate
set 110000 will not make s3 (001010) a
subset of the candidate in future.

iv. Once we reach a node and number of
mistakes made so far reaching the node
from the root is greater than m′, then we

do not consider the node and its children
(if it is an internal node) as the possible
subset of the candidate set.

v. Once we reach a leaf node (skyline) and

the number of mistakes made so far
reaching the node from the root is not

greater than m′, we keep the skyline for
further match.

Once we find the corresponding skylines S (leaf
nodes) by searching the tree for a candidate set
c, for each skyline si we do the following:

a) We find the number attributes r present in
skyline si which is not present in candidate
set c. If r ≤ (m - k), we count si as the
possible subset of c. Here, m is the number
of attributes we need to retain for the new
tuple t, and k is the current number of

attributes in the candidate set. If r > (m -

k), we do not consider that skyline or leaf
node for c as a possible subset, i.e., do not
increase count for c.

b) We keep a count for each candidate set c
that how many skylines have been found as
possible subsets of c. Here, we count each

query only once. For example, considering
our running example, if we find two skylines
s5 and s6 are the subsets of any candidate
set ci, we only count them once because
both come from the same query q5. This is
why we keep information in the tree for both
the skyline and the query from which it

came. We remove the candidate set c if the

total count for it is less than the minimum
support.

c) At level m (candidate sets with m-
attributes), we simply check how many
skylines (found after searching the tree) are
actually the subsets of the candidate set.

Again, we count skylines for each query only
once for a candidate set. We return the
candidate set with highest count as the top-
m attributes for the new tuple t.

4. APPROXIMATION ALGORITHMS

A simple greedy heuristic would be to select the
top-m attributes with highest frequency in the

skyline log (frequency is the number of times an
attribute appear in the skyline log). But this is
not a good approach when attributes are
correlated, which is quite common in practice.
We propose three effective approximation
algorithms based on greedy heuristics that
perform well.

Backward Elimination (BE)

We propose a backward elimination greedy

heuristic where all single attributes are
considered first and then remove one at a time

until m attributes are left. The summary of the
approach is shown in Figure 6 below.

Figure 6. Approximation Algorithm: Backward
Elimination (BE)

Figure 7. Approximation Algorithm: Forward
Selection (FS)

1. Take the original set of attributes, So.

2. Remove an attribute randomly from So which was

not tested (removed) before and count how many

skylines are subsets of the new set (So -1).

3. Restore the attribute removed in step 2.

4. Repeat steps 2 and 3 for each attribute in So.

5. Remove the attribute from So permanently with

highest count, i.e., remove the attribute which has

lowest impact.

6. Repeat steps 2-5 until So remains with m attributes

1. Let So = set of all original attributes present in

skyline log

2. Let S = an empty set, and an integer k = 0 which is

the number of attributes currently present in S.

3. For (k = 0 to m)

4. For each attribute ai left in So, check if we add (m-

k) attributes from So including ai to S, then how

many skylines could be possible subsets of S.

In fact we check the number of attributes in a

skyline which are not present in S including ai.

If the number is less than (m – number of

attributes in S including ai), then the skyline is

considered as a possible subset of the candidate

set S

5. Add the attribute to S with highest count in step 4.

6. Remove the attribute added to S in step 5 from So.

7. End

8. Return S.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org

Forward Selection (FS)

Forward selection heuristic starts with an empty
set of attributes, S and adds one attribute at a

time until S has m attributes. In order to find
the best m attributes, we can first add the
attribute with highest frequency in the skyline
log (frequency means number of times the
attributes appear in the skyline log). Next we
add the attribute which occurs most with the
first attribute, then add the attribute which

occurs most with the first and second attributes
together, and so on until S remains with m
attributes. In this method, we might find S is a
good selection of m attributes if we want to find

the new t as a subset of maximum number of
skylines or queries. But our goal is the

opposite; we want to find S as a superset of the
maximum number of skylines. So, just adding
top-m attributes may not result a good selection
of attributes. We modify the addition criteria of
an attribute to S. Figure 7 shows the summary
of the algorithm FS.

Combination of Forward Selection and
Backward Elimination (FSBE)

Now we propose another heuristic which
combines both the algorithms BE and FS
considering bidirectional hill climbing techniques.

Hill climbing is a well known procedure for

sequential attribute selection. Greedy
algorithms such as BE and FS implement so
called unidirectional hill climbing, i.e., attributes
once added (removed) cannot be later deleted
(added). The advantage of bidirectional hill
climbing compared to either FS or BE is that one

or several previously deleted (added) attributes
can be brought back to (removed from) the
subset if the accuracy of the algorithm
increases. But this technique can be time
consuming as both the BE and FS has to perform
completely and then somehow combine the
results. So, we propose a new technique to

improve the performance of the algorithm,

described as follows:

Once an attribute is removed by BE it is not
considered to be added by FS anymore.
Similarly, once an attribute is added by FS it is
not considered to be removed by BE. So, at

every step BE eliminates one attribute and FS
adds one. We repeat the procedure until FS
adds m attributes. The summary of the
algorithm FSBE is given in Figure 8.

Figure 8. Approximation Algorithm: FSBE

5. EXPERIMENTS

In this section we measure (a) the time cost of
the proposed optimal and approximation
algorithms, and (b) the quality of the
approximation algorithms.

The system configuration and details of datasets
are discussed in Appendix 7.

The top-m attributes selected by our algorithms
seem very effective. For example, both for real
and synthetic query logs, our optimal algorithm

could select top features or attributes specific to

a car, e.g., sporty features are selected for
sports cars, safety features are selected for
passenger sedans, and so on.

Figure 9. Quality on Real Query Log for varying

m

Quality on Real Query Log

0

5

10

15

20

25

30

35

40

3 5 7 10

m

of

 Q
ue

rie
s

 .

BE FS FSBE AST

1. Let So = set of all original attributes present in

skyline log

2. Let S = an empty set, and an integer k = 0 which is

the number of attributes currently present in S.

3. For (k = 0 to m)

4. Perform BE on So. // every step removes one

attribute from So.

5. Perform BS on So. // every step adds one

attribute to S.

6. Remove the attribute from So which is added by

FS to S in step 5

7. End

8. Return S.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org

Figure 9 shows the quality of the algorithms on
the real query log which has a total of 185
queries. The x-axis represents m which is the
number of attributes needing to be selected, and

y-axis represents the number of queries for
which the new tuple with selected m attributes is
visible on the skylines. We use several
experiments for each algorithm with varying m.
The real query log in fact has no query as well
as skyline with less than or equal to 3 attributes,
so we can see all algorithms produce zero output

for m = 3. We can see from the graph that
approximation algorithms work really well.

Figure 10. Performance on Real Query Log for

varying m

Figure 11. Quality on Synthetic Query Log
(1000 queries) for varying m

Figure 10 displays the execution times of each
algorithm for the real query log. Here x-axis
represents m. The y-axis represents the time in
seconds to execute the algorithm. We can see

that the approximation algorithms are faster
than optimal AST, which is expected.

Next we show the quality on synthetic query log
of size 1000 queries in Figure 11. As we can see
from the graph, for the synthetic query log our
approximation algorithms also produce very

good outputs similar to the real query log.

Figure 12. Performance on Synthetic Query Log
(1000 queries) for varying m

Figure 13. Quality on Synthetic Query Log
(100K queries) for varying m

Performance on Real Query Log

0

50

100

150

200

250

300

3 5 7 10

m

T
im

e
 i
n

 S
e

c

 .

BE FS FSBE AST

Quality on Synthetic Query Log

0

50

100

150

200

250

300

350

3 5 7 10

m

of

 Q
ue

rie
s

 .

BE FS FSBE AST

Performance on Synthetic Query Log

0

50

100

150

200

250

300

3 5 7 10

m

Ti
m

e
in

 S
ec

.

BE FS FSBE AST

Qulaity on Synthetic Query Log

0

5000

10000

15000

20000

25000

30000

3 5 7 10

m

#
 o

f
Q

u
e
ri
e
s

 .

BE FS FSBE AST

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org

Figure 12 shows the execution times of the
algorithms for the synthetic query log of 1000
queries. As we can see from the graph, the
approximation algorithms are also very fast for

synthetic query log. When m increases,
execution time for AST also increases more than
approximation algorithms.

Figure 13 and Figure 14 show the quality and
execution times respectively of each algorithm
for the synthetic query log of 100000 queries.

The algorithms perform similar way as in the
previous cases.

Figure 14. Performance on Synthetic Query Log

(100K queries) for varying m

We can see from the graphs that approximation
algorithm FS is faster than both BE and FSBE,
which makes sense. FS starts with an empty
attribute set and at each step adds one attribute

until m attributes are added to the set. Usually
m is a small number compared to the total
number of attributes, M present in the database.
So, FS has to iterate only m times. On the other
hand, algorithm BE starts with a set of all M
attributes and at each step eliminates one
attribute from the set until it is left with m

attributes. As we said, typically M is a larger
number than m, so BE has to iterate (M-m)
times which is typically much larger than m. So
BE is slower than FS. Because BE has to iterate
more times, it usually produces better output
than FS that we can see easily for the synthetic
query logs. FSBE is the combination of FS and

BE, so it is slower than FS but faster than BE.
But as FSBE considers both elimination and
addition in each step, it usually produces better
output than both BE and FS.

6. RELATED WORK

A large corpus of work has tackled the problem
of ranking the results of a query. In the

documents world, the most popular techniques
are tf-idf based (Salton, 1989) ranking
functions, like BM25 (Robertson & Walker,
1994), as well as link-structure-based
techniques like PageRank (Brin & Page, 1998) if
such links are present (e.g., the Web). In the
database world, automatic ranking techniques

for the results of structured queries have been
recently proposed ([Agrawal, Chaudhuri, Das, &
Gionis, 2003], [Chaudhuri, Das, Hristidis, &
Weikum, 2004], [Su, Wang, Huang, &

Lochovsky, 2006]). In addition to ranking the
results of a query, there has been recent work

(Das, Hristidis, Kapoor, & Sudarshan, 2006) on
ordering the displayed attributes of query
results.

Both of these tuple and the attribute ranking
techniques are inapplicable to our problem. The
former inputs a database and a query, and

outputs a list of database tuples according to a
ranking function, and the latter inputs the list of
database results and selects a set of attributes
that “explain” these results. In contrast, our
problem inputs a database, a query log, and a
new tuple, and computes a set of attributes that

will rank the tuple high for the skylines of as

many queries in the query log as possible.

Our work differs from the extensive body of
work on feature selection (Guyon, & Elisseeff,
2003) because our goal is very specific – to
enable a tuple to be highly visible to the users of

the database as well as stand out in the crowd of
existing products – and not to reduce the cost of
building a mining model such as classification or
clustering.

Kleinberg, Papadimitriou, & Raghavan (1998)
present a set of microeconomic problems

suitable for data mining techniques; however no

specific solutions are presented. Their problem
closer to our work is identifying the best
parameters for a marketing strategy in order to
maximize the attracted customers, given that
the competitor independently also prepares a
similar strategy. Our problem is different since

we know the competition (other data items).
Another area where boosting an item's rank has
received attention is Web search, where the
most popular techniques involve manipulating
the link-structure of the Web to achieve higher
visibility (Gori & Witten, 2005).

Performance on Synthetic Query Log

0

10000

20000

30000

40000

50000

60000

70000

3 5 7 10

m

T
im

e
 i
n
 S

e
c

.

BE FS FSBE AST

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org

Computing frequent itemsets is a popular area
of research in data mining and some of the best
known algorithms include Apriori (Agrawal &

Srikant, 1994) and FP-Tree (Han, Pei, & Yin,
2000). In frequent itemset mining, a subset of
items are predicted which are frequent (occurs
together more than a threshold) in the
transaction database. Here, a frequent itemset
is basically a subset of a transaction. Our
problem is the opposite, we want to identify the

subset of attributes (items) which to retain for
the new tuple t such that t becomes a superset
of a skyline (transaction).

The works on dominant relationship analysis (Li,
Ooi, Tung, & Wang, 2006) and dominating

neighborhood profitably (Li, Tung, Jin, & Ester,
2007) are related to our work. The former tries
to find out the dominant relationship between
products and potential buyers where by
analyzing such relationships, companies can
position their products more effectively while
remaining profitable, and the latter introduces

skyline query types taking into account not only
min/max attributes (e.g., price, weight) but also
spatial attributes (e.g., location attributes) and
the relationships between these different
attribute types. Their work aims at helping
manufacturers choose the right specs for a new

product, whereas our work aims at choosing the

attributes subset of an existing product for
advertising purposes.

Skyline query processing has been well
investigated recently. Several techniques have
been proposed for efficient skyline query

processing ([Borzsonyi, Kossmann, & Stocker,
2001], [Tan, Eng, & Ooi, 2001], [Kossmann,
Ramsak, & Rost, 2002], [Papadias, Tao, Fu, &
Seeger, 2003]). There has been recent work on
categorical skylines (Sarkas, Das, Koudas, &
Tung, 2008), where the authors proposed a
method for maintaining efficiently the skylines of

streaming data with partially ordered,

categorical attributes. One main difference of
our work with the existing works is that we
consider Boolean skylines and our goal is not to
propose a method to efficiently process or
maintain the skylines, instead we use skylines as
a query semantic where a new tuple can be

visible for a maximum number of queries.

7. CONCLUSIONS

In this paper we consider a problem that has
applications in marketing and product design -

given a new product (a tuple), to select a small
subset of attributes to highlight such that the
product stands out in a crowd of existing
competitive products and is widely visible to the

pool of potential customers. A product is
considered to be visible to a customer if it occurs
in the skyline of the query posed by the
customer. This problem variant poses new
challenges that cannot be solved optimally using
prior techniques, hence we develop novel
optimal algorithm based on the signature tree

data structure as well as approximate algorithms
to solve the problem.

Clearly, the definition of visibility of a product to

customers can be extended beyond the concept
of skylines. As future work we are considering

other interesting definitions of product visibility,
and investigating whether signature trees and
similar techniques can be used for solving such
problems.

8. REFERENCES

Agrawal, S., Chaudhuri, S., Das, G., & Gionis, A.
(2003). Automated Ranking of Database
Query Results. CIDR 2003.

Agrawal, R., & Srikant, R. (1994). Fast
Algorithms for Mining Association Rules.

VLDB 1994: 487-499

Borzsonyi, S., Kossmann, D., & Stocker, K.

(2001). The Skyline Operator. ICDE 2001.

Brin, S., & Page, L. (1998). The Anatomy of a

Large-Scale Hypertextual Web Search
Engine. WWW Conference, 1998

Chaudhuri, S., Das, G., Hristidis, V., & Weikum,
G. (2004). Probabilistic Ranking of Database
Query Results. VLDB 2004

Chen, Y., & Chen, Y. (2006). On the Signature

Tree Construction and Analysis. IEEE Trans.
Knowl. Data Eng. 18(9): 1207-1224

Das, G., Hristidis, V., Kapoor, N., & Sudarshan,

S. (2006). Ordering the Attributes of Query
Results. SIGMOD 2006.

Guyon, I., & Elisseeff, A. (2003). An introduction

to variable and feature selection. Journal of
Machine Learning Research, 3(mar):1157–
1182

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srikant:Ramakrishnan.html
http://www.sigmod.org/dblp/db/indices/a-tree/p/Pei:Jian.html
http://www.sigmod.org/dblp/db/indices/a-tree/y/Yin:Yiwen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ooi:Beng_Chin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ooi:Beng_Chin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Shan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jin:Wen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Ester:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srikant:Ramakrishnan.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html#AgrawalS94
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yangjun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Yibin.html
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde18.html#ChenC06
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde18.html#ChenC06

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org

Gori, M., & Witten, I. (2005). The bubble of web

visibility. Commun. ACM 48, 3 (Mar. 2005),
115-117

Han, J., Pei, J., & Yin, Y. (2000): Mining

Frequent Patterns without Candidate
Generation. SIGMOD 2000: 1-12.

Kleinberg, J., Papadimitriou, C., & Raghavan, P.
(1998). A Microeconomic View of Data
Mining. Data Min. Knowl. Discov. 2, 4 (Dec.
1998), 311-324

Kossmann, D., Ramsak, F., & Rost, S. (2002).

Shooting Stars in the Sky: an Online
Algorithm for Skyline Queries. VLDB 2002.

Li, C., Tung, A. K. H., Jin, W., & Ester, M.

(2007). On Dominating Your Neighborhood
Profitably. VLDB 2007: 818-829

Li, C., Ooi, B. C., Tung, A. K. H., & Wang, S.
(2006). DADA: a Data Cube for Dominant
Relationship Analysis. SIGMOD Conference
2006: 659-670

Miah, M. (2009). An Optimal Signature-Tree

based Algorithm for Selecting Attributes for

Maximum Visibility. International Conference
on Information Technology (ICIT) 2009.

Miah, M., Das, G., Hristidis, V., & Mannila, H.
(2009). Determining Attributes to Maximize
Visibility of Objects. IEEE Transactions on
Knowledge and Data Engineering (TKDE)

2009, vol. 21 no. 7, pp. 959-973.

Papadias, D., Tao, Y., Fu, G., & Seeger, B.

(2003). An Optimal and Progressive
Algorithm for Skyline Queries. ACM SIGMOD
2003

Robertson, S. E., Walker, S. (1994). Some
simple effective approximations to the 2-
Poisson model for probabilistic weighted

retrieval. SIGIR 1994

Salton, G. (1989). Automatic Text Processing:

The Transformation, Analysis, and Retrieval
of Information by Computer. Addison
Wesley, 1989

Sarkas, N., Das, G., Koudas, N., & Tung, A. K.

H. (2008). Categorical skylines for streaming
data. SIGMOD Conference 2008: 239-250

Su, W., Wang, J., Huang, Q., & Lochovsky, F.
(2006). Query Result Ranking over E-
commerce Web Databases. ACM CIKM 2006

Tan, K., Eng, P., & Ooi, B. C. (2001): Efficient
Progressive Skyline Computation. VLDB
2001.

http://www.sigmod.org/dblp/db/indices/a-tree/p/Pei:Jian.html
http://www.sigmod.org/dblp/db/indices/a-tree/y/Yin:Yiwen.html
http://www.sigmod.org/dblp/db/conf/sigmod/sigmod2000.html#HanPY00
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jin:Wen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Ester:Martin.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2007.html#LiTJE07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ooi:Beng_Chin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Shan.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#LiOTW06
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#LiOTW06

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org

Appendices

Appendix 1: Some Useful Definitions and Notations

Database: Let D = {t1…tN} be a collection of tuples with Boolean attributes over the attribute set A =
{a1…aM}, where each tuple t is a set of attributes. Considering a car database, a t has the actual
attribute names which represents that an attribute is present in the tuple (e.g., AC).

Tuple Compression: Let t be a tuple and let t′ be a subset of t with m attributes. Thus t′ represents
a compressed representation of t.

Query: We view each query as a subset of attributes where users search for a product specifying their
attributes of interest.

Query Log: Let Q = {q1…qR} be collection of queries where each query q defines a subset of

attributes.

Skyline: Given a set of points, the skyline comprises the points that are not dominated by other
points. A point dominates another point if it is as good or better in all dimensions and better in at
least one dimension (Tan, Eng, & Ooi, 2001). Consider a common example in the literature, “choosing
a set of hotels that is closer to the beach and cheaper than any other hotel in distance and price

attributes respectively from the database system of the travel agents’ (Kossmann & Stocker, 2001)”.
Figure 1 illustrates this case in 2-dimensional space, where each point corresponds to a hotel record.
The x-axis specifies the room price of a hotel, and the y-axis specifies its distance to the beach.
Clearly, the most interesting hotels are the ones {a, g, i, n}, called skyline, for which there is not any
other hotel in {a, b, . . . , m, n} that is better on both dimensions.

Figure 1. Skyline Example

Skyline Log: Let S = {s1…sL} be collection of skylines where each skyline s defines a subset (i.e.,
projection) of attributes for which any data point (tuple) remains on the skyline. For example, if a

user poses a query q = “Select * from Cars where Make = Honda and AC = yes and Power Windows =
yes”, and the database has three cars t1 = <Toyota, AC, Power Windows>, t2 = <Honda, AC, Power
Brakes> and t3 = <Nissan, AC, Power Brakes>. We can see it easily from the skyline definition that
the cars t1 and t2 will be on the skyline of q, which are not dominated by any other cars (t3 here)
present in the database based on the attributes asked by the query q. We do not store the actual
skyline data points (all attributes present in the tuple) such as t1 and t3 in skyline log, instead the set
of attributes for which a data point is visible on the skyline. Here, t1 = <Toyota, AC, Power Windows>

is visible on the skyline of q because it has attributes {AC, Power Windows} present asked by q. So,

n

m
l

j

i

k
h

g

f

c

e

db

a

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

x (Price)

y (Distance)

skyline point

dominating point

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org

the skyline we define here as s1 = {AC, Power Windows}. Similarly skyline of for t2 is s2 = {Honda,
AC} for which t2 is on the skyline of q. Skylines log contains all such skylines for the query log.

Appendix 2: Skylines of queries

Skyline ID Query ID Car ID (cars on the skyline) Attributes for which the car is on the skyline

s1 q1 t4, t5 {AC, Four Door}

s2 q2 t3, t4 {AC, Power Doors}

s3 q3 t1, t4, t6 {Four Door, Power Doors}

s4 q4 t3, t4 {Power Brakes, Power Doors}

s5 q5 t2, t7 {Turbo}

s6 q5 t3 {Auto Trans}

Table 1. Skylines of the Queries

Appendix 3: Optimal Naive Algorithm

The problem is proved to be NP-hard (Miah et al. 2009). A naïve optimal approach to find the subset
of attributes (m attributes) to retain for the new tuple t to maximize the number of queries which will
have t on the skylines as follows:

I. Generate all possible m-attributes candidate sets.
II. For each candidate set c in step (I), scan the skyline log and find for how many queries the

skylines are the subsets of c.
III. Return the candidate set c with the highest count.

In practice, the Naïve algorithm is not feasible when the number of attributes is large since the

algorithm has to generate a huge number of possible candidate sets. If the database has a total of M

attributes and we want to retain m attributes, then there are total (M
m) possible attribute sets which

can be a very large number.

Appendix 4: Signature Tree

Signature Tree and its Construction: Once we have the skylines found then we can create
signature for each skyline. We keep attributes sorted in each skyline. Creating signatures is as
follows. We first initialize a bit vector of length M (total number of attributes in the database) with
default value 0 for a skyline. In our running example, we have M = 6 attributes (AC, Auto Trans, Four
Door, Power Brakes, Power Doors, and Turbo), so the length of the signature for each skyline would
be 6 and the initialize vector of the signature is 000000. Then for each attribute present in the
skyline, we set that the corresponding bit in the bit vector to be 1. For example, for skyline s1 = {AC,

Four Door}, the signature is 101000. A signature file contains the signatures of all the skylines (or

transaction traditionally). Table 2 shows the signatures of the skylines (signature file) for our running
example.

Skyline ID Query ID Signature

s1 q1 101000

s2 q2 100010

s3 q3 001010

s4 q4 000110

s5 q5 000001

s6 q5 010000

Table 2. Signature of Skylines (Signature File)

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org

Definition (Signature tree): A signature tree for a signature file S = s1,.s2…sn, (where ji ss for

ji and |sk| = d for k = 1, …, n) is a binary tree T such that

i. For each internal node of T, the left edge below it is always labeled with 0 and the right edge

is always labeled with 1.
ii. T has n leaves labeled 1,2, …,n, used as pointers to n different positions of s1, s2, …, and sn in s.

Let v be a leaf node. Denote p(v) the pointer to the corresponding signature.
iii. Each internal node v is associated with a number, denoted by sk(v), denoting which digit will be

checked.
iv. Let, i1,…,ih be the numbers associated with the nodes in a path from the root to a leaf v labeled i.

Then, this leaf node is a pointer to the ith signature in S, i.e., p(v) = i. Let p1,…,ph be the
sequence of labels of edges on this path. Then, (j1, p1)…(jh, ph) makes up a signature identifier
for si, si(j1, …, jh).

Creating Balanced Signature Tree: A balanced signature tree is a signature tree which is
completely or almost evenly balanced. The method of building a balanced signature tree is described
below. The tree might not be always perfectly balanced, but it would be close to being evenly
balanced.

A signature file S = s1.s2 . . . sn can be considered as a Boolean matrix. We use S[i] to represent
the ith column of S. For our example above, we have the digits of signature represented for the

attributes as follows:

Attribute AC Auto Trans Four Door Power Brakes Power Doors Turbo

Digit 1 2 3 4 5 6

We calculate the weight of each S[i], i.e., the number of 1’s appearing in S[i], denoted w(S[i]). Then,
we choose a j such that |w(S[i]) – n/2| is minimum. Here, the tie is resolved arbitrarily. Using this j,
we divide S into two groups g1 = {si1, si2, . . . , sik} with each sip[j] = 0 (p = 1, . . . , k) and g2 =

{sik+1; sik+2 ; . . . ; siN} with each siq[j] = 1 (q = k + 1, . . . , n); and generate a tree as shown in
Figure 4(a). In fact, we partition the signatures based on the value on column j; signatures with value
0 on column j go into one group and signatures with value 1 on column j go into another group. In a
next step, we consider each gi (i = 1, 2) as a single signature file and perform the same operations as
above, leading to two trees generated for g1 and g2, respectively. Replacing g1 and g2 with the
corresponding trees, we get another tree as shown in Figure 4(b). We repeat this process until the

leaf nodes of a generated tree cannot be divided any more. Considering our running example, we can
see that at the first time the sum of 1’s in each column w(S[i]) is as follows: column 1 (AC) = 2,
column 2 = 1, column 3 = 2, column 4 = 1, column 5 = 3, and column 6 = 1. Here, n = 6 which is
the total number of skylines. So, column 5 has the minimum value for |w(S[i]) – n/2| which is (3 –
6/2) = 0. So we choose column 5 which is Power Doors as the root of the tree. We follow the same
process for each sub-tree from the root. In Figure 4(a), g1 = {s1, s5, s6} and g2 = {s2, s3; s4}; and, in
Fig. 6(b), g11 = {s5, s6}, g12 = {s1}, g21 = {s3, s4}, and g22 = {s2}. Figure 5 shows the complete

signature tree built for the skylines of our running example.

At the leaf node of the tree, we keep information for the skyline as well as the query where it came
from. As we recall, our goal is to maximize the number of queries for which the new tuple will be
visible on the skylines. We do not want to count skylines from the same query for a candidate set
more than once.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org

Figure 4. Process of Building Signature Tree

At this step we generate the signature tree only for the skylines with less than or equal to m
attributes. The reason we ignore the skylines with more than m attributes is that none of them can
eventually be subset of any m-attributes candidate set which we generate in next step. This will be an
efficient technique where there are many skylines which have more than m attributes present in the

skyline log.

Figure 5. Signature Tree for the Skylines

Appendix 5: Traditional Approach of Searching the Signature Tree

We search the signature tree for the new tuple (m attribute set). As in the Apriori algorithm (Agrawal
& Srikant, 1994), we start with frequent 1-itemsets (attribute sets). A minimum support is used such
that when we select top-m attributes for the new tuple t, then t should be on the skylines for the
number of queries at least or equal to the minimum support. A minimum support is the lower bound
such that at least these many queries should have the new tuple visible on their skylines. We use a

heuristic method to select a good minimum support. We first use a fixed value, for example 1% and
execute the algorithm. Then we change the minimum support as required, for example if we find no
queries for the new tuple then we decrease the minimum support and if too many queries are found
then we increase the minimum support until a good value for minimum support is set. Using the
minimum support we generate frequent 1-itemsets (attribute sets) from the skylines. Here we only
consider the attributes which are present in the new tuple to be advertised. One approach now could
be to generate all possible m-attribute sets using apriori-gen function in Figure 3, and then search the

tree. We can search the signature tree as follows:

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srikant:Ramakrishnan.html

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1804

©2011 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org

i. Create signature for each of the m-attribute candidate sets. Let st be the candidate set signature.
The ith position of st is denoted as st[i]. During the traversal of a signature tree, the inexact
matching is done as follows:

a. Let v be the node encountered and st[i] be the position to be checked.
b. If st[i] = 0, we move to the left child of v.
c. If st[i] = 1, both the right and left child of v will be explored.

In fact, this process just corresponds to the signature matching criterion, i.e., for a bit position
i in st, if it is set to 0, the corresponding bit position in s must be set to 0; if it is set to 1, the
corresponding bit position in s can be 1 or 0. In a traditional signature tree, a query q is

passed to the tree and finds the transactions (leaf nodes of the tree) which are possibly the
supersets of q (i.e., how many transactions will be retrieved by the query). But our problem
is different. We pass a candidate m-attribute set c to the tree and find the skylines (leaf
nodes) which are possibly subsets of c. Searching of the tree is done in a depth-first manner.

When we reach a leaf node, we match all the signatures of the leaf node with m-attribute
candidate set c. Here skylines have to be subsets of c. We keep a count for each candidate

set c that how many skylines have been found as subsets of c. Here, we count each query
only once. For example, considering our running example, if we find two skylines s5 and s6
are the subsets of any candidate set ci, we only count them once because both come from the
same query q5. As we recall, our problem is not to maximize the number of skylines, but to
maximize the number of queries which will have the new tuple on their skylines. We remove
the candidate set c if the total count for it is less than the minimum support.

ii. For all m-attributes candidate sets found in step (i), we simply return the set that has the highest
count.

Appendix 6: Major Problems of Traditional Searching of the Signature Tree

There are two major problems with the traditional approach of searching the trees: (a) the number of

candidate sets can be huge as there is no pruning at intermediate steps by searching the tree, and (b)
small itemsets would get an unfairly small count because it increases the count of a candidate if it
satisfies whole skyline itemsets in the signature tree. Hence, in order to be able to grow the candidate
itemsets and not start directly from m-itemsets, we start generating and searching the tree in order
to increase the count of a candidate k-itemset for every query it has a chance to cover if (m-k) items
are added. For instance, the 2-itemset 110000 has a chance to cover 110100 if 1 more item is added.

So we follow a new method where for each k-itemset we navigate the signature tree from top to
bottom and only prune subtrees that need more than (m-k) additional items to be covered.

Appendix 7: System Configuration and Datasets used for the Experiments

System Configuration: We used Microsoft SQL Server 2000 RDBMS on a P4 3.2-GHZ PC with 1 GB

of RAM and 100 GB HDD for our experiments. We implemented all algorithms in C#, and connected

to the RDBMS through ADO.

Dataset: We use an online used-cars dataset consisting of 15,211 cars for sale in the Dallas area
extracted from autos.yahoo.com. There are 32 Boolean attributes such as AC, Power Locks, etc. We
used a real query log of 185 queries created by university users, as well as synthetic query logs of
1000, and 100000 queries. In the synthetic query logs, each query specifies 1 to 5 attributes chosen

randomly distributed as follows: 1 attribute – 20%, 2 attributes – 30%, 3 attributes – 30%, 4
attributes – 10%, 5 attributes – 10%. That is, we assume that most of the users specify two or three
attributes.

	BurdickCG01

