
Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org

Most Popular Package Design

Muhammed Miah
mmiah@suno.edu

Management Information Systems Department
Southern University at New Orleans

New Orleans, LA 70126, USA

Abstract

Given a set of elements, and a set of user preferences (where each preference is a conjunction of
positive or negative preferences for individual elements), we investigate the problem of designing
the most “popular package”, i.e., a subset of the elements that maximizes the number of satisfied
users. Numerous instances of this problem occur in practice. For example, a vacation package
consisting of a subset of all possible activities may need to be assembled, that satisfies as many
potential customers as possible, where each potential customer may have expressed his prefer-
ences (positive or negative) for certain activities. Likewise, the problem of designing new prod-

ucts, i.e., deciding which features to add to a new product that satisfies as many potential custom-
ers as possible, also falls under this framework. We present innovative optimal and approximate
algorithms, and study their performance. Our experimental evaluation on real and synthetic da-
tasets shows that our optimal and approximate algorithms are efficient for moderate and large da-
tasets respectively.

Keywords: package design, popular package, maximize visibility, customer satisfaction, algo-

rithms.

1. INTRODUCTION

Problem Motivation

Consider a travel agency that wishes to design
one (or more) vacation packages, given the
travel preferences of its clients. For example, a
vacation package to Costa Rica can include some
of the following elements: beaches such as Puer-
to Vijeo, Jaco, Flamingo, etc.; mountains and

national parks such as Arenal area, Monteverde,

Tortuguero, etc. The clients of the agency pro-
vide their preferences by specifying “yes”, “no”,
or “don’t care” for each element. The purpose of
trip/vacation package design is to select a sub-
set of these elements to satisfy as many cus-
tomers as possible.

As another example, consider the problem of
creating a social network and selecting the main
topics of the network based on users’ interests,
with the goal of representing the collective group
interests as optimally as possible. For example,

assume one wants to create a new group fo-
cused on sports interests. One can leverage the
users’ profiles to select the main topic prefer-

ences of the network– e.g., Basketball, Soccer,
Baseball–of the users.

The above examples can be generalized to an
abstract problem, which we call the Package De-
sign (PD) Problem. Assume that a package
needs to be designed by selecting a subset of

Boolean features (or elements, or attributes)

from a large set of possible features. In particu-
lar, we focus on a specific and novel problem
formulation, where we are given a set of user
preferences in the form of a query log (or work-
load) of user queries, where each query is a con-
junction of positive or negative preferences for

some of the features, and we are asked to de-
sign the most popular package, i.e., the package
that satisfies the maximum number of queries in
the query log. We refer to this problem as the
Package Design (PD) problem. Because of the
vast use of the Internet nowadays, it is very

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org

easy to collect online such query logs of user
preferences for many such package design ap-
plications, and the new package can be designed
based on real users’ perception on desirable fea-

tures.

Overview of Solutions

We propose an optimal algorithm, based on the
Binary Tree (Wikipedia, 2011) data structure.
We also provide an approximate algorithm for

the problem. The algorithm does not have
provable bounds, but is scalable and is shown to
work very well in practice.

Summary of Contributions

1. We define the problem of designing an opti-
mal package given user preferences, ex-
pressed as positive and negative preferences
on the elements.

2. We present a feasible optimal (exact) algo-
rithm based on the Binary Tree data struc-

ture.

3. We present fast approximate algorithm that
work well in practice for large problem in-
stances.

4. We perform detailed performance evalua-

tions on real and synthetic data to demon-
strate the effectiveness of our developed al-
gorithms.

The rest of the paper is organized as follows.
Related work discussed in Section 2. Section 3

provides formal problem definitions. Section 4
and Section 5 present the optimal and scalable
approximate algorithms respectively. In Section
6 we present the result of extensive experi-
ments. We conclude in Section 7. Section 8
provides the references.

2. RELATED WORK

Optimal product design or positioning is a well
studied problem in Operations Research and
Marketing. Shocker and Srinivasan (1974) first
represented products and consumer preferences
as points in a joint attribute space. After that,

several approaches and algorithms ([Albers &
Brockhoff, 1977], [Albers & Brockhoff, 1980],
[Albritton & McMullen, 2007], [Gavish, Horsky, &
Srikanth, 1983], [Gruca & Klemz, 2003], [Kohli,
& Krishnamurti, 1989]) have been developed to
design/position a new product. Works in this

domain require direct involvement (one or two
step) of consumers and users are usually shown
a set of existing alternative products (prede-
signed) to choose or set preferences. Like our

work, users in this domain in fact do not get to
select the attributes or features they like and
don’t like. Instead of involving users directly in
the process of designing new package, we use
previous user search queries for the same pack-
age and it is easy to collect the preferences
(search queries) for large number of Internet

users nowadays. We also consider large query
logs to design the new package and allow users
to express their interests in attribute or feature
level in terms of positive, negative and “don’t

care”.

Recent works on dominant relationship (Li, Ooi,
Tung, & Wang, 2006) and dominating neighbor-
hood (Li, Tung, Jin, & Ester, 2007) uses skyline
query semantics assuming that attributes are
min/max, that is, all users have the same pref-
erence for an attribute (e.g., 2 doors is always
better than 4 doors). Further, they assume

there is a profitability plane which simplifies the
algorithm given that the optimal solution is a
point on the profitability plane. In contrast, in
our work users may have opposite preferences
for the same attribute, and our algorithms can
be used with or without a profitability plane. Li

et al. (2007) also considers spatial, non-

preference attributes. Our algorithms can be
modified to support skyline semantics; however,
more efficient algorithms may be possible for
this problem variant given its restrictive nature.

Works in (Miah, Das, Hristidis, & Mannila, 2008)

tackled a related problem of maximizing the vis-
ibility of an existing object by selecting a subset
of its attributes to be advertised. The main
problem was: given a query log with conjunctive
query semantics and a new tuple, select a sub-
set of attributes to retain for the new tuple so
that it will be retrieved by the maximum number

of queries. The work did not consider negated

conditions as in our work in this paper. In this
paper, we consider designing an object (a new
tuple), that is, assign values for all attributes
instead of selecting subset of attributes.

3. PROBLEM FRAMEWORK

To define our problem more formally, we need
to develop a few abstractions.

Attributes: Let A = {a1…aM} be the set of Bool-
ean attributes (or elements, or features).

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ooi:Beng_Chin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Shan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jin:Wen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Ester:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Das:Gautam.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hristidis:Vagelis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mannila:Heikki.html

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org

Query (with negation): We view each user
query as a subset of attributes and/or negation
of attributes. The semantics is conjunctive, e.g.,

query {a1, a3} is equivalent to “a1 = 1 and a3 =
1”. We also consider queries with negations,
e.g., {a1, ~a2} is equivalent to “a1 = 1 and a2 =
0”. The remaining attributes for which values
are not mentioned in the query are assumed to
be “don’t care”, i.e., the value can be either 0 or
1.

Query Log or Workload: Let Q = {q1…qS} be a
collection of queries.

The problem definition is as follows:

Package Design (PD) Problem: Given a query
log Q with conjunctive semantics where a query
can have negations, design a new tuple t (assign
value [0, 1] for each attribute for the new tuple)
such that the number of queries that retrieve t is
maximized.

Thus, we wish to ensure that the new package
(or tuple) satisfies as many customers as possi-
ble.

Figure 1. Query Log Q for Running Example

Example 1. Consider Figure 1 which shows a

query log for a vacation package application,
containing S=6 queries and M=6 attributes
where each tuple (query) represents the prefer-
ences of a user. A query has values 1, 0, or ?,
where 1 means the attribute must be present, 0

means the attribute must not be present, and
“?” means “don’t care”. For this specific exam-

ple, it is not hard to see that if we design a new
package with Beach = 1, Boating = 0, Casino =
0, Fishing = 1, Historical Site = 1, Museum = 0
(i.e., new tuple t = [1, 0, 0, 1, 1, 0]), we can
satisfy a maximum of 3 queries (q2, q4 and q6).
No other selection of attribute values for the
new tuple will satisfy more queries.

4. A FEASIBLE OPTIMAL ALGORITHM

A naïve brute-force optimal approach seems to
be a solution to design a new tuple (package)

where we can generate all possible combination
of attribute values and pick the combination (as-
signment of values) that is satisfied by the high-
est number of queries in the query log.

While the naïve algorithm is polynomial in the
size of the query log, it is unfortunately expo-

nential in number of attributes. Thus it is not
feasible when the number of attributes is large
since the algorithm has to generate an exponen-
tial number of possible combinations of attribute

values.

We propose a novel optimal algorithm based on
adaptations of the Binary Tree data structure
which is much more efficient than the Naïve al-
gorithm. Our algorithm works well for moderate
problem instances. A binary tree is a tree data
structure in which each node has at most two
child nodes, usually distinguished as "left" and

"right". Nodes with children are parent nodes,
and child nodes may contain references to their
parents. Outside the tree, there is often a refer-
ence to the "root" node (the ancestor of all
nodes), if it exists. Any node in the data struc-
ture can be reached by starting at root node and

repeatedly following references to either the left

or right child. Figure 2 shows a simple binary
tree of size 9 and height 3, with a root node
whose value is 2. The above tree is unbalanced
and not sorted.

Figure 2. A Simple Binary Tree

http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Child_node
http://en.wikipedia.org/wiki/Parent_node
http://upload.wikimedia.org/wikipedia/commons/f/f7/Binary_tree.svg

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org

Optimal Algorithm Based on Binary Tree
Data Structure (TreePD)

We build a Binary tree structure like tree for our

algorithm using the query log where each child
(left and right) is created based on the attribute
values. As described earlier in our running ex-
ample (Figure 1), each attribute can have a val-
ue either 1 (attribute present in the query), 0
(attribute not present in the query), or “?” (don’t
care). We build the tree such that the query log

is split into two groups based on an attribute
value (which becomes a node in the tree) – the
left child contains the queries with value 0 and
“?”; and the right child contains the queries with

values 1 and “?” for that specific attribute. The
queries with attribute value “?” (don’t care) go

with both the left and right children of a node
because in a newly designed package the value
of that attribute could be either 1 or 0.

Once the tree is created, then we search the
tree starting from the root of the tree and keep
track how many queries can be satisfied the by

assignment of the attribute values from root to
the leaf. We pick the path (assignment of at-
tribute values) with the highest count (number
of satisfied queries) as the new package (tuple).

The TreePD optimal algorithm is much faster

than the naïve optimal approach as we don’t

have to generate all possible combinations of
attributes, but still the algorithm can be slow in
case of very large number queries and attrib-
utes. So we propose approximate algorithm
that work well for large dataset which is dis-
cussed next.

5. APPROXIMATE ALGORITHM BASED ON

MINSAT HEURISTIC (HeuristicPD)

Package Design (PD) problem is the complement
of the MINSAT problem (Kohli et al., 1994),
which is an NP-complete problem. Given a set U

of Boolean variables and a collection of disjunc-

tive clauses over U, the goal of MINSAT problem
is to find a truth assignment that minimizes the
number of satisfied clauses. PD, which has con-
junctive clauses (queries), can be converted to
MINSAT as follows:

a) Complement the value of each attribute for
each query in the query log, i.e., if an at-
tribute has value 0 then convert it to 1 and
vice versa.

b) Complement the conjunctive semantics to
disjunctive semantics. Let ~Q denote the
converted query log Q. Solving MINSAT on
~Q, we get an assignment that satisfies the

minimum number of queries in ~Q; which
corresponds to satisfying the maximum
number of queries in the original query log
Q.

Our algorithm adopting a greedy MINSAT heuris-
tic (Kohli et al., 1994) operates as follows. Giv-

en any ordering of the variables, the greedy
heuristic sequentially selects an assignment for
each variable to satisfy the smallest number of
additional clauses (clauses in ~Q in PD). Figure

3 displays the pseudocode of the algorithm.

Figure 3. Pseudocode of Approximate Algorithm

Based on MINSAT Heuristic, HeuristicPD

The above heuristic has an approximation ratio
equal to the maximum number of attributes (lit-
erals) in any query (clause). Note that this ratio
does not hold for PD since in PD the solution is
complemented, that is the number of satisfied

queries is S minus the number of satisfied que-
ries in MINSAT. Nevertheless, our experimental
results in Section 6 show that the algorithm has
a very small approximation error in practice.

6. EXPERIMENTS

Our main performance indicators are (a) the
time cost of optimal and approximate algo-

rithms, and (b) the approximation quality of ap-
proximate algorithm.

System Configuration: We used Microsoft SQL

Server 2000 RDBMS on a P4 3.2-GHZ PC with 1
GB of RAM and 100 GB HDD for our experi-
ments. Algorithms are implemented in C#.

Datasets: We used datasets of products and
product queries. Note that products are just one
of the possible instantiations of the more general

packages of this paper. We used real and syn-

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org

thetic datasets (query logs). In specific, we use
two datasets: (i) REAL: real query log, and (ii)
REAL+: synthetic query log generated from the
real query log.

Real query log (REAL): We collected 240 queries
for cell phones from university users of and
friends through an online survey. The survey
was designed with 30 Boolean features such as
Bluetooth, Wi-Fi, Camera, Speakerphone and so
on. Users were asked to select the features they

prefer to have (positive) and most likely not to
have (negative) in their cell phones. Users se-
lected 3-6 positive and 1-2 negative features on
average. Hard disk was a popular negative fea-

ture.

Synthetic query log generated from real query
log (REAL+): As the real query log is very small,
it is inappropriate for scalability experiments.
So we generated larger datasets from the real
query log. A total of 200,000 queries were gen-
erated as follows: at each step we randomly se-
lect a query from the REAL query log, randomly

select two of its attributes and swap their val-
ues. We also generate datasets for a fixed size
of query log for varying number of attributes
(10, 15, 20, 25, and 30).

Table 1 summarizes the query logs or datasets.

Table 1. Summary of Query Logs (Datasets)

Figure 4. Time cost for REAL dataset

Figures 4 and 5 show the performance and
quality of the algorithms for the real query log
(REAL). Here, by quality we mean how many
queries are satisfied by a newly designed pack-

age. Note that HeuristicPD has almost optimal
quality.

Figure 5. Quality for REAL dataset

Figure 6. Time cost for varying query log size

for REAL+_30

Figures 6 and 7 show the performance of the
algorithms for varying query log size and num-

ber of attributes respectively, for REAL+ da-
taset. For varying query log size, we want to
see how our algorithms perform when query log
sizes (datasets) increase. For varying number of
attributes, we again want to see how the algo-

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org

rithms perform when number of attributes in-
creases for a fixed number of queries. We ran-
domly select a subset (of size 10, 15, ..., 30) of
the attributes of the dataset. As we can see

from the graphs, the approximate algorithm is
much more efficient than optimal algorithm.

Figure 7. Time cost for varying # of attributes

for REAL+_1000

Figure 8. Quality for varying query log size for

REAL+_30

Figures 8 and 9 show the quality (number of
queries satisfied in the query log) of the approx-
imate algorithm for varying query log size and
number of attributes respectively for REAL+ da-

taset. As we can see from the graphs, the ap-
proximate algorithm performs well. As we see in
Figure 9, the number of satisfied queries de-
creases as the total number of attributes in-
creases. The number decreases because as
more attributes are added, the queries become
more selective and harder to be satisfied. The

approximate algorithm has quality close to the
optimal algorithm.

Figure 9. Quality for varying # of attributes for

REAL+_1000

7. CONCLUSIONS AND FUTURE WORK

In this work we investigated the problem of de-

signing a package, such that, given a query log,
this package will be returned by the maximum
number of queries in the query log where a que-

ry can have negations. We proposed an innova-
tive optimal algorithm and showed the algorithm
is feasible for moderate inputs. Furthermore, we

present approximate algorithm, which are ex-
perimentally shown to produce good approxima-
tion ratios for large databases. A future direc-
tion is to extend the problem to other data
types, such as categorical, text and numeric and
different query semantics like top-k and skyline
retrieval.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1816

©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org

8. REFERENCES

Albers, S., Brockhoff, K. (1977). A procedure for

new product positioning in an attribute

space. European Journal of Operational Re-
search. 1, 4 (Jul 1977), 230-238.

Albers, S., Brockhoff, K. (1980). Optimal Product

Attributes in Single Choice Models. Journal of
the Operational Research Society. (1980)
31, 647–655.

Albritton, D. M., McMullen, P. R. (2007). Optimal

product design using a colony of virtual ants.
European Journal of Operational Research.

176, 1 (Jan 2007), 498-520.

Gavish, B., Horsky, D. Srikanth, K. (1983). An
Approach to the Optimal Positioning of a
New Product. Management Science, 29, 11
(Nov 1983), 1277-1297.

Gruca, T. S., Klemz, B. R. (2003). Optimal new

product positioning: A genetic algorithm ap-

proach. European Journal of Operational Re-
search. 146, 3, 2003, 621-633.

Kohli, R., Krishnamurti, R., Mirchandani, P.
(1994). The Minimum Satisfiability Problem.
Siam J. Discrete Math.

Kohli, R., Krishnamurti, R. (1989). Optimal
product design using conjoint analysis:
Computational complexity and algorithms.
European Journal of Operational Research.
40,2, 1989.

Li, C., Tung, A. K. H., Jin, W., Ester, M. (2007).

On Dominating Your Neighborhood Profita-
bly. VLDB 2007, 818-829.

Li, C., Ooi, B. C., Tung, A. K. H., Wang, H.

(2006). DADA: a Data Cube for Dominant
Relationship Analysis. SIGMOD 2006.

Miah, M. Das, G., Hristidis, V., Mannila, H.

(2008). Standing Out in a Crowd: Selecting
Attributes for Maximum Visibility. ICDE
2008: 356-365.

Shocker, A. D., Shrinivasan, V. A consumer-

based methodology for the identification of
new product ideas. Management Science.
20, 6 (Feb 1974), 921-937.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jin:Wen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Ester:Martin.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2007.html#LiTJE07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ooi:Beng_Chin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tung:Anthony_K=_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Shan.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#LiOTW06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Das:Gautam.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hristidis:Vagelis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mannila:Heikki.html
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2008.html#MiahDHM08
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2008.html#MiahDHM08

