
Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org

CMobile: A Mobile Photo Capture Application for

Construction Imaging

Andrew Martin
martinandrewj@gmail.com

Ron Vetter
vetterr@uncw.edu

Department of Computer Science,

University North Carolina Wilmington
Wilmington, North Carolina 28403 USA

Jeff Brown

brownj@uncw.edu
Department of Mathematics and Statistics

University North Carolina Wilmington
Wilmington, North Carolina 28403 USA

Thomas Janicki

janickit@uncw.edu

Dept. of Information Systems & Operations Management
University North Carolina Wilmington

Wilmington, North Carolina 28403 USA

Abstract

In recent years the mobile application space has exploded in popularity, a fact which is reflected in the
increasing availability of both free and paid applications on a variety of mobile platforms. In order to
take advantage of this ever-growing market, the authors developed a mobile photo capture

application, called CMobile, to supplement data gathering for a project/content management system.
This paper describes the original design requirements and features of the application, the methodology
by which design choices were tracked and implemented, reviews the issues and problems
encountered, discusses the resolutions employed and lessons learned, and concludes with a discussion
of potential future developments.

Keywords: mobile application development, web services, agile development methodology

mailto:martinandrewj@gmail.com
mailto:vetterr@uncw.edu
mailto:brownj@uncw.edu
mailto:janickit@uncw.edu

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org

1. INTRODUCTION

Construction Imaging (CI), a leader in industry
specific content management solutions, has

been looking for opportunities to extend its suite
of desktop product solutions into the exploding
arena of mobile applications and devices
(Construction Imaging, 2011).

CI has received numerous requests to enhance
its content management model to include

photograph management. The types of
photographs project managers on site tend to
take include images of completed or in-progress
construction, safety violations or various

impediments to job progress.

Currently, these photos must be extracted from
the camera and then uploaded to a computer
where they can be manually indexed into CI’s
content management system either via a
desktop or web application. At times the project
manager (user) might be out in the field and
unable to immediately access a workstation to

index the photographs. If the user is using a
camera and needs to upload the photos
immediately, he/she would have to find a
suitable location to index the photos. If the user
has a web enabled camera-phone there’s an
easier solution, but still far from ideal, namely e-

mail. Finally, another option is to simply send

the images to a third-party to index them.

An optimal solution would be for the user to take
photos using their smart phone and
automatically upload them to the system with a
set of index values populated with data such as

the phone’s GPS coordinates, a related job
number, vendor number and other values.
Thus, CI partnered with the authors to develop a
solution in the mobile application space,
specifically an application designed to take
advantage of the features provided by Apple’s
iPhone 4 (Apple Inc, 2011).

This paper discusses the software development
methodology, systems analysis and design, and
implementation details of a system called
CMobile that allows users to interface with and
add photographic content automatically to CI’s
content management system via his or her

iPhone.

The paper describes the specific requirements
for the one firm, however the implementation of
the analysis and design plus the tool set

employed and discussed may be used in other
similar photo applications for mobile devices.

2. REQUIREMENTS

Currently, there is only one mobile application
on the market that performs the desired
customer requirements related to photo
management for content management services.
Vela Systems provides a product called Vela
Mobile that includes an application for the iPad,

but the application only interfaces with the
proprietary Vela Field Management Suite (Vela
Systems, 2011). In discussions with CI’s
management, it was decided to develop a

proprietary product that interfaces only with CI’s
Content Manager, thereby giving the company

complete control over branding and the ability to
fully optimize the graphical user interface
through seamless integration with their existing
product. Management also desired to enhance
CI’s market position by being able to provide
current and potential customers with a mobile
application that would assist with data collection

in the field.

The following is the original list of requirements
for CMobile as identified by CI management and
the application’s developers (paper authors):

a) Required features:

 CMobile needs to integrate with the
phone’s camera, allowing the user to

take a photograph directly from the
application.

 The photograph must be processed
(compressed if necessary) with index
values associated with it from various
static and configurable criteria including

but not limited to the phone’s number,
GPS coordinates and an associated job
number, and other configurable values
predefined for the content type or
selectable from a list of keywords.

 An option to upload a photograph and its

accompanying index values via a

configurable web service interface to CI’s
content management system must be
provided.

 An option must be provided to allow a
photograph and its index values to be
emailed directly from the application.

 The application must have the ability to

upload photographs that exist on the
phone but were not taken from within
the mobile application.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org

 Application access must be restricted by
login credentials validated against the
web service, however, the username and
password may be saved locally for quick

login.

b) Optional features:

 The ability to upload/email a batch of

photographs with a single set of index
values.

 The ability to attach a voice note or
other recording.

3. DEVELOPMENT METHODOLOGY

In order to produce a mobile photo management
application that achieved the objectives set forth
for this project, the system was implemented
using the following methodologies and
technologies:

 Scrum Agile Development Methodology

(Scrum Alliance, 2011).
 An Apple Macintosh computer using the

iOS development platform provided by
the Xcode Integrated Development
Environment (Apple Developer, 2011).

 Objective-C using Interface Builder for

the user interface development (Apple
Developer, 2011).

 Communication with CI’s Content
Manager (the backend) with a web
service API created using Windows
Communication Foundation (WCF) with a
JSON (Java Script Object Notation)

enabled endpoint (Microsoft WCF, 2011).
 All source code was versioned and

managed using Microsoft Team
Foundation Server (TFS) via the Team
Explorer Everywhere command line tool
for OSX (Microsoft, TFS, 2011).

 Development progress was recorded and

tracked via Tasks in Microsoft Team
Foundation Server’s (TFS) development
management tools.

 Functionality was tested by Microsoft
Test Manager, which fully integrates with
TFS (Microsoft, Testing, 2011).

The Scrum development methodology was
chosen over other potential methods due to the
fact that it is the primary methodology currently
employed by the developers and CI. The need to
quickly adapt to changing requirements that
tend to shift the direction of a development

project mid-stream requires an agile approach,

as opposed to the sequential approach of the
waterfall model or other iterative models of
development. The Scrum methodology suited
our needs best.

The decision to use Xcode with Objective-C and
Interface Builder was reached as these
technologies are the standard development tools
for Apple’s iOS environment. The decision to
develop for the iPhone itself instead of other
mobile platforms, such as Android, Blackberry,

etc., was based on the overall marketability of
Apple’s product at this time, with potential to
expand CMobile to other platforms in the future.

4. IMPLEMENTATION

When CMobile launches for the first time it
prompts the user to configure application
settings (Figure 1). The user must specify a URL
that points to an exposed Content Manager Web
service (this web service URL will be preloaded
into the application upon download from the
‘appstore’). Once the address is verified and the

connection is established, the user is directed to
a Login screen (Figure 2). Login credentials can
be saved locally in the settings menu in order to
bypass the login screen on subsequent use of
the application.

Figure 1: The CMobile Settings Screen

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org

After successful authentication, the user is
presented with the home screen (Figure 3). This
screen allows the user to take a photo, index or
email a photo or image stored on the phone, or

edit the application’s settings.

Figure 2: The CMobile Login Screen

Figure 3: CMobile’s main navigation screen

If the user chooses to take a photo they will be
presented with the iPhone’s camera, otherwise
they can browse for a photo or image. Once the
user has specified the image they wish to use

they are returned to the home screen where
they can choose to index or email the image. If
the user opts to index the image they are
presented with the index screen (Figure 4).

Figure 4: Indexing an image

The index screen allows a user to index values
associated with an image. Fields configured for
GPS coordinates or heading are pre-populated
from the phone if that data is available. Once
the user has completed the input, the image can
be uploaded. When the upload has completed

the user is informed of its success and
redirected to the home screen.

The process is similar if a user decides to index a
photo already stored on the phone, except that

the user is presented with the iPhone’s camera
roll where he/she can choose the images to

index (Figure 5).

If the user decides to email an image instead of
uploading it to the web service, they can follow
the same steps, but this time they will be
presented with the email screen (Figure 6). Here
they can specify recipients, a subject and a

message to send along with the attached image.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org

One thing to note is that once an image is
indexed and uploaded to CI Content Manager via
the WCF (Windows Communication Foundation)
service it is no longer CMobile’s concern. It may

be saved, placed in a workflow, routed, trigger
notifications, etc. CMobile’s primary purpose is
to create and present the data, not perform any
other actions on it.

Figure 5: Browsing for an image

For version 1.0 of CMobile we have decided not
to incorporate the ability to upload video or
voice recordings. We also do not allow the user
to upload batches of images under one set of
index values.

Service Method Calls
We have implemented a web service API using
WCF technology that performs some basic tasks
for our web products, such as retrieving data
source information, authenticating and

authorizing user credentials, and importing and
saving documents. We use this service to

communicate with CI Content Manager.

The following is a list of preexisting service
methods that were required for the application:

 GetDataSources() - A JSON enabled
WebGet method that returns a list of

available data sources to the user
(JSON, 2011).

Figure 6: Indexing a photo

 Login(string uname, string pass) - A

JSON enabled WebGet method that
authenticates the user based on supplied
username and password and begins the

user session.

 GetLayouts() - A JSON enabled

WebGet method that returns the layout

of the content type. Includes
configuration information about user
settings and preferences and available
fields and their configurations (name,
data type, default value, etc.).

 Logout() - A JSON enabled WebGet

method that ends the current user
session.

 IsLoggedIn() - A JSON enabled
WebGet method that determines if the

user is still logged in and that the
session has not expired. Required for
instances where the user leaves the
application running for an extended
period of time. This method is typically
called before making any other service
calls that require the user session to be

active.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org

The following is a list of new service methods
that were implemented for the application:

 GetNewDocument() - A JSON enabled

WebGet method that returns a stub of a
Document object. In CMobile’s case this
object contains all the information
required to import a photo: its data and
index values. This particular method was
added so that the JSON representation
of the Document object would not have

to be constructed programmatically from
scratch in the application.

 GetNewDocumentWithCount(int

fieldCount, int fileCount) - A JSON
enabled WebGet method that returns a

stub of a Document object. It is similar
to the GetNewDocument() method but
also returns the supplied count of stubs
of Fields and Files properties on the
Document object.

 ImportDocumentWithImageStreamA

sInvoke(Document document) - A
JSON enabled WebInvoke method that
returns a document object that describes
the photo to be imported into the
content management system. This
document contains the index field values

and the image’s data stream.

Figure 7 (in Appendix A) is a representation of
the process by which CMobile communicates
with the WCF Service API in order to submit
content to the CI content management system.
The seven service methods that CMobile calls

are depicted under the category in which they
operate, with the service methods listed in
italics. Note that only the service methods
required for the mobile application are listed.
Figures 8 and 9 (in Appendix A) show a
graphical view of the classes and their
relationship to one another. Finally, Figures 10

and 11 (in Appendix A) show screen shots of the

CMobile web and desktop interfaces.

5. DEVELOPMENT CHALLENGES

Fully implementing memory management was a
major programming challenge encountered

during implementation. Issues included
understanding when an object needed to be
retained as not to lose a reference to it later,
when an object needed to be released in order
to prevent memory leaks, and when an object

should be ignored because another object
currently required access to it.

Fortunately, Xcode provides both a code

analyzer and a real-time leak detection tool. The
analyzer can be run on the source code and
offers information on locations where memory
leaks are bound to occur, areas where leaks may
occur, and sections where it was unnecessary to
release objects. While the analyzer provides a
lot of useful suggestions for handling memory, it

can’t always account for the flow of the
application, so employing a leak detection tool
assists with debugging in the Xcode simulator. It
supplies real-time information about current

memory allocations, including all introduced
leaks.

One of the simplest tasks in CMobile’s
development was the incorporation of the
iPhone’s camera and email interface. Apple has
made accessing these features simple and the
integration seamless.

The most time consuming part of the
development process was implementing the
necessary service calls to the CI WCF service.
After a few unsuccessful attempts at using
various toolkits designed to communicate with
non-RESTful services, the best approach was to

enable certain service methods to return JSON

formatted dictionaries and use the iOS JSON
Framework to consume and convert these
objects. Doing so made accessing data from the
service as simple as constructing a RESTful URL
and waiting for a response.

Even using the JSON Framework, we ran into a
few problems trying to pass image data to the
service. The first issue was that the service did
not accept very large query strings. We updated
the size the service would accept and were then
able to successfully upload images. The second
issue occurred when we realized that images

over a certain size (about 1.3 megabytes) would

exceed even the maximum allowable query
string size. As a result we had to find another
method to import the images. The solution was
to enable the service methods to accept JSON
web invoke calls. This allowed us to configure an
HTTP POST message with the image data in the

body of the message, bypassing the query string
size limits. We were then able to import images
of a much larger resolution and quality.

The implementation of the settings menu was
completed by using InAppSettingsKit, an open

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org

source solution by Edovia (2010). This toolkit
allows for the easy inclusion of in-app settings or
a duplication of the iPhone’s application settings
in your application.

All software development was focused on
creating the application to run on the iPhone,
however some of the decisions made along the
way, such as the one to use the JSON format for
communication, make the project more easily
adaptable to other platforms. As discussed, the

application communicates with Content Manager
via an exposed WCF web service which acts as
an API to all the functionality of the content
management system itself. Once CMobile has

passed its photo and index information to the
web service, the content management system is

free to perform any number of functions with the
photo based on the data associated with it.

In order to verify that the requirements for the
completion of this project were met we created
test suites in Microsoft Test Manager. Each test
suite is associated with a given story or task and

has associated test cases that test the entire
range of functionality implemented by the
story’s tasks.

Figure 12 (in Appendix A) displays a test
designed to assess CMobile’s ability to index a

photo taken from the iPhone’s camera, from

login to success. Each test is comprised of
multiple steps, each with their own expected
outcome. As the test progresses, each step can
be marked as having passed or failed. The test
itself only passes if all of its steps have passed
and then the code was considered complete,

having met its requirements.

6. SUMMARY AND LESSONS LEARNED

CMobile was conceived and commissioned, after
reviewing requests for enhancement from both
current and potential customers, in order to

establish CI as an enterprise content

management provider in the mobile space. This
allowed CI to expand its suite of products to
what most consider the platform of the future in
both enterprise content management and
computing as a whole.

To further this goal we were charged with
creating a simple yet powerful mobile photo
capture application for the iPhone. To complete
the task we leveraged the power of newer
platforms and technologies and integrated them
with more recognizable tools and systems in a

completely seamless and unified fashion while
maintaining both extensibility and adaptability
on both sides.

The simplicity of the JSON protocol, when
compared to standard XML formatted protocols,
makes it ideal for use in situations that require
the consumption of data passed over protocols
like HTTP. Unlike XML, JSON does not require
knowledge of a document type definition that
the recipient understands, making its payload

smaller and easier to parse, quicker to transmit
(due to its smaller size), and generally easier to
construct. JSON requires only simple evaluation
of the text of the serialized string using a

corresponding method in the given language.

The ease of taking non-RESTful, .NET-based
WCF service methods and adapting them to send
and receive JSON messages is an extremely
useful and powerful lesson learned from this
project. By doing little more than adding a
service attribute, one can transform a service
designed to work with specific .NET client

architecture, such as C# applications, services
and assemblies, or browser-embedded
Silverlight applications, into a near universally
accessible API.

Another important lesson learned was the need

to understand the quirks and intricacies of

Objective-C. Having to learn the uniqueness of
the language’s syntax and the methods by which
memory is managed and the tools available to
avoid or correct these issues allows developers
to more effectively construct and deploy
Objective-C applications on an iPhone.

The final key takeaway for all developers is the
ease of integrating GPS with photos, the
simplicity with which the iPhone allows said
integrations, and the ease of using those
features to expedite and simplify the process of
transferring that information via a web service to

a content management system.

While we are confident that we accomplished
what we set out to do in CMobile Version 1.0,
the product is far from finished as Version 1.1 is
already underway. Ideas for additional features
are abundant including, but not limited, to the

following:

a) Reintroduction of batch image processing.

b) The ability to view images and documents in

the user’s work list and take action on them

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org

(approve, reject, review, annotate, attach

notes, etc).

c) The ability to view a mapping of all images

containing GPS and heading index data in a

given area.

This is just a small list of many possible

opportunities to expand this project in the
future. This first iteration of CMobile will provide
a solid platform from which to move forward and
realize the full potential of Construction Imaging
solutions in the mobile space.

7. REFERENCES

Apple Developer (2011). Xcode - Developer

Tools Technology Overview. Last retrieved
2/20/11. <http://developer.apple.com/
technologies/tools/xcode.html>.

Apple Inc. (2011) Apple - iPhone 4 - Video calls,
multitasking, HD video, and more. Last
retrieved 7/9/2011.
<http://www.apple.com/iphone/>.

Construction Imaging (2011). Construction

Imaging Content Management Software &

Systems Integration. Last retrieved
7/9/2011. <http://www.construction-

imaging.com/>.

Edovia Inc. (2010) Edovia - Insanely Great
Software for Mac and iOS. Last retrieved
7/9/2011. <http://www.edovia.com/>.

JSON. (2011), Last retrieved 7/9/2011.
<http://www.json.org/>.

Microsoft. Team Foundation Server (2011).

Last retrieved 7/9/2011.
<http://msdn.microsoft.com/en-
us/library/ms181238(v=vs.80).aspx>.

Microsoft. What Is Windows Communication

Foundation. (2011). Last retrieved
7/9/2011. <http://msdn.microsoft.com/en-

us/library/ms731082.aspx>.

Microsoft. What's New For Testing. (2011).
Last retrieved 7/9/2011.
<http://msdn.microsoft.com/en-
us/library/bb385901.aspx>.

Scrum Alliance (2011). What is Scrum?

Last retrieved 2/20/2011.

<http://www.scrumalliance.org/learn_about
_scrum>.

Vela Systems (2011). Fela Mobile iPad and Email

iPad App for Construction Field Management.
Last retrieved 3/3/2011.

<http://www.velasystems.com/ipad-for-

construction-vela-mobile/>.

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org

Appendix A (Figures)

Figure 7: A graphical representation of CMobile and its integration with CI Content Manager

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org

Figure 8: Class Model from Xcode

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org

Figure 9: Class Model from Xcode

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org

Figure 10: CI Content Manager Desktop Interface

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org

Figure 11: CI Content Manager Web Browser Interface

Conference for Information Systems Applied Research 2011 CONISAR Proceedings
Wilmington North Carolina, USA v4 n1839

©2011 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org

Figure 12: An execution of Test Case 5104

