
2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

The Deployment Pipeline

Dan Mikita

danmikita@gmail.com

Gerald DeHondt
dehondtg@gvsu.edu

School of Computing and Information Systems,

Grand Valley State University
Allendale, MI 49401 USA

George S. Nezlek
gnezlek@gmail.com

Abstract

The ultimate goal of a software development process is the deployment of a quality piece of software.
A deployment pipeline includes many aspects of software development that are rarely focused on by a

development team. The proper development process should include as little manual testing and
configuration as possible, while still confirming all of the functional and non-functional requirements

that the system must satisfy. The business users, who are the most knowledgeable about the
functional and non-functional requirements, also need to be directly involved in writing those tests. All
dependencies should be known and managed consistently, with the objective of having a releasable
application after every commit. This provides for a stable application, reliable development and
production environments, consistent releases, and a product that meets a larger number of business
goals.

Keywords: deployment pipeline, behavior-driven development, continuous integration, configuration
management

1. INTRODUCTION

An important, yet often overlooked, portion of

software development is the deployment
pipeline. A properly defined deployment pipeline
can help improve the quality, speed, and
robustness of a project. Improper
developmental quality has a direct and
measurably negative effect on a system’s life
cycle costs; it takes longer to understand and

maintain system code, and architecture drift is
harder to discover. It is more laborious to test
such systems, and chances are higher that
modifications will introduce bugs that are more
costly to address (Buschmann, 2011).

This paper will discuss the many aspects of the
deployment pipeline, and suggest how to

achieve the many benefits it offers. No project
is too small to use the methods suggested here,
nor are all the ideals mentioned necessary to
achieve a better overall state for a project. It is
important to note that any one of the
dimensions of deployment pipelines may be
used separately from the others to add value to

a project, but the greatest overall benefit will
result from incorporating all of them.

The term deployment pipeline refers to how
software gets from the development phase to

mailto:danmikita@gmail.com
mailto:dehondtg@gvsu.edu
mailto:gnezlek@gmail.com

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

the release phase (Humble & Farley, 2011).
Although this may seem relatively straight-
forward, there are many things to consider when
delivering an application consistently and

confidently each time it is released. Having a
solid deployment pipeline also enhances how
developers, testers, and build-and-operations
personnel work together effectively. The range
of topics may be vast, including configuration
management and version control, to testing
methodologies and requirements gathering;

each piece is a necessary component of a larger
picture. The larger and more complicated the
system becomes, and the more complicated the
composition of the development teams, the

more obstacles are placed in the way to the
release of a software system (Kraut and Street,

1995). Since most software systems are
developed by teams, effective coordination and
communication are crucial to the success of
software projects.

2. CONFIGURATION MANAGEMENT

Before approaching the topic of testing itself,
there is an extremely important aspect of every
project that needs to be in place first:
configuration management. Configuration
management refers to the process by which all
artifacts relevant to a project, and the

relationships between them, are stored,

retrieved, uniquely identified, and modified
(Humble & Farley, 2011). In effect, a
configuration management strategy will
determine how to manage changes within a
project. Humble & Farley (2011) offer some
insightful questions to ask to determine if the

current configuration management strategy is in
good condition:

 Can I exactly reproduce any of my

environments, including the software
versions and their configurations?

 Can I easily make an incremental change to

any of these individual items and deploy the

change to any, and all, of my environments?
 Can I easily see each change that occurred

to a particular environment and trace it back
to see exactly what the change was, who
made it, and when they made it?

 Can I satisfy all of the compliance

regulations that I am subject to?
 Is it easy for every member of the team to

get the information they need, and to make
the changes they need to make?

If the answer is “yes” to all of these questions,
then the project is probably in a good state. But
if the answer is “no” to any one of them, it will
provide a good idea of where to start to fix the

current process. There are three topics that will
be discussed in the next section that are all key
components to a successful configuration
management strategy: version control,
environment set-up, and dependency
management.

Version Control

A version control system (VCS), also known as
source control, is a staple of every project. VCS

is a way to keep a history of any file placed
within it. VCS provides the ability to track

changes and revert them if necessary
(Ruparelia, 2010). It is also a means for multiple
users to make changes to the same files at the
same time (Louridas, 2006). Some examples of
the most common VCS’s consist of SVN, Git, and
Mercurial. Although the topic of this paper is not
version control, there are some very important

concepts to keep in mind with regard to VCS
use.

One of these concepts is that a version control
system is not just for source code. Every single
artifact related to the creation of software should

be under version control. Developers should use

it for source code, tests, database scripts, build
and deployment scripts, documentation, libraries
and configuration files for any application, the
compiler and collection of tools, and so on – so
that a new team member can start working from
scratch (Humble & Farley, 2011). To put it

simply, it is extremely important to store all the
information needed to re-create the testing and
production environments within a version control
system. This allows the team to roll back to the
last previously known good state should any
system modifications introduce, or re-introduce,
errors into the system. Proper version control

also ensures that the latest system build is

readily available for users to validate adherence
to requirements. This level of configuration
management ensures that, provided an intact
repository, the team will always be able to
retrieve a working version of the software
(Humble & Farley, 2011).

Every version control system offers the ability to
add a small message to every commit that is
made. This gives those who look at a project’s
history an idea of what the change in the
commit was for (Spinellis, 2005). Because this

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

message is required to make a commit, some
individuals get in the bad habit of writing
something trivial, along the lines of “fixed a
bug”. It is imperative to include useful

information to inform those who will continue to
support the application. Typically, an
appropriate method is to include a short concise
line at the beginning, followed by a more
detailed description below, since the first line is
what is typically displayed in most views.
Appropriate information tagging makes

information retrieval and environment recreation
easier (Treude and Storey, 2012). Information
retrieval is also enhanced by community
tagging, allowing a broader understanding of the

material attached to the artifacts (Robu, Halpin,
and Shepherd, 2009). This documentation

feature is beneficial to the developers, testers,
and subject matter experts who will continue to
support the system after deployment.

Branching is another topic that can cause issues
within a project. A branch, in terms of version
control, provides the ability to generate an exact

copy of the current code base with the purpose
of working on a new piece of functionality. This
allows the new code to be written without
affecting the main line of code. In most cases
this can cause more trouble than it is worth
(unless a distributed version control system is

being used). The reason for this is the difficulty

that can arise when trying to merge those new
changes back into the main line of code.
Frequently, many of the same files that were
changed on the branch were also changed on
the main line of code, which can lead to a large
number of conflicts and trouble. Synchronizing

all the changes made is imperative, and
managing the different branches may prove
unwieldy if this is not properly managed.

Although branching is not recommended, there
is one situation where branching is extremely
useful: releases. By branching whenever a

release is cut, the ability to continue developing

the mainline code while still having a stable
representation of the application currently in
production is undeniably useful.

An expansion of all issues relevant to version
control is beyond the scope of this manuscript,

but keep these topics in mind as the discussion
of the deployment pipeline continues. As
previously mentioned, version control can be
used for more than just source code, and an
example of that is a program’s environment.

Environment Set-up

Every application ultimately depends upon the
hardware, operating system, software, and all

the other aspects of a computer system that
allows it to run. Consequently, it makes sense
to manage the environment an application will
run on as well.
If an application requires a certain version of a
driver, or possibly requires a port to be available
on the system, the environment will need to be

set-up in that way to work properly. The worst
possible approach to managing this is on a
piecemeal, system-to-system basis. One of the
primary challenges with this method is that if a

problem occurs with the current configuration,
there is no record of the last known good state

and hence no method to roll back.

The best way to approach this situation is by
automating the entire process. Automation
precludes the possibility of having only one
individual who knows how to set-up a new
environment, as well as the ability to easily

revert back to a known good configuration.
Also, it allows creation of test environments that
mimic a production machine, which is required
for manual user acceptance testing, to be
discussed later. All configuration specifications
can be checked into version control and pushed

out to various environments using tools such as

Puppet or CfEngine. These tools allow the user
to define things such as what access level
individual users have and what software should
be installed, thus letting users store
configurations in version control and initiate the
rollout through the same version control system.

This environment set-up is simply another piece
of the puzzle that leads to the management of a
project’s dependencies.

Dependency Management

Most applications have many dependencies, and

whether they are third party libraries or internal

components, it is necessary to have a way to
manage them all. The main goal of dependency
management is to enforce consistent, repeatable
builds. If a tester checks out a project from a
version control system and runs the automated
build, the exact same libraries should be used

(Humble & Farley, 2011). There are two main
approaches to managing a project’s
dependencies. The first is checking all of the
project’s dependencies into a version control
system. The second is to use a tool such as
Maven or Ivy that will transitively resolve

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

dependencies with other projects and ensure
that there are no inconsistencies in the project
dependency graph. Furthermore, these tools
cache the libraries a project needs on the local

machine so that consecutive builds are just as
fast as if the libraries were checked into version
control.

Another important aspect of dependency
management is the use of a personal artifact
repository. An example of this is Sonatype’s

Nexus. These are extremely useful for internal
components that multiple projects within an
organization may depend upon. The practice of
using an internal artifact repository also makes it

much easier to audit these libraries and prevent
violations of legal constraints (Humble & Farley,

2011).

Having an internal artifact repository leads to
the ability of dividing a project’s code base into
components. There are several reasons why
components make the software development
process more efficient. One is that they allow a

project to be divided into more expressive
chunks, as well as clear separate responsibilities
(Belguidoum & Dagnat, 2007). This can lead to
more freedom when optimizing a build and
deployment process.

Implementing these processes allows continuous

integration of software to remove the manual
tinkering and configuration required for each
release.

3. CONTINUOUS INTEGRATION

The topic of continuous integration is at the
heart of a good testing strategy. Continuous in-
tegration and automated testing mean that it is
difficult for developers to deliver poor, low-
quality code (Conboy, Coyle, Wang, and
Pikkarainen, 2011).

Lacking this, project tests serve much less of a

purpose than what they are able to. It is
extremely common during the development of a
piece of software for the developer to work on
just a small portion of the code, and only run
and/or unit test that portion. In fact, it can be
nearly impossible to run the entire application in

a production-like environment for the individual
developer. Thus, it is possible that a change the
developer makes in one part of the code may
leave the overall application in a non-working
state. When a software project is composed of
dozens of components with complicated

dependencies among each of them, a change to
one component often has a drastic effect on the
others. This is where continuous integration
comes in (Kim, 2008). Nerur & Balijepally

(2007) state that continuous code integration
can improve software design and the code base.
Schrodl & Wind (2011) investigated a project
demonstrating the applicability of this approach.
This iterative approach also allows it to be
tolerant of changes in requirements (Beck &
Andres, 2004). Agile methods utilizing

continuous code integration focus on providing
high customer satisfaction through three
principles: quick delivery of quality software;
active participation of concerned stakeholders;

and creating and leveraging change (Highsmith,
2002).

As an example, agile methodologies apply
iterations to all phases of a project, from system
requirements specification all the way down to
system testing (Zhang and Patel, 2011). This is
achieved by tight collaboration of different
teams through a feature team. Scrum,

specifically, is a lightweight, simple-to-
understand, yet difficult-to-master Agile
framework, through which people can address
complex, adaptive problems (Schwaber &
Sutherland, 2012). Our proposed model
implements a framework in a similar, iterative

fashion.

There are three things that are necessary before
continuous integration can be achieved:

 Version Control
 An Automated Build

 Agreement of the Team

Version control is crucial for the central location
and change tracking that it provides. An
automated build is necessary for the ability to
continuously monitor each change for a negative
impact. The third item is worth noting, because

without the full commitment of a team, any

continuous integration (CI) plan will likely be
unsuccessful.

CI Basics

Utilizing a CI tool such as CruiseControl or

Hudson will help get a system set-up in a hurry.
The steps for installing and setting up these
tools are extremely straight forward and will
only take a few moments. After the tool has
been configured with the version control
repository, compile scripts, and run the

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

automated commit tests for the application; the
CI system will have the ability to determine if
the last set of changes broke the software
(Haines, 2008). According to Humble and Farley

(2011), there are seven basic steps to follow:

1. Check if the CI tool is currently building your

application. If so, let it finish.
2. Once it finishes, update your local code in

your development environment from your
version control system.

3. Make any changes you need to make, then
run your tests and build the script locally.

4. If your local tests and build pass, check your
changes into your version control system.

5. Wait for your CI tool to notice the changes
and automatically start running.

6. If it fails, fix the problem immediately and
return to step 3. Otherwise, continue on to
step 7.

7. Celebrate!

As can be seen, it is important for everyone on
the team to follow these rules, otherwise certain

members of the development team will end up
having to fix others’ bad code.

Essential Practices

For continuous integration to work properly,

there are a few essential practices that must be

followed. The first and most important practice
is checking in regularly to a version control
system. Small commits throughout the day will
ensure that the team always has a releasable
version of the application at the end of the day.
These small commits also mean there is a

smaller chance of breaking the build, as well as
less chance of conflicts with other developers.

The second essential practice is having a
comprehensive automated set of tests. The
point of using continuous integration is being
able to consistently run a suite of automated

tests every time a commit is made by any

developer. This helps ensure current
functionality and eliminates “negative work”,
where more errors are introduced than
requirements fulfilled in the latest build. While
keeping this concept in mind, it can be seen why
it is imperative to have a comprehensive set of

automated tests.

4. TESTING

The proper testing process should include as
little manual testing and configuration as

possible. It should also confirm all functional
and non-functional requirements, while allowing
the business users (who know those functional
and non-functional requirements better than the

developer) to be personally involved in writing
those tests. Even in situations where the
majority of tests are automated, they are often
poorly maintained, out-of-date, and require
significant manual testing to make up for their
deficiencies (Humble & Farley, 2011). It is
important when updating an application to

ensure that the automated tests remain
consistent with application functionality. Zhang
and Patel (2011) recommend that the team
develop and verify individual test cases first,

then add them to the list for automated batch
mode execution, execute all the test cases in

batch mode overnight, and finally analyze test
results to find the root cause of the failed test
cases. In this scenario, it helps to ensure that
the test cases remain relevant to the current
application iteration. Riungu-Kalliosaari, Taipale,
and Smolander (2012) have even recommended
the use of cloud-based testing services to

enhance testing agility and speed the
development and deployment pipeline. These
methods could result in faster delivery of
products to address business needs.

It is also important when writing automated

tests to keep in mind that just having a test in

place means very little if it does not prove a
business function. Each test needs to be directly
traceable to validate system requirements.
Surveys have shown the lack of automation of
software testing tasks in most software
organizations (Polo, Tendero & Piattini, 2006).

To build a quality application, it is imperative to
have automated tests at multiple levels,
including: unit tests, component tests, and
acceptance tests. Having these tests at multiple
levels allows them to be run as part of the
deployment pipeline, which should take place
every time a change is made to the application

or configuration. This is achieved by the

Continuous Integration with a version control
system that we discussed previously.

Test-Driven Development

Test-driven development is a software

development process that is designed to consist
of short development cycles. The way the
process works is that the developer will first
write an automated test case that defines the
functional or non-functional requirement defined
by the business. These tests are written before

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

any code relating to the application is developed.
Next, the developer will write code for the
application that makes these tests pass. Once
the code has been written, and the tests pass,

the developer will refactor and polish his initial
codebase, while ensuring required functionality
is maintained.

Using this strategy, a development team can
easily achieve all the functional requirements
defined by the business. This development

practice has led to many other forms of test-
driven development, one of which shows much
promise, Behavior Driven Development. Before
we can understand the usefulness of behavior-

driven development, we must first talk about
requirements gathering.

Requirements Gathering

When developing an application for a business
partner, requirements gathering may be more
challenging. Most developers go through a
process of requirements gathering before

starting any project, but the requirements
gathering used for a business application can
take on a whole new appearance. The reason
for this is that the complexity of business
processes can be overwhelming and impossible
for a developer to understand on a deep enough

level to write an application that will mimic those

processes (Holub, 2005). It is in these
situations that a subject matter expert, with a
thorough knowledge of the business, is
imperative to the success of a project.

In an ideal world, the business will assign an

individual to the project who understands the
concepts of the business processes on a deep
enough level to explain them to the developer.
In this way, the business user and the developer
can work together to write the automated test
suite that will allow the developer to achieve the
functionality the business requires.

Unfortunately, customers have become

increasingly unable to definitively state their
needs up front while, at the same time,
expecting more from their software (Lucia &
Qusef, 2010). This leads us to the discussion of
behavior-driven development.

Behavior-Driven Development

As we have stated, in an ideal situation there
will always be a business user available to the
development team to help with any functional
requirements the business may have. To make

the collaboration between business and
developer even easier, the concept of behavior-
driven development (BDD) has been created.

Initially created by Dan North in 2003, BDD is
now starting to gain widespread acceptance in
the field. BDD focuses on allowing business
users to actually write the tests themselves
(North, 2006). Since these business users will
be the subject matter experts, they will have the
best knowledge of the required system

functionality. Specifically, Conboy et al. (2011)
note potential indifference and disengagement
on the part of business users when excluded
from system development activities. They may

believe that the development team knows little
about the business side and will be unable to

deliver value. In this instance, it is incumbent
upon them to write the tests that will determine
successful system behavior. In the end, it will
be the business users who ultimately accept the
completed system, based on adherence to these
pre-defined requirements. As the business
users are the Subject Matter Experts who will be

working with the software, they best understand
the requirements necessary for successful
software development.

This is where BDD comes in. With tools such as
JBehave and RSpec, writing automated tests no

longer requires any knowledge of programming.

This type of tool allows the use of “statements”
that are attached to code. Take for example:

Scenario 1: Refunded items should be returned
to stock

 Given a customer previously bought a black

sweater from me
 and I currently have three black sweaters left in

stock
 when he returns the sweater for a refund
 then I should have four black sweaters in stock

By using keywords such as Given, When, and

Then, the tool is able to determine how to set up

the test (North, 2006). The key words are then
matched to annotations within java code that is
written by the developer. In this way, specific
tests written by the business can be used to
determine the completeness of an acceptance
test suite. As the functionality of software

expands, and the underlying code gradually
becomes more complex, tools like these will
need to become more prevalent to continue to
deliver quality software (Crowther & Clarke,
2005).

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

Types of Tests

Unit Tests

Unit tests and component tests are both
exclusively written and maintained by the
developer to verify that a piece of code works
the way it should. Unit tests validate small
pieces of code, usually one method or even a
small part of a method. It is important to
remember that unit tests do not involve making

calls to a database, using the file system, talking
to external systems, or any other external
component. Thus, in most situations, unit tests
rely heavily on simulated, mocked data. The

use of mock data may actually serve a better
purpose than the use of production data.

Production data may exercise the most common
situations and leave unanticipated holes in the
tests and code coverage incomplete. Using
mock data can help ensure a greater level of
code coverage and that all paths of the
application are tested.

Component tests are similar to unit tests, but
they test a much larger portion of the code.
They are typically slower, and involve the
external resources that unit tests do not, such
as: database calls, use of the file system, or
talking to external systems (Humble & Farley,

2011).

Acceptance Tests

Acceptance testing ensures that the acceptance
criteria for a story are met. Acceptance tests
should be written, and ideally automated, before

development starts on a story (Ambler, 2007).
Acceptance tests, like acceptance criteria, can
test all kinds of attributes of the system being
built, including functionality, capacity, usability,
security, modifiability, availability, and so on
(Humble & Farley, 2011). Conboy et al. (2011)
mention that the developers in their study had

technical skills in abundance, but no business

acumen whatsoever. It was very tough for the
users to get the business angle across to the
developers. Because of this, it is critical for the
acceptance tests to be written by the business
users. Acceptance tests come in two categories,
functional tests and non-functional tests.

Functional Tests

Functional tests are one of the most important
set of tests that can be written for an
application. When run, these tests will answer

the question of, “Am I done?” and “Did I deliver
what the customer wanted?”. These tests also
provide the opportunity to determine whether a
change that was made to one part of the code

broke anything in other areas of the software.

Non-Functional Tests

Non-functional tests are largely component tests
that are directed at the qualities or attributes of
the software. To be more specific, qualities such

as capacity, availability, security, etc. are what
non-functional tests are used for (Ambler,
2007). In many projects these tests are not
used at all, although this is a large mistake. If

these non-functional requirements are not
mandated by the business, it is possible to see

software with many flaws that may not meet
user requirements. For example, if performance
is not tested, a database call that returns
hundreds of thousands of results can take many
seconds. By having a test in place to monitor
performance, it will allow a developer to create a
fast and responsive system that does not lag on

database calls or calls to other external systems.
Another example is security. Testing for
security is also extremely important, and is
oftentimes overlooked by business users. It is
important to consider the non-functional
requirements when designing a suite of tests.

5. THE DEPLOYMENT PIPELINE

Everything that has been discussed thus far can
be summarized into one overarching category:
The Deployment Pipeline. Although the
discussion up to this point has been about each

part individually, it is important to take a step
back and look at the whole picture to see how it
all fits together as illustrated in Figure 1. Each
piece is extremely useful by itself, but when put
together, a project can take an enormous step
forward in productivity and quality.

To describe exactly how all of this fits together,

it is necessary to start from the beginning and
walk through each step on the journey through
the deployment pipeline. When a developer
makes a change to the source code, the
automated unit test suite will be run on the local
machine before being committed. If everything

passes, the changes can then be committed to
the version control system; if not, the developer
must go back and fix the unsuccessful tests.
After the changes have been committed to the
version control system, the continuous
integration tool (CI) will notice this new commit

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

and begin running the acceptance test suite
which includes all the unit tests, functional tests,
and non-functional tests for the system. If there
is a test failure, the CI tool will inform the team

and the individual who made the change will
need to fix what has broken the build. If all the
tests pass successfully, the user acceptance test
phase can begin. Before that can happen, it is
imperative to deploy the application to an
environment that replicates production. The
authors recommend the use of multiple

replicated environments through which software
will pass. These would include a separate
development environment and testing
environment, prior to production deployment.

The development environment would serve as a
“sandbox” where developers would make

changes to their code. Once promoted to the
test environment, no further changes could be
made, and the sole purpose of this environment
would be to verify software changes prior to
promotion to the critical production
environment.

It is important to note here, that no matter how
many automated acceptance tests exist or how
thoroughly they test the software, nothing can
replace a final run-through with manual user
acceptance testing. Finally, if everything passes
successfully, the application can be deployed to

production.

6. CONCLUSION

There are many pieces that fit into the
deployment pipeline puzzle, with each serving a
critical function along the way. Having one

central location for all code, libraries, and
environmental configurations to be stored is
imperative to any project, big or small. Not only
does it provide a consistent location to find the
code, it also delivers the ability to literally go
back in time if a costly mistake was made. To
reliably and confidently release an application, it

is necessary to know that each version of a

project is using the same versions of external
libraries by using a tool such as Maven to
simplify dependency management.

Continuous integration helps to always have a
releasable version of code at the ready. By

consistently running a set of acceptance tests, it
is easy to know that the software is always
satisfying the functional and non-functional
requirements detailed by the business.
Balijepally, Mahapatra, & Nerur (2009) note that
with the increasing acceptance and popularity of

agile methodologies, there is a need to
investigate the efficacy of core practices which
may have large cost and productivity
implications for the software development

community. They continue that given the
increasingly social nature of software
development approaches, it is critical to have a
good grasp of the factors that affect group
performance in a software development context,
thus impacting the acceptance of a proposed
method.

Figure 1

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

Finally, engaging the business users is to the
developer’s advantage with tools such as
JBehave, which can greatly increase the number
and quality of the tests within the automated

acceptance testing suite. By using the types of
tools mentioned above, producing a consistent,
highly reliable release can be as easy as
pressing a button.

7. REFERENCES

Ambler, S. W. (2007). Agile Testing

Strategies. Dr. Dobb's Journal, 32(1).

Balijepally, V., Mahapatra, R., Nerur, S., & Price,

K. (2009) Are Two Heads Better Than One
for Software Development? The Productivity

Paradox of Pair Programming. MIS
Quarterly, 33(1), 91-118.

Beck, K. & Andres, C. Extreme Programming

Explained: Embrace Change, Second Edition.
Boston, Massachusetts: Addison-Wesley,
2004.

Belguidoum, M., & Dagnat, F. (2007).

Dependency Management in Software

Component Deployment [Electronic
version]. Electronic Notes in Theoretical

Computer Science, 182, 17-32.

Buschmann, F. (2011). Gardening Your

Architecture, Part 1: Refactoring, IEEE
Software, 28(4), 92 - 94.

Conboy, K., Coyle, S., Wang, X., and

Pikkarainen, M. (2011). People over Process:

Key Challenges in Agile Development, IEEE
Software, 28(4), 48 - 57.

Crowther, D. C., & Clarke, P. J. (2005).

Examining Software Testing Tools. Dr.
Dobb's Journal, 30(6), 26-33.

Haines, S. (2008). Continuous Integration and

Performance Testing. Dr. Dobb's
Journal, 33(3), 36-38.

Highsmith, J. (2002). Agile Software

Development Ecosystems. Boston,
Massachusetts: Addison-Wesley.

Holub, A. (2005). Requirements

Gathering. Software Development Times,
35.

Humble, J., & Farley, D. (2011). Continuous
Delivery. Boston: Pearson Education, Inc.

Kim, S. (2008). Automated Continuous

Integration of Component-Based Software:
an Industrial Experience. Proceeding ASE '08

Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated
Software Engineering.
doi:10.1109/ASE.2008.64

Kraut, R. and Streeter, L. (1995). Coordination

in Software Development, Communications
of the ACM, 38(3), 69-81.

Louridas, P. (2006). Version Control. IEEE

Software, 23(1), 104-107.

Lucia, A. D., & Qusef, A. (2010). Requirements

Engineering in Agile Software
Development. Journal Of Emerging
Technologies In Web Intelligence, 2(3), 212-
220.

Nerur, S., & Balijepally, V. (2007). Theoretical

Reflections on Agile Development

Methodologies. Communications of the ACM,
50(3), 79 – 83.

North, D. (2006). Introducing BDD. Better

Software. Retrieved from
http://dannorth.net/introducing-bdd/

Polo, M., Tendero, S., & Piattini, M. (2006).

Integrating Techniques and Tools for Testing
Automation. Software Testing, Verification

And Reliability, 17(3), 3 - 39.

Riungu-Kalliosaari, L., Taipale, O., and

Smolander, K. (2012). Testing in the Cloud:
Exploring the Practice, IEEE Software, 29(2),
46 - 51.

Robu, V., Halpin, H. and Shepherd, H. (2009).

Emergence of Consensus and Shared
Vocabularies in Collaborative Tagging
Systems, ACM Transactions on the Web,
3(4), 1-34.

Ruparelia, N. B. (2010). The History of Version

Control. Software Engineering Notes, 35(1),
5-9.

Schrödl, H. & Wind, S. (2011) Adoption of

SCRUM for Software Development Projects:

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2215

©2012 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

An Exploratory Case Study from the ICT
Industry. AMCIS 2011 Proceedings - All
Submissions. Paper 256.

Schwaber, K. & Sutherland, J. (2012) The Scrum

Guide. Available online at: www.scrum.org.

Spinellis, D. (2005). Version Control

Systems. IEEE Software, 22(5), 108-109.

Treude, C., and Storey, M. (2012) Work Item
Tagging: Communicating Concerns in
Collaborative Software Development, IEEE
Transactions on Software Engineering,

38(1), 19 - 34.

Zhang, Y. and Patel, S. (2011). Agile Model-

Driven Development in Practice, IEEE
Software, 28(2), 84 - 91.

