
2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

Evolving Mobile Architectures: A Case Study in the

Development of a Location Privacy Application

Jeffry Babb
jbabb@mail.wtamu.edu

Kareem Dana
kdana@mail.wtamu.edu

 Department of Computer Information and Decision Management

West Texas A&M University
Canyon, TX 79016

Mark Keith

mark.keith@gmail.com
Department of Information Systems

Brigham Young University
Provo, UT 84602

Musa Jafar

mjafar@mail.wtamu.edu

 Department of Computer Information and Decision Management
West Texas A&M University

Canyon, TX 79016

Abstract

The use of mobile devices, and the applications that run on them, has soared in recent years. Among
the reasons for this rapid uptake is the inclusion of many useful sensors (including GPS,
accelerometers, and cameras), the plethora of mobile apps, and improved battery life. These same
advances in the capabilities of mobile devices and applications can also lead to privacy concerns;

particularly those related to location privacy. We developed Find-a-mine, an iPhone application (and
supporting infrastructure) to conduct privacy research through a scavenger-hunt style mobile
application-based game. This paper presents a retrospective on mobile device trends especially within
the context of location-based privacy, describes the design and development of the Find-a-mine
application ecosystem, discusses the development challenges faced, and provides our thoughts
regarding the future development of this application and more generally, mobile applications as a
whole.

Keywords: Location Privacy, Location-based services, Mobile applications, Mobile Architectures,
Mobile Computing

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

1. INTRODUCTION

Interest in mobile application development has

risen steadily with the latest generation of mo-
bile devices. We can define this current
generation of devices as being those whose
capabilities are extended by: (1) the presence of
a sophisticated and dedicated operating system
(Android, iOS, etc.); (2) the presence of
additional hardware features such as sensors

(GPS, accelerometer, camera, etc) and
telecommunications transceivers (802.11
wireless, bluetooth, IMT-2000/3G, etc.); (3) a
mature API and specification for the

development of independent applications which
target the mobile devices; (4) intuitive and

ergonomic HCI interface which involved
extensive haptic and tactile interaction. While
the common referent for this generation of
mobile device is the “smart phone,” the same
architecture has been extended to other form-
factors, most notably the “tablet,” which should
not be confused with earlier stylus-oriented

tablet PCs.

While these features have created a new
innovation milestone and epoch, the attendant
ancillary issues related to use – those related to
societal, organizational, and personal use – are

emergent and worthy of investigation. One area

of use that is of increasing interest to
researchers and users alike is that of location
privacy. Although the literature on location-
based services extends further into the past
than does the current generation of mobile
devices, the nature of these services has been

transformed by the confluence of the capabilities
of the new devices and the uptake in the usage
of these devices. Much as was the case with
computer viruses, the true impact of location-
based privacy issues will be-come clearer as the
total number of users in-creases.

This paper describes a mobile-application

architecture developed to facilitate a research
project designed to determine self-efficacy
beliefs related to mobile application use and
subject of privacy in the consumption of
location-based services. The name of the mobile
computing ecosystem and artifact which resulted

from this development effort is Find-a-mine.
With the Find-a-mine application, we have
developed a scavenger-hunt style interaction
“game,” where participants both answer
attitudinal and affective questions related to
their self-efficacy in using the mobile devices

and also play a game where participants are
willing to test the boundaries of their location-
privacy tolerance. This mobile application

architecture was developed in 2010 and 2011
and has become a valuable learning experience
with respect to best practices and pitfalls.

This paper is a report on our experiences in
writing this application and provides lessons
learned and suggestions for improvement for

both future iterations of our own application and
perhaps ideas for others embarking on such a
venture. The rest of the paper proceeds as
follows. First, we discuss a brief background on

mobile application development and expound on
the aspects that define the current generation of

mobile computing. Next, we share the
implementation details of our mobile application
and include the challenges faced and lessons
learned during development. We next describe
our plans for future iterations of the application
based on our own lessons learned and
recommendations. Last, we conclude with a

final discussion.

2. BACKGROUND

The most impactful and poignant of
contemporary mobile devices is the smart

phone. With 55% market share (and rising) of

mobile devices as of mid-2012 (Gold, 2012), the
smartphone represents greater utility in
convergence of features that were previously
only available in separate devices. While the
uptake of mobile phone usage has been on the
rise for over ten years, there are sets of

previously disparate features that have
converged to make the latest generation of
smartphones more transformative than was the
case in previous generations (Ladd et al., 2010).
The convergence of networking, data story,
applications, and sensors into the same hand-
held mobile device has transformed the living

habits of many. The ability for people to stay

connected, regardless of location, is increasingly
accepted as expected condition of contemporary
life (Pinchot et al., 2011). Among the
advantages of the convergence of these
technologies is the ability for the sensors on the
device to assist the smartphone user in

establishing the relevance of their current
location to the user’s information needs. Given
the mobility of the smartphone, the ease with
which a number of location-based services can
be utilized has undoubtedly influenced the
uptake of the latest generation of smartphones.

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

The Importance of Convergence

As recently as ten years ago, mobile phones
were commonly just that, devices which enabled

the user to access voice data networking, such
as the Advanced Mobile Phone System
(APMS/1G) or the Global System for Mobile
Communications (GSM/2G) network, which
offered few features beyond voice and texting
(SMS). While these devices provided important
voice and text services, other mobile computing

devices, also popular at that time, were portable
digital music players, Global Positioning System
(GPS) receivers, and Personal Data Assistant
(PDA) devices. Each of these devices would

provide a set of enhancements for users for both
entertainment and productivity purposes.

However, intercommunication amongst these
devices was rare, and rarely done in real time
(Nusca, 2009).

The next wave of mobile phone technology gave
rise to question whether the term “phone” was
even appropriate as the device increasingly

became a mobile computing platform upon
which voice and text was among the many
features. Early smartphones, such as the once-
ubiquitous BlackBerry, some Nokia Phones, and
the earliest iPhones, combined the functions of a
personal digital assistant (PDA) and a mobile

phone or camera phone. As subsequence

versions of Apple’s iPhone emerged, the
smartphone was increasingly defined by the
convergence of other features and combined the
functions of portable media players, low-end
compact digital cameras, pocket video cameras,
and GPS navigation units (Nusca, 2009).

Developing Software for Smartphones

A final importance of the transition to
smartphones as mobile computing platforms,
and perhaps the defining aspect of the most
current generation of smartphones, tablets,

“phablets,” and “superphones,” is the presence

of an underlying operating system for which 3-rd
party applications can be developed against a
well-tested and published application
programming interface (API). Among the most
widely-used and adopted APIs for smartphone
development are the software development kits

for Apple’s iOS operating system and Google’s
Android operating system (Segan, 2012).

Although each of the major smartphone vendors
now offers an extensive API for development of
applications, as was the case with the

emergence of the personal computer, developing
applications across these platforms is hardly
standardized or unified. For developers, this
presents a level of fragmentation was common

in supporting the multiple PC platforms (such as
IBM PCs, Atari Amigas, Apple Macintosh,
Commodore 64/128, etc.).

Just as was often the case in the emergence of
the personal computing platforms, it is likely
that many of the mobile computing devices are

using similar hardware. However, despite these
similarities, each mobile operating system, SDK,
and development tools have enough differences
to confound and complicate the application

development process (Blom et al., 2008;
Gavalas & Economou, 2011). It is for this

reason, that we find mobile application
developers face a similar set of development
issues that have been encountered in previous
eras of computing innovation (Kautz et al.,
2007).

However, it is also clear the convergence of new

technologies inherent to smartphone mobile
computing brings new development challenges
not previously experienced. For instance the
array of sensors available as program inputs, the
haptic interfaces, the small form factor, and the
need to critically observe and preserve battery

usage are fairly unique to smartphone mobile

computing application development (Carroll &
Heiser, 2010; Ferreira et al., 2011).
Furthermore, user interfacing and usage of
mobile applications follow patterns that are
unique to smartphones as opposed to other less-
mobile computing platforms, including laptops

and even PDAs. Among the mobile computing
use patterns most salient to this paper is the
matter of location privacy in the use of location-
based services.

Location Privacy

Whereas the current generation of smartphones

provides an unprecedented level of mobile
computing power and connectivity, there are
issues related to the increased use of these
devices that may not be fully understood by
either the consumers adopting these devices, or
the researchers interested in the intended and

unintended consequences of the use of
smartphones. Among these consequences of
use that is salient to this paper is that of location
privacy in the face of the consumption of
location-based services. It is possible that,
much as was the case with email and computer

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

viruses, smartphone users will not entirely
understand the consequences of using a device
which is able to juxtapose the user’s location, in
real time, against a plethora of invited, and

uninvited, programs also utilizing the device
(Keith et al., 2011).

If vendor information is taken at face value, the
smartphone mobile computing platforms each
have extensive built-in controls and features
that should prevent loss of data or privacy as a

result of malicious code. However, as
smartphone are fundamentally based upon a
mobile computing platform, they are vulnerable
to attacks. Several security vulnerabilities and

weaknesses have been identified recently, and it
is possible that these, and other unforeseen

weaknesses may be exploited such that a user’s
location privacy is compromised (Barkuss & Dey,
2003; Seriot, 2010). In this sense, a user’s
location privacy can be thought of as the degree
to which information about a user’s location
during device use, and the context of using the
device at that location, remains within the

control and discretion of the user. Location
privacy is compromised when the user’s location
information is divulged to another party without
either the user’s consent or awareness, or both.
Even in the case that the vendor does provide a
nearly flawless security implementations, in the

case of the iPhone, many users circumvent these

protections by “jailbreaking” the device out of its
native operating parameters by either replacing
the OS or altering it to unlock features and
otherwise customize their experience. In any
case, these new computing devices are both the
source of great benefit and appreciable harm,

depending on the circumstances of use.

The importance of this background information
is to set the context in which the Find-a-mine
mobile application for the iPhone, described in
detail below, was developed. While the principle
concern for writing this application was to

facilitate mobile privacy research, we have also

learned lessons regarding mobile application
development practices and pitfalls. The purpose
of this paper is not to offer lessons regarding the
protection of location privacy, but rather offer
insights pertinent to designing an application
which utilizes the compelling features of the

current generation of smartphone mobile
applications: the utilization of an ecosystem of
downloadable applications, a device that is
persistently in touch with its surrounding
information and physical environment (while
powered on), a device which concentrates and

converges a rich collection of information about
a user and the user’s environment.

3. DESIGN AND METHODOLOGY

On the surface, Find-a-mine is a mobile
scavenger hunt game. Participants sign up on
the game’s web site
(http://www.findamine.mobi) which explains the
research nature of the application, what data will
be tracked, and acts as a hub for users to

manage their accounts and interact with other
players. Currently, we are only recruiting
university students to take part; however in the
future, we believe this game can be expanded to

the general public. To incentivize students to
participate, gift cards are available to those who

successfully complete the hunt. Winners are
those who score the most points. Points can be
award in a variety of ways including solving the
most hunts or solving the hunts the fastest.
After signing up, the participant logs in with the
iPhone application to start the scavenger hunt.
Figure 1 illustrates the login screen.

Figure 1 Login screen

While playing, a series of clues guide the player

to various locations around their university

campus. A Hot/Cold bar appears at the bottom
of the screen providing feedback to the player as
he or she is searching for the location hinted to
by the clue as shown by Figure 2. The GPS
capability on the iPhone determines if the player
correctly found the location and can proceed to
the next clue. Usually a single hunt will consist

of about five clues with the final clue being the
location of the “treasure” (an object or point of
interest around campus). Once the final clue is
reached, the player must take a picture of the

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

treasure. To accomplish the privacy research
goals, the player’s location is tracked throughout
the entire game and the player is required to
answer a set of research questions after each

clue. Figure 3 shows what the research
questions view looks like to the participant.

Figure 2 Playing the game

Figure 3 Research Questions View

Location data, the photo of the treasure, and
research question answers all need to be
accessible by the researchers in near real-time.

In addition, the participants require access to
the latest clues, available games, and
leaderboard. Our design consisted of a three-tier
architecture using a variety of different
technologies as illustrated above by Figure 4.
The iPhone application was developed using
Objective-C and the XCode IDE. This is the

standard iOS development environment
supported by Apple. The web service was
programmed in C# with Windows
Communication Foundation (WCF) and acted as

the middleware facilitating communication
between the iPhone application and the database
backend. The choice to use WCF was largely due
to fact that the website was developed using
ASP.Net, the same framework WCF is based on.
Utilizing the same framework for all server-side
development created a more seamless

implementation and made development and
maintenance easier. Furthermore, WCF was a
new addition to the .NET framework and we
believed it would be a useful API to learn.

Finally, we utilized Microsoft SQL Server as the
backend to store the data. By using technologies

from the same developer, SQL Server integrated
well with WCF.

Figure 4: Architecture Overview

Early on we decided to develop for the iPhone
platform first. Due to our limited resources, this
decision meant that we could not concurrently
develop for the Android platform. Android

applications are programmed in Java while
iPhone applications are programmed in
Objective-C. Two completely separate code
bases would need to be developed and
maintained to write a single app for both
platforms. We believe this is a significant
problem facing mobile application developers;

this is a problem we address towards the end of

this paper.

The WCF web service communicates with the
iPhone application through an application
programming interface or API. Messages are
passed back and forth in XML. This design allows

for a future Android version to simply be
plugged into the current architecture without
changing the other components. It also had the
benefit of compartmentalizing the development.
The developers were geographically separated

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

during most of the development process– across
Washington D.C., Tuscaloosa, Alabama, and
Canyon, TX. We communicated via Skype and
used Subversion for version control, but the

majority of the development was done
independently with one developer working on
the iPhone application, one programming the
WCF service, and one deploying the MS SQL
backend and website. We were able to combine
the three parts quickly near the end of
development because of the initial API design.

Design Evaluation

Our design evolved over several iterations

through discussions and testing before settling
on the design described above. Even our current

design presents some challenges that we discuss
near the end of this paper as we look forward to
future implementations. However, there were
design challenges that we faced and solved early
on in the design process. To evaluate our
design, we utilized a small group of beta testers
(students and other professors) that had very

little knowledge of the app beforehand. These
testers, in addition to the developers’ field
testing the app themselves, provided important
feedback that was used to improve the usability
of the application.

Figure 2 shows the main view of the app while a

player is playing the game. There is a map with
clue text on the top of the screen and a Found
It! button in the bottom right corner. A small
blue dot with an accuracy circle around it tracks
the user’s location as they travel towards the
clue. Once a player is “close” to the clue, he or

she can click the Found It! button to advance to
the next clue. Testers had the most frustration
with this window. They felt that the Found It!
button was too sensitive. Oftentimes they would
be near the clue but still not be able to advance
to the next clue and had to reposition their
phone or move a few meters in one direction or

another before the Found It! button would

acknowledge that they had reached the clue.
This was and still is a very legitimate problem
but a subtle one, not with the UI of the
application but with the sensitivity of the GPS
sensors.

We initially programmed the Found It! button to
require the user to be within ten meters of the
clue. This proved to be too strict of a
requirement. For indoor clues, the iPhone GPS
receiver rarely picks up an accurate GPS signal,
so is oftentimes limited to WiFi or cell tower

triangulation. Older devices such as the iPhone
3G and 3GS have less accurate GPS receivers,
and through our testing we found out these
devices are generally limited to a maximum of

thirty meter accuracy. Also through beta testing
we noticed that sometimes a device would lose
the GPS signal for a brief period of time before
reacquiring it. Moreover, the app did not provide
any feedback to the user about how close they
were to the clue or how accurate the GPS signal
was. These issues were the main cause of

frustration for our initial testers.

We implemented the Hot/Cold bar as a result of
this feedback. The Hot/Cold bar received very

positive feedback and alleviated a lot of user
frustration. Users now had feedback from the

app about how close they were to the clue and
were not at the whim of a potentially fickle GPS
signal. The other change we made as a result of
our design evaluation was to increase the Found
It! radius from ten meters to thirty meters and
all the way to sixty-five meters if no GPS signal
was available. These changes, only discoverable

through actual testing of the design, helped
solve many issues that the beta testers voiced.

4. IMPLEMENTATION ISSUES

While implementing Find-a-mine, we

encountered several interesting challenges that

we believe are unique to mobile development
and worth discussion. First, mobile applications
are gathering and utilizing more and more data.
Data usage will only increase as apps become
more complex and bandwidth becomes more
available (Choi et al., 2011). Find-a-mine is no

exception. Second, battery life remains a
concern for mobile devices. It is prudent for
mobile app developers to minimize power
consumption especially if the app utilizes several
sensors like GPS such as Find-a-mine.

Mobile Data Consistency and Management

Find-a-mine stores a lot of data. When
accurately synced, the GPS sensor can generate
up to one new latitude/longitude pair per
second. In addition to that location data,
answers to research questions, and photos must

be stored. Apple provides the CoreData library
for local data management. However, there does
not yet exist a single, generic, and unified library
to manage data across all tiers for mobile apps.
Such a library should meet at least the following
requirements:

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

 Ability to communicate with any RESTful

web service keeping the middleware
decoupled from the mobile app.

 On iOS, use CoreData locally to maintain
compatibility and standards.

 Maintain consistency between local data
and remote data.

 Minimize WiFi or 3G connection usage
while syncing data to conserve power.

 Gracefully handle situations where no

data connection is available.

We implemented a solution from scratch that
met some of these requirements but was specific

to our application’s needs. To prevent the WiFi
or 3G connection from being constantly utilized,

we bundled location updates locally using
CoreData. Once at least one hundred updates
were accumulated, the application would upload
them as a single bundle. Data was also uploaded
on application exit or when the application
entered the background. This ensured that all
the data would be uploaded within a reasonable

amount of time but also not consume power
unnecessarily. If no data connection is available,
the application simply periodically retries while
maintaining state locally about what data still
needs to be synced.

Since implementing our solution, several iOS

libraries have emerged that attempt to tackle
this challenge in a more complete, generic way.
They are at varying levels of maturity and
include RESTKit, RESTful CoreData,
CoreResource, and ObjectiveResource.

Smart GPS Usage

Using the GPS radios on the iPhone require more
power than any other operation on the device.
Find-a-mine requires the use of GPS to track the
user’s location and also allow the user to
complete the scavenger hunt successfully. The

GPS is only turned on while the participant is

actively playing the game, however, at the
highest level of accuracy the GPS radios will
significantly drain the battery (Abdesslem et al.,
2009; Lin et al., 2010). We needed a smarter
solution.

We developed an algorithm that gradually
increases GPS resolution over time thereby
reducing power consumption while still
benefiting from the most accurate GPS readings
when the participant was close to the clue. Using
Apple’s iOS Location Services API, an application

is able to access six degrees of GPS resolution.
Based on our testing during development, we
encountered a range of accuracy readings from
three kilometers, the lowest degree of GPS

resolution, all the way to the highest-level
accuracy, which we noted as generally within
five meters. Our GPS resolution algorithm works
as follows:

1. Start at one kilometer accuracy. Through
testing, we found that starting at three

kilometer accuracy (the least accurate
GPS resolution available) provided no
noticeable benefits and the algorithm
quickly requested an increased

resolution.
2. Determine the user’s location at this

level accuracy.
3. Calculate the distance between the user

and the clue solution. iOS has a built-in
“distanceFrom” function that takes two
latitude, longitude pairs and will return
the distance between them in meters
using the great-circle distance.

4. If the distance between the user and the
clue is less than the resolution accuracy,
that is if the distance between the user
and the clue is less than one kilometer
and our accuracy is at one kilometer,
then increase the GPS resolution by

another degree.

5. Repeat steps 2 through 4 until the
highest level GPS resolution is achieved.

6. Maintain the highest GPS resolution until
the user finds the clue or
exits/backgrounds the app.

7. Restart from Step 1 for each clue.

You can notice from this description that the
application only requests the highest level GPS
accuracy once the user is already very close to
the clue. The user must be getting closer to the
clue before the accuracy is raised. The
application spends less time using the higher

powered sensors and only uses them when it is

necessary. In addition to improving battery life,
this iterative process did not negatively affect
the accuracy of the location results or the game
play experience during our field testing. (Lin et
al., 2010) implemented a similar solution of
utilizing less accurate but less power hungry

sensors and confirmed significant battery life
improvements. SenseLess (Abdesslem et al.,
2009) took advantage of the accelerometer
along with the GPS to conserve power and
achieved similar results to our own.

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

Fragmentation

As stated earlier, due to the fragmented nature
of the mobile device market and our limited

resources, we only developed an iPhone version
of Find-a-mine. Solutions to this fragmentation
problem have started to appear and are
maturing. These solutions include Appcelerator,
PhoneGap, Appspresso, and AppFurnace among
others. These programs allow a developer to
write an app once using JavaScript and compile

both an iPhone and Android version from the
single JavaScript code base. Had we used
Appcelerator, Find-a-mine would have been
cross-platform from the beginning. This is a very

appealing choice for many developers, including
us. These JavaScript based mobile architectures

have some problems. The quality of
development tools is still lacking and they often
require native code modules to access specific
hardware (Charland & Leroux, 2011). However,
they do produce cross-platform code in a
fraction of the time otherwise and are actively
maturing. We anticipate these types of solutions

will keep improving in the months and years to
come.

Simplifying Web Services

After delving into WCF to write our RESTful web-

service middleware, we realized the

configuration necessary for the web service to
function properly was very extensive and rather
confusing, negating much of the benefit the WCF
API offered over an open source alternative such
as PHP, Python, or Ruby.

5. TOWARDS FUTURE ITERATIONS

The difficulties encountered and our lessons
learned have informed our plans for subsequent
iterations of our architecture. Primarily, we
intend to address the following identified issues:
application fragmentation related to multiple

platforms; simplification of web services; and

the simplification and scalability of the web and
data backend.

Addressing Fragmentation

Appcelerator Titanium is a platform for

developing mobile applications using JavaScript,
and other web-based technologies, which will
afford an opportunity to ameliorate the costs
associated with maintaining native code for
several platforms (at least for Android and iOS)
as it will afford one codebase. It is remarkable

that we are in this position again as languages
and platforms such as Java and Python were
designed to solve these problems. However, the
market penetration and demand for iOS-based

devices, and perhaps BlackBerry and Windows,
would be hard to ignore if the desire is to open
an app to the widest possible market. As we
have selected Appcelerator, we are excluding
smartphone platforms other than Android and
iOS as Appcelerator will only targets Android and
iOS. The biggest drawback to the Appcelerator

approach is that Apple’s SDK still requires that a
Mac OSX is used in order to access the iOS SDK.
This essentially forces the developer to opt for
an Apple-based development environment. The

implication of this limitation is that we must
select the most costly development platform in

order to develop for both platforms; a Windows
or Linux development environment would have
been less costly. As Appcelerator is presently
available under many conditions at no cost, the
cost of the Mac hardware is somewhat offset.

Simplification of Web Services

While Microsoft’s WCF offers integration with
ASP.NET and the power of the .NET platform, we
did experience some configuration issues and
overall increased complexity. RESTful web
service implementations in either PHP or Python

would offer two distinct advantages: 1) they are

easier to configure and deploy and 2) hosting
environments for these technologies are
considerably less expensive. While
implementing our infrastructure using Mircosoft’s
ASP.NET MVC is one solution to our first
problem, commercially hosting any .NET

application tends to be more expensive. By
contrast, switching to a PHP-based solution
(Zend, Symfony, CodeIgniter, Yii, or the Drupal
Service module), a Python-based solution
(Django or TurboGears), or a Ruby-based
solution (Ruby on Rails, Sinatra) would be just
as easy (or easier) to maintain, and considerably

less expensive to host.

Web Platform

Another lesson learned pertains to our selection
of backend implementation and our overall
technology strategy for implementing the web

application and service. While there is little
doubt that ASP.NET is an extremely capable
platform for hosting modern web applications
and services, in many respects the overhead is
quite high. Generally, the costs associated with
hosting these services are high. Additionally,

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

ASP.NET can be complex to configure and
integrate. While we have already discussed
several open-source alternatives, it has become
clearer that emerging cloud-based options might

be better suited to not only our project, but to
many mobile application projects.

Platform as a Service (PaaS) is an emerging
concept useful for describing the deployment of
the required application backend needs for many
applications (Gonçalves & Ballon, 2011).

However, we feel that utilizing PaaS would offer
several advantages for mobile applications
developers:

1. Scalability: Many mobile apps
developers are likely involved in

developing and provision a large number
of mobile applications. Solutions such as
Saleforce.com’s Heroku, Amazon’s
Amazon Web Services, and Google’s
Google App Engine each provide all
required elements (execution context for
business-logic code, database storage

and APIs, and various communication
frameworks) at the exact capacity and
scale required. App developers,
providers, and vendors can provide the
level of infrastructure support that is
needed

2. Portability: Particularly with the open-
source approaches mentioned (PHP,
Python, or Ruby), many of the PaaS
solutions offer reasonably
interchangeable features and support.
By contrast, while Microsoft’s Azure does

offer support for several open-source
languages, ASP.NET is fairly limited to a
reduced number of PaaS solutions.

3. Integration: The open-source oriented
PaaS solutions offer very tight
integration between data

communication, data management, and

business-logic components such that
developers are not stitching together
their backend technologies across
disparate approaches.

4. Collaboration: While source control

repositories such as Subversion and Git
are abundant, a PaaS solution allows
developers fairly liberal access to the
deployment environment such that the
development and deployment
environments are tightly and seamlessly

integrated.

5. Multi-tenant: The PaaS solutions are
designed for hosting multiple

applications, which would make
supporting a backend environment for a
variety of mobile applications much
simpler.

While it is not certain that the next iteration of
the Find-a-mine environment will move to a

PaaS solution immediately, we do anticipate this
move and have planned for it. The matter of
migrating from ASP.NET to a PHP, Python, or
Ruby-based solution is a complex matter and

will take time. Moreover, other than the costs
associated with using ASP.NET, there is no

reason to expect that our existing ASP.NET-
based web and backend solution can’t be ported
to a PaaS environment (such as Microsoft Azure
hosting). In either case, both web and backend
computing environments for mobile applications
should be well served by a PaaS solution.

6. CONCLUSION

The purpose of this paper is to share
architecture for an iPhone mobile application
used to facilitate research regarding location
privacy in the consumption of location-bases

services. As a learning experience, we discuss

the challenges and lessons learned as a result of
developing and deploying our mobile application
architecture, including both client and backend
concerns. We developed Find-a-mine as an
application which utilized a scavenger-hunt
game in order to measure users’ willingness to

allow the sensors on their mobile devices to
divulge their geospatial location. Our research
design factored in the importance of actually
building the application ourselves such that we
are able to appreciate the issues involved.

We have learned that the code fragmentation

issues attendant to supporting multiple

platforms remains as problematic as it was in
the days of supporting applications on the
Personal Computer platforms. A tool like
Appcelerator Titanium goes a long way to
address the fragmentation issue, although they
are difficult to solve entirely. Moreover, we

learned that communication methods between
mobile clients and web backend environments
require care and planning. While we feel that
utilizing RESTful services was a good choice, the
selection of backend environment to facilitate
these transactions can influence the overall

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

complexity of the development effort. While
ASP.NET and WCF web services offer some
advantages, more integrated alternatives may
also be worth consideration.

Lastly, we anticipate that migrating to a Platform
as a Service (PaaS) implementation for our web,
data, and logic back-ends. This transition would
offer greater flexibility and scalability moving
forward. This approach will likely become
increasingly common as it promises to offer

more equity in access and services for a wider
variety of mobile application ecosystems that
also involve various backend services. This
research has taught us that mobile applications

and mobile devices are providing new
experiences, challenges, and opportunities for

users, developers, and researchers alike.

Acknowledgement

The software described in this paper was made
possible, in part, through a research
enhancement grant from the Kilgore Research

Center at West Texas A & M University.

7. REFERENCES

Abdesslem, F. B., Phillips, A., & Henderson, T.

(2009). Less is More: Energy-Efficient

Mobile Sensing with SenseLess. MobiHeld

2009: An ACM SIGCOMM 2009 workshop.
AUGUST 17, BARCELONA, SPAIN.

Appcelerator (2012). Retrieved 2012 29 June

from Appclererator:
http://http://www.appcelerator.com/

AppFurnace. (2012). Retrieved 2012 29 June

from AppFurnacne:
http://www.appfurnace.com/

Apple, Inc. (2012). Getting the User’s Location:

Tips for Conserving Battery Power.

http://developer.apple.com. Retrieved 28

June 2012.

Appspresso (2012). Hybrid mobile app

framework. Appspresso:
http://appspresso.com/. Retrieved 28 June
2012.

Barkuss, L., & Dey, A. (2003). Location-Based

Services and Mobile Telephony: a Study of
Users' Privacy Concerns. Proceedings of the
INTERACT 2003, 9th IFIP TC13 International

Conference on Human-Computer Interaction
(p. 4).

Blom, S., Book, M., Gruhn, V., Hrushchak, R.,

Kohler, A. (2008). Write Once, Run
Anywhere A Survey of Mobile Runtime
Environments. The 3rd International
Conference on Grid and Pervasive
Computing Workshops, 2008. GPC
Workshops '08. 132-137.

Carroll, A., & Heiser, G. (2010). An Analysis of
Power Consumption in a Smartphone.
Proceedings of the 2010 USENIX Annual
Technical Conference, p. 14.

Charland, A., & Leroux, B. (2011). Mobile

Application Development: Web vs. Native.
ACM Queue, 24 (5), 20-29.

Choi, K., Toh, K., & Byun, H. (2011). Realtime

training on mobile devices for face
recognition applications. Pattern
Recognition, 44(2), 386-400.

Ferreira, D., Dey, A. K., & Kostakos, V. (2011).

Understanding human-smartphone
concerns: a study of battery life.
Proceedings of the 9th international
conference on Pervasive Computing. pp. 19-

33

Gavalas, D. & Economou, D. Development

Platforms for Mobile Applications: Status and
Trends. IEEE Software, 28(1), 77-86.

Gold, J. (2012). Nielsen: Android nears 52%

market share for US smartphones. Retrieved
13 July 2012, from NetworkWorld:
http://www.networkworld.com/news/2012/0
71312-nielsen-android-260870.html

Kautz, K., Madsen, S., & Norbjerg, J. (2007).

Persistent problems and practices in

information systems development.

Information System Journal, 17, 217-239.

Keith, M., Babb, J., Furner, C., & Abdullat, A.

(2011). The Role of Mobile Self-Efficacy in
the Adoption of Geospatially-Aware
Applications: An Empirical Analysis of iPhone

Users. Proceedings of the 44th Hawaii
International Conference on Systems
Science. Poipu, Hawaii.

Ladd, D. A., Datta, A., Sarker, S., & Yu, Y.

(2010). Trends in Mobile Computing within

http://http/www.appcelerator.com/
http://developer.apple.com/
http://appspresso.com/
http://www.networkworld.com/news/2012/071312-nielsen-android-260870.html
http://www.networkworld.com/news/2012/071312-nielsen-android-260870.html

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2234

©2012 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org

the IS Discipline: A Ten-Year Retrospective.
Communications of the Association for
Information Systems, 27(17), 285-360.

Lin, K., Kansal, A., Lymberopoulos, D., & Zhao,
F. (2010). Energy-Accuracy Aware
Localization for Mobile Devices. MobiSys 10:
PRoceedings of the 8th Annual International
Conference on Mobile Systems, Applications
and Services. San Francisco, CA, USA.

Nusca, A. (2009, 08 20). Smartphone vs.
feature phone arms race heats up; which did
you buy? Retrieved 13 July, 2012, from
ZDNet:

http://www.zdnet.com/blog/gadgetreviews/s
martphone-vs-feature-phone-arms-race-

heats-up-which-did-you-buy/6836

PhoneGap. (n.d.). Retrieved 29 June, 2012 29-

June from PhoneGap:
http://www.phonegap.com

Pinchot, J., Paullet, K., & Rota, D. (2011). How
Mobile Technology is Changing our Culture.
Journal of Information Systems Applied
Research, 4 (1), 39-48.

Purdy, G. (2010). Building a Server-Driven User

Experience: Remote-controlled native UIs for
fun and profit. Apple World-Wide
Developers Conference 2010. Presentation.

Segan, S. (2012). Enter the Phablet: A History

of Phone-Tablet Hybrids. Retrieved 13 July,
2012, from PC Magazine:
http://www.pcmag.com/slideshow/story/294
004/enter-the-phablet-a-history-of-phone-

tablet-hybrids

Seriot, N. (2010). iPhone Privacy. Black Hat DC
2010, Washington D.C. p. 30.

http://www.zdnet.com/blog/gadgetreviews/smartphone-vs-feature-phone-arms-race-heats-up-which-did-you-buy/6836
http://www.zdnet.com/blog/gadgetreviews/smartphone-vs-feature-phone-arms-race-heats-up-which-did-you-buy/6836
http://www.zdnet.com/blog/gadgetreviews/smartphone-vs-feature-phone-arms-race-heats-up-which-did-you-buy/6836
http://www.phonegap.com/
http://www.pcmag.com/slideshow/story/294004/enter-the-phablet-a-history-of-phone-tablet-hybrids
http://www.pcmag.com/slideshow/story/294004/enter-the-phablet-a-history-of-phone-tablet-hybrids
http://www.pcmag.com/slideshow/story/294004/enter-the-phablet-a-history-of-phone-tablet-hybrids

