
2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

A Framework for an Interactive Word-Cloud

Approach for Visual Analysis of Digital Text using
the Natural Language Toolkit

Musa Jafar

mjafar@mail.wtamu.edu

Jeffry Babb
jbabb@mail.wtamu.edu

Kareem Dana

kdana@mail.wtamu.edu

 Department of Computer Information and Decision Management

West Texas A&M University
Canyon, TX 79016

Abstract

In this paper we present a web-based framework which supports the visual analysis of digital text.

Such analysis is of increasing importance as growth of data in our contemporary computing
environment has outstretched conventional means of presentation and analysis. Hence, we present a
framework that assists in the visual presentation and digest of textual corpora. The framework
presents a front-end as a set of web-pages which employ a word-cloud approach to present and
manipulate the underlying digital text for the purpose of understanding and analyzing its content. The
framework’s back-end is an Apache-Based Django framework that uses the Python programming
language to access the Natural Language Processing Toolkit’s (NLTK 2.0) capabilities for the parsing

and analysis of digital text. We also present examples of our framework’s practical application. Ideally,
our work will allow a humanities researcher, or similar non-technical professional, to analyze and
manipulate text without needing to know the particulars of NLTK or Python, and without having to
read the whole digital text.

Keywords: Natural Language Processing, NLTK, Word cloud, data visualization, corpus linguistics

1. INTRODUCTION

A poignant mark of our progress towards
civilization has certainly been the ability to
develop language and record this language in
written means. In this sense, written language

becomes a tangible artifact that preserves the
thoughts, habits, and norms of our civilizing. As
a form of communication, the written word is a
foundational basis of the transactions that allow

for societies to function. In the modern era of
computing, machines have greatly assisted in
digitization of this written language and the
proliferation of writing. Indeed, there is such a
great volume of digitized text that sub-
disciplines such as data mining have emerged in

hopes that sense can be made, on the whole, of
a staggering volume of text (Jacobs, 2009).

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

The “plainest of text” becomes beautiful when
analyzed because it says so much about the
language and the world that speakers inhibit
(Norvig, 2009). In this sense, we can imagine

that our bodies of text are rather deep
repositories: William Shakespeare’s work is not
just a body of literature, a New York Times
article is not just an opinion, a Supreme Court of
the United States judgment is not just an article
in constitutional law, a customer’s review of a
product is not merely that individual’s

sentiment. When digitized, each of these texts
can be thought of as data available for
exploration, analysis, and to be reasoned about;
therein lies the beauty of these texts. Towards

this end, most of the text that has been
published in the past 10 years is available in

digital format. Moreover, ancient and historical
texts are also being digitized. For example,
Google’s initiative to digitize over 15-million
books created a wealth of data in digital format
that is ready for interactive analysis (Jean-
Babtiste, 2011).

Our objective is to provide a tool where a “non-
technical” researcher or practitioner in the
humanities (such as a journalist, etc.), or in any
non-technical discipline, may analyze a body of
text without deep knowledge of the underlying
technologies used to implement the framework

and without having to read the text itself. This

last aim is perhaps the most compelling: what
can visualization of text tell without having to
actually examine the text?

2. RELATED WORK

In recent years, “word clouds” (sometimes
referred to as tag clouds) were popularized in
work of Viegas and Wattenberg in their the Many
Eyes and Wordle projects (Viegas et al., 2007,
2009). These projects utilize manipulations of
font-size, word placement, and word color to
display the frequency distribution of words

within a document. Another characteristic of

these projects is the minimal interactivity
afforded, such as the exclusion of words,
modification of layout, and direction and color
management (Figure 1).

Viegas et al. (2009: 1137) state: “…users seem

to revel in the possible applications of word
clouds, scientists wordle genetic functions, fans
wordle music videos, … spouses wordle love
letters, … wordles have made their way into
corporate PowerPoint slides and houses of
worship; they have adorned T-shirts, magazine

covers, … have graced posters, scrapbooks,
birthday cards, and valentines.”

This work bears testimony to the wide-spread

appeal of word clouds and the degree to which
people have used them in many aspects of life.
Sharma et al. (2012) used a word-cloud
approach to infer the social connections and
networks (a who-is-who approach) to highlight
the characteristics of admired Twitter users
(build a profile) by exploiting the metadata in

the lists feature of a given admired user. The
key words in the cloud provide hyperlinks to
more searches on Twitter. Figure 2 shows the
output of the Who-is-Who on Twitter when used

to obtain more information about “Sir” Tim-
Berners-Lee.

Baroukh et al. (2011) used a “WordCram”
(Oesper, 2011) word-cloud to quickly summarize
knowledge of biological terms. Figure 3 shows
the output when we used WordCram to generate
a word-cloud of the Supreme Court of the United
State’s decision on the Affordable Care Act. As

WordCram is Processing-based (Processing
being a Java library and framework for
visualization), it is not a natural fit for a solution
that should be browser-based and which relies
on the AJAX capabilities of modern web
browsers.

Kim et al. (2011) used a novel and network-
oriented “node-link” approach to analyze test
using word-clouds where the nodes represent
entities or keywords and the links (or edges)
represented the relationship or co-occurrences
between the entities to build word-clouds of the

nodes and their relationships.

For now, it is clear that the aesthetics of
presentation and the management of layout and
placement of the other word-cloud solutions are
more appealing than ours. However, as our work
progresses, the aesthetic and layout issues will

be addressed. The advantage of our approach is

in the richer interactivity possibilities for users.
Our solution does not merely supply stand-alone
web-page interface that heavily utilizes
JavaScript or a standalone Java applet. Rather,
our solution approach heavily relies on back-end
processing using the Natural Language Toolkit

(NLTK - http://nltk.org/) to analyze the text
beyond its presentation as a word-cloud. It
provides a user interface to the NLTK package
for the purpose of analyzing the text and
inferring knowledge about it. Figure 4 shows the
output when we used our framework to generate

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

a word-cloud of the supreme-court decision on
the Affordable Care Act.

3. OUR SOLUTION APPROACH

As stated previously, the NLTK constitutes the
centerpiece of our solution approach and
framework. The advantages that the NLTK
provides for our solution approach is that it
harnesses the ease-of-use and power of the
Python programming language as well as a very

capable library for accessing various corpora and
lexical resources for the classification,
tokenization, stemming, tagging, parsing, and
semantic reasoning required as a prerequisite

for the visual analysis of digitized text. Thus, we
require a component like the NLTK as a

precursor for successful visualization as our
visualization engine requires the outputs of
computational linguistics.

Figure 5 shows the control center of our
framework after loading a text document. With
our framework, we can browse and upload new

files for analysis and add that new file to the list
of available digital documents. We can select a
document to analyze, by selecting ”Generate
Word Cloud,” in which we opt to utilize a one-
gram (default), two-gram, or a three-gram
cloud. In computational linguistics, an n-gram is

the contiguous sequence of phonemes, syllables,

letters, or words that are considered to “go
together” sequentially (for instance, “I love you”
is a three-gram sequence). For this
transformation to occur, all documents are pre-
processed in our framework using NLTK. Once
tokenized into grams, we can use our visual

interface to highlight a token (in this case the
three-gram “You need a” to see all the
sentences of the token. We can also perform a
regular expression search to find all of its usage
in the body of text and the corresponding word-
cloud tags.

What sets our solution approach apart from

others mentioned here is that it uses the word-
cloud as an interactive data analysis tool. Thus,
our Django-based interface (both the
administrative and user interfaces) serve as the
front-end to an NLTK-driven back-end running
on a server. This works such that, after a

document is rendered, we use AJAX to
communicate with the NLTK backend to facilitate
a user’s ad-hoc queries. In addition to
supporting, one-, two-, and three-gram word
analysis (tokenization), we further allow a user
to drill-down to the underlying sentences of the

tokens and to selectively filter out the x-gram
that is being displayed via mouse-driven
interaction with the visualization graphics
directly.

4. OUR SOLUTION ARCHITECTURE

Figure 6 illustrates the architecture of the NLTK
Command Center. One of our design goals was
to make the NLTK more visual and more
accessible to the end user. To that end, we

designed the NLTK Command Center as a web
application. The frontend runs in a browser that
utilizes JavaScript, AJAX, jQuery, HTML5
(specifically HTML5 Canvas element), and CSS.

These latest web technologies enabled us to
write a fully-featured, graphical, and interactive

web application. We implemented an existing
HTML 5/Canvas word cloud library named “HTML
5 Word Cloud” written by Chien (2012).

The backend architecture was dictated by the
fact that the NLTK is a Python library.
Accordingly, we used Django, which is a Python-

based web framework, as it can directly
interface with the NLTK, which is also Python-
based. For data persistence, the MySQL
database server stores user session information
and file metadata. We utilize the Apache web
server to host our Django application on an

Ubuntu Linux server. The Apache module

mod_wsgi acts as glue between Apache and
Python in the same manner as mod_php or
mod_cgi; this module would be needed for any
Python web application. Despite our entirely
open-source implementation approach, there is
nothing to prevent the deployment of our

solution on any other platform that Django
supports, such as Windows and Internet
Information Server (IIS).

One of the major design challenges we faced
involved the performance and scalability of the
NLTK library. During our testing, we should note

that processing a large body of text to be very

CPU intensive. In fact, the initial loading of an
NLTK corpus can take several seconds or longer
depending on the corpus being used. By default,
mod_wsgi loads a new instance of the Python
interpreter executable for each Apache worker
process. This translates to each visitor of the

web site incurring the same delay. We worked
around this problem by configuring mod_wsgi to
instantiate just one Python process and share it
amongst every request. This prevented the
initial loading delay from occurring for
subsequent client requests. However, this

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

implementation may lead to scalability issues
down the road if the user base grows. However,
there are other scalability solutions including
Platform-as-a-Service (Paas) and Infrastructure-

as-a-Service (IaaS) options. Accordingly, we
believe that redesigning the architecture to
support the Google App Engine or another cloud
based service could be useful for the future.

5. IMPLEMENTATION DETAILS

When a user first connects to the NLTK
Command Center website they are presented
with user interface that allow them to perform
various NLTK tasks through a GUI (Figure 5).

This is facilitated by JavaScript running on the
client’s web browser that sends an AJAX call to

the web server, and ultimately to the NLTK,
which then performs the task and sends the
results back serialized as JSON. We then use
JavaScript to display the results graphically.
Currently we provide and expose the following
python methods which provide AJAX-oriented
NLTK services in our framework:

 upload_file() – This is an HTTP POST

command that uploads a file from the user’s
computer to the server. After uploading said
file, the user can select it from a list of
available files and perform various text

analyses using the NLTK.

 word_frequency(file_id, ngram) – This

function analyzes a text and returns the

frequency of words as a list. It can compute
the frequency of one-, two-, or three-gram
phrases as specified by the ngram
parameter. Two- and three-gram items will
return the frequency of two- word and
three-word phrases respectively. This AJAX

call is used in to facilitate the drawing of the
word cloud.

 get_sentences(file_id, phrase) – This

AJAX-driven function allows the user to

right-click on a word or phrase in the word
cloud and request a list of all the sentences
that word or phrase appears in. The NLTK

processes each sentence of the text defined
by file_id and looks for phrase. The list of
sentences is then returned as JSON and
displayed in the browser. The phrase is
highlighted in each sentence while it is
displayed in the word cloud visualization.

 regex_search(file_id, pattern) – The

user can search the text using regular
expressions. This AJAX call asks the NLTK to
perform the regular expression and return
all matches within the text. The matches are

displayed in a drop down box and the user
can select them. When selected, they will be
highlighted in the word cloud.

 execute_nltk_command(command) - The

user can enter any valid NLTK/Python
command and the server will execute it and
simply dump the standard output to the
browser. This capability is mostly used for

debugging but is available and can be useful

for advanced NLTK analysis that is not yet
implemented in the GUI.

There is additional functionality and logic
programmed directly into JavaScript. Whenever

possible, JavaScript is used to execute tasks
directly on the web browser without
communicating to the server through AJAX. This
improves responsiveness and scalability. The
biggest example of this is drawing the word
cloud itself. We implemented an existing HTML
5/Canvas word cloud library named “HTML 5

Word Cloud” written by Chien (2012). As the
library is freely available under the open-source
MIT License, we appropriated just the HTML

5/Canvas JavaScript drawing routines and made
two important changes. First, we added a two-
dimensional wordMap[][] array that maps x and

y pixel coordinates to the location of a specific
word on the canvas. This array is filled in once

while the word cloud is being drawn. This
enabled us to add interactive functionality to the
word cloud – that is, a user can right-click with
their pointing device on the word cloud and it
will know which X-gram word was selected. A
second array, pixelMap[], is an associative

array that maps words to pixel coordinates. This
enables us to allow a user to search for a word

within the word cloud. With this functionality, we
implemented the following features solely in

JavaScript on the client-side:

 highlight_word(word) – Coupled with

the regex_search(file_id, pattern)

above, the user can select a word,

phrase, or several words and using

the pixelMap[] array JavaScript will

highlight those words in the word

cloud.

 exclude_word(word) – The user can

click on a word in the word cloud and

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

exclude it. The wordMap[] array is

used to determine which word was

clicked. The word cloud is then

redrawn with the specified word

removed from the list. This is useful

if there is one non-important word

that appears so often it diminishes

the weight of other words.

 draw_wordcloud(list) – Given a list

of words and frequencies, this draws

the word cloud on the HTML 5 Canvas.

6. SUMMARY AND FUTURE WORK

With our word cloud framework, our objective is
to create tools that allow users to be engaged in
the discovery of hidden characteristics and
meanings ensconced within digital text.

Facilitating knowledge through the design and
implementation of information systems has long
been a focus for the information systems
discipline and, as such, we see the need for
improving information interfaces with
information visualization. Toward this end, we
have developed a prototype implementation that

allows those with minimum computing
knowledge to be able to analyze digital text as
data by seeing that data and by manipulating
what they see. This this sense, a data
visualization tool such as our prototype system

constitutes a form of decision support system.

For instance, we envision the humanities
researcher who may be well equipped to
understand intrinsic and underlying literary and
historical context of the text, but is inhibited
from analyzing the data of the text by its sheer
volume. Furthermore, such users may also find

that their lack of expertise in utilizing the tools
that can reduce this data leaves such analytic
opportunities out of reach. We anticipate that
the outputs of our research will allow for growth
and impact not only in our field, but also in the
humanities, in business, and in any areas where
digitized text is available and text and data

analysis is important. In summary, our
framework should allow a user to analyze text
without reading it. While this may seem
counter-intuitive, decisions on how to use
precious time in extracting value from text may
be improved by “seeing” a text before reading it.

7. REFERENCES

Baroukh, C., Jenkins, S. L., Dannenfelser, R. and

Ma’ayan A. (2011). Genes2WordCloud: a

quick way to identify biological themes from
gene lists and free text. Source Code for
Biology and Medicine, 6(15).

Chien, T, G. (2012). HTML 5 Word Cloud.
http://timc.idv.tw/wordcloud/en/ last
accessed Aug-11-2012.

Jacobs, A. (2009) The Pathologies of Big Data,

ACM Queue, 7(6), 10.

Jean-Baptiste, M., et.al. (2011). Quantitative
Analysis of Culture Using Millions of Digitized
Books. Science, 332, 176.

Kim K., Ko, S. Elmqvist, N., and Ebert, D.
(2011) WordBridge: Using Composite Tag

Clouds to Node-Link Diagrams for Visualizing
Content and Relations in Text Corpora. 44th
Hawaii International Conference on System
Sciences (HICSS).

Norvig, Peter(2009). Natural Language Corpus

Data, in Segaran, T. and Hammerbacher, J

(eds.) Beautiful Data (219-240), O’Reilly
Pub.

Oesper, L., Meico, D., Isserlin, R. and Bader, G.

D. (2011) WordCloud: Cytoscape plugin to
create a visual semantic summary of

networks. Source Code for Biology and

Medicine, 6(7).

Sharma, N., Ghosh, S., Benevnuto, F., Ganguly,

N. and Gummadi, K. P. (2012). Inferring
Who-is-Who in the Twitter Social Network.
ACM SIGCOMM Workshop on Online Social

Networks (WOSN’12), Helisinki, Finland.

Viegas, F. B., Wattenberg, M., Ham F. V. Kriss J.

and McKeon M. (2007). Many Eyes: A Site
for Visualization at Internet Scale. IEEE
Transactions on Visualization and Computer
Graphics, 13(6).

Viegas, F. B., Wattenberg, M., Feinberg J.
(2009). Participatory Visualization with
Wordle. IEEE Transactions on Visualization
and Computer Graphics, 15(6).

Yatani, K., Novati, M., Trusty, A., and Troung,

K.N. (2011) Analysis of Adjective-Noun Word
Pair Extraction Methods for Online Review
Summarization. Proceedings of the 22nd
International Join Conference on Artificial
Intelligence.

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

Figures

Figure 1 A Wordle word-cloud visualization of the supreme-court decision on the health-care bill

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

Figure 2 Twitter Crowd sourcing of Opinions

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

Figure 3 A wordCram word-cloud visualization of the supreme-court decision on the Affordable Care Act

Figure 4 Our word-cloud visualization of the supreme-court decision on the Affordable Care Act

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

Figure 5 Control Center of Our Framework

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2240

©2012 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

Figure 6 The Framework’s Application Architecture

